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QUASI-PERIODIC OSCILLATIONS IN LASCO CORONAL MASS EJECTION SPEEDS
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ABSTRACT

Quasi-periodic oscillations in the speed profile of coronal mass ejections (CMEs) in the radial distance range 2–30
solar radii are studied. We considered the height–time data of the 307 CMEs recorded by the Large Angle and
Spectrometric Coronagraph (LASCO) during 2005 January–March. In order to study the speed–distance profile of
the CMEs, we have used only 116 events for which there are at least 10 height–time measurements made in the
LASCO field of view. The instantaneous CME speed is estimated using a pair of height–time data points, providing
the speed–distance profile. We found quasi-periodic patterns in at least 15 speed–distance profiles, where the speed
amplitudes are larger than the speed errors. For these events we have determined the speed amplitude and period of
oscillations. The periods of quasi-periodic oscillations are found in the range 48–240 minutes, tending to increase
with height. The oscillations have similar properties as those reported by Krall et al., who interpreted them in terms
of the flux-rope model. The nature of forces responsible for the motion of CMEs and their oscillations are discussed.
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1. INTRODUCTION

Coronal mass ejections (CMEs) are magnetized plasma
clouds ejected from the Sun through the solar corona and the so-
lar wind. It is assumed that the eruption is driven by the Lorentz
force. The observed properties of CME dynamics are explained
by various magnetohydrodynamical models, including the flux-
rope model (Chen et al. 1997, 2000; Wood et al. 1999; Krall
et al. 2001; Chen & Krall 2003).

It has been found that the propagation of CMEs is strongly
affected by the ambient solar wind plasma (Lindsay et al. 1999;
Gopalswamy et al. 2000, 2001). The influence of aerodynamic
drag force on CME propagation has been studied by several
authors (Vrsnak 2001; Vrsnak & Gopalswamy 2002; Vrsnak
et al. 2004; Cargill 2004) and they found that CMEs traveling
at velocities lower than the ambient solar wind speed are
accelerated, whereas CMEs propagating with higher speeds are
decelerated. However, the interplay between the CME speed and
the drag due to solar wind is not fully understood. Because the
solar wind is accelerated in the range 2–30 R�, its speed is not
uniform (Sheeley et al. 1997). Also, the residual acceleration of
CMEs occurs in this range (Zhang & Dere 2006). Hence, the
knowledge of the radial evolution of CMEs in the Large Angle
and Spectrometric Coronagraph (LASCO; Brueckner et al.
1995) field of view (FOV) is important for the understanding of
both the ambient solar wind and the dynamics of CMEs at these
heights.

Recently, Krall et al. (2001) used detailed measurements of
11 CMEs having flux-rope-like morphological signatures, and
showed that their behavior is in agreement with theoretically
modeled erupting flux-rope dynamics. They concluded that flux-
rope CMEs constitute a distinct class of CMEs, characterized
by specific morphological and dynamical properties. They also
reported oscillatory fluctuations of velocity in several CMEs. As
far as we know, this is the only report about the CME velocity

oscillations, except for a note in Moon et al. (2004), where the
oscillating motions of the CME speed are briefly mentioned (see
Figure 3 therein). Krall (2007) later hypothesized that all CMEs
are flux ropes.

In this paper, we analyze the speed–distance profiles for a
set of CMEs. In a number of cases, we have noticed quasi-
periodic oscillations in the speed profile. We performed a
detailed analysis of physical properties of these oscillations,
focusing on some aspects not included in the study by Krall
et al. (2001). For example, we noticed that the oscillations
are superposed to an exponential growth of the speed. We
have also found an increase of the oscillation periods over
height and that is interpreted in terms of Alfvén travel time. In
addition, the study provides an insight into the Lorentz force/
acceleration for the CMEs analyzed in this paper. Finally, the
oscillations are interpreted in terms of an unstable/metastable
flux rope launched into the solar wind. In the next section, we
describe measurements and summarize the characteristics of
these velocity oscillations. Results are discussed in Section 3.
Finally, conclusions are presented in Section 4.

2. OBSERVATIONS AND RESULTS

We considered a sample of 307 CMEs observed during 2005
January–March and reported in the LASCO CME online cat-
alog (http://cdaw.gsfc.nasa.gov/CME_list; Yashiro et al. 2004;
Gopalswamy et al. 2009). We have chosen this period of declin-
ing solar activity, so that the chances of the interaction between
CMEs are small. We have considered only the CMEs having
at least 10 height–time measurements. After applying this cri-
terion, the sample reduced to 116 events, which we used for
further analysis. Unlike in Krall et al. (2001), the selection of
CMEs in the present work was not limited to those that exhibited
flux-rope-like features.
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Table 1
List of CMEs for which the Period of the Quasi-periodic Oscillations are Measureda

Date Time Duration Distance Width Speed Acceleration ΔV Vmean Period (min) at

(dd/mm) (UT) (hr:min) R� (deg) (km s−1) (m s−2) (km s−1) (km s−1) 5 R� 10 R� 15 R�
08/01 16:30 10:12 2.94–17.31 122 256 11.2 308 376 72 240 . . .

09/01 02:30 8:14 2.51–27.82 67 603 7.4 197 555 48 168 192
10/01 18:30 19:12 3.33–28.75 96 251 8.3 352 443 164 168 168
11/01 17:30 9:12 3.38–14.74 21 239 2.2 328 340 120 166 . . .

13/01 08:54 6:48 2.54–12.13 95 267 −0.7 164 300 72 240 . . .

30/01 15:54 7:48 2.99–21.78 156 454 8.3 245 429 72 240 240
31/01 16:06 12:12 2.7–23.55 26 553 14.1 271 515 . . . . . . 204
08/02 01:31 5:12 2.66–18.57 43 589 −1.5 435 634 72 192 192
12/02 12:54 8:48 4.88–17.52 42 291 4.3 214 304 120 120 120
06/03 20:59 11:42 3.24–19.35 33 263 5.7 295 409 144 212 168
14/03 08:00 5:18 2.63–25.55 105 849 11.6 157 852 48 84 192
16/03 12:48 7:30 4.46–21.87 23 444 7.6 241 513 48 168 192
21/03 14:36 5:06 2.31–25.87 150 920 −28.6 418 967 48 188 120
27/03 07:00 13:18 3.1–23.71 28 292 6.5 298 407 72 120 240
28/03 04:36 13:42 3.13–18.95 30 223 2 320 270 48 240 240

Note. a If there is a blank, it means the period cannot be measured.

2.1. Speed–Distance Profile of CMEs

In the analysis, we have utilized the height–time data reported
in the LASCO catalog. Instantaneous speeds of CMEs in the
LASCO C2–C3 FOV was determined using two successive
height–time measurements,

vi = (Δh/Δt)i = (hi+1 − hi)/(ti+1 − ti) . (1)

The height (hi) corresponding to a given vi is taken as h =
(hi + hi+1)/2. Then, the speed–distance profile, v(h), is drawn
for each event. ti is the time corresponding to a particular height.

As an example of the described procedure, the speed–distance
profiles for two CMEs (2005 January 8 and 10) are shown in
Figures 1(a) and (b). For the 2005 January 8 event (the first
appearance in LASCO C2 FOV at 16:30 UT), the CME speed
around 3 R� was 140 km s−1 and increased to nearly 600 km
s−1 around 17 R�. The mean speed and acceleration reported
in the LASCO catalog are 256 km s−1 and 11.2 m s−2, respec-
tively. Similarly, for the 2005 January 10 event (18:30 UT), the
CME speed was 28 km s−1 at 3.5 R� and increased to nearly
470 km s−1 at 27.5 R�. The reported mean speed and accelera-
tion are 251 km s−1 and 8.3 m s−2, respectively.

Figures 1(a) and (b) reveal quasi-periodic pattern in the v(h)
profile superposed onto an approximately linear increase of the
CME speed (h represents the radial distance expressed in units
of R�). CME speed can be separated into two components,

vcme = vlin + vosc, (2)

where vlin means that the velocity is a linear function of the
distance (non-oscillatory component) and vosc is the oscillatory
component. In the velocity–time space, this corresponds to an
exponential growth, since R ∝ eωt implies v = ḣ ∝ ωeωt , i.e.,
v = ωh (Vrsnak 2001).

Among the speed–distance profiles of 116 events, we iden-
tified two classes of CMEs, either accelerating or decelerating.
That is, CMEs followed either v(h) = v0 + ωh or v(h) =
v0 − ωh, where v0 is the initial speed and ω is the growth rate.
There are a few cases for which the growth rate was nearly zero.
The superimposed oscillating pattern is found in the speed–
distance profiles of most of the CMEs. However, it is seen

(a)

(b)

Figure 1. (a) Speed–distance profile of a CME observed on 2005 January 8. (b)
Same as above for the CME on 2005 January 10. The error bar shows the speed
error obtained for LASCO C2 and C3 coronagraphs.

clearly only in 15 events, all being traced over a long distance
range. The events are listed in Table 1. The data for these 15
events were smoothed by the spline interpolation, making the
oscillating pattern clearer, as illustrated in Figures 2(a) and (b).

2.2. Period of Oscillations

Besides the v(h) profiles, we have also analyzed the speed–
time profiles, v(t), for all the 15 CMEs, in order to measure the
period of oscillations. In Figure 3, we show two examples of
smoothed v(t) profiles. The oscillation periods were determined
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(a)

(b)

Figure 2. (a) Speed–distance profile of a CME observed on 2005 January 8.
Dashed line is the spline interpolation fit to show the oscillation pattern. (b)
Same as above for the CME on 2005 January 10.

at three different radial distances (5, 10, and 15 R�) and are
displayed in Table 1. The first three columns of Table 1 show the
date, the first appearance time of CMEs in the LASCO C2 FOV,
and the duration of the observational interval, respectively. The
CME distance range is shown in Column 4. Columns 5–7 show
the width, speed, and acceleration of the CMEs. The velocity
amplitude (ΔV ) and mean speeds (Vmean = (Vmax + Vmin)/2) of
the CMEs, estimated from the oscillation profile, are given in
Columns 8–9. The period (T) of the quasi-periodic oscillations
at three different heights is given in the last column.

It can be observed from Table 1 that the oscillation period
varies between 48 and 240 minutes. In 10 cases, the oscillation
period increases as the CME height increases from 5 R�
to 15 R�.

Finally, we have obtained the speed–distance profiles for each
of the 15 events using three point differences of the height–
time data and the quasi-periodic oscillations are still seen. Two
examples are shown in Figure 4.

2.3. Speed Error

In order to check whether these oscillations are true, we check
whether the oscillation amplitudes are higher than the error in
CME speed measurements. The LASCO C2 FOV covers the
range 2–6 R�. Since the MVI files were used for the CME
measurements in the online catalog, the pixel size is 23.′′79
for C2 and 112′′ for C3. If we adopt that the height error is
23.′′79, then the speed error expressed in km s−1 would be
ΔVCME = 2 × 23.79 × 725/tc, where tc is the time cadence
expressed in seconds. During 2005 January–March, the average
time cadence of LASCO C2 images was around 19.7 minutes,
thus the speed error can be estimated as 29 km s−1. Similarly, we

(a)

(b)

Figure 3. (a) Speed–time profile of a CME observed on 2005 January 8. Dashed
line is the spline interpolation fit to show the oscillation pattern. (b) Same as
above for the CME on 2005 January 10.

(a)

(b)

Figure 4. (a) Speed–time profile of a CME observed on 2005 January 8 obtained
using three point differences of height–time data. Dashed line is the spline
interpolation fit to show the oscillation pattern. (b) Same as above for the CME
on 2005 January 10.
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(a)

(b)

Figure 5. Distribution of the (a) mean speeds and (b) speed amplitudes of the
oscillations.

find a speed error of 80 km s−1 for the LASCO C3 measurements
if we use a resolution of 112′′ and 34 minutes time cadence. We
also note that according to a recent analysis of errors in LASCO
height measurements reported by Wen et al. (2007), a constant
error of about 0.25 R� at all heights above 5 R� is probably
a good approximation. For a time cadence of 20 minutes, one
would get a speed error around 145 km s−1.

The distribution of mean speeds in the oscillation period
(Vmean = (Vmax + Vmin)/2) of all the 15 events is shown in
Figure 5(a). Note that most of the mean values are around
400 km s−1, which is about the solar wind speed. This may
be related to the drag effect that is discussed in Section 3.

In our data, we found that the amplitude of the velocity
oscillation is larger than the estimated error for all of the 15
events listed in Table 1. The amplitude is larger than 200 km s−1

in 11 events (73%), in six events (40%) it is larger than
300 km s−1, and in two CMEs (13%) it is even larger than
400 km s−1. The distribution of velocity amplitudes is presented
in Figure 5(b).

3. DISCUSSION

The oscillations analyzed in the present study are similar to
those of Krall et al. (2001). Similar to their observation, the
pattern might be best observed in slowly evolving flux ropes.
For example, the morphology of the slowly erupting CME
observed on 2005 January 10 (Figure 6) can be related to flux-
rope configuration. The two ends of the circular magnetic loop
stay anchored to the Sun even up to a distance of 25 R�. This
CME is a slow event with a mean speed of 250 km s−1. As
Krall et al. (2001) suggested, when the geometry of the flux
rope changes continuously, the oscillations are likely to change

Figure 6. SOHO/LASCO C3 images of the CME of 2005 January 10.

in character as the flux rope expands. In agreement to this, the
periods of the oscillations of our CMEs tend to increase as the
distance increases. It should be noted that from the point of view
of the flux-rope model, the eigenmode oscillations are expected
when the drive mechanism is too weak to cause an eruption, or
if the stable flux-rope configuration is weakly perturbed from
equilibrium (Vrsnak 1984; Chen 1989; Vrsnak 1990; Cargill
et al. 1994).

The oscillation period with respect to the distance, T (R), is
plotted in Figure 7. In the graph, we have compared the measured
oscillation period with the period of the loop oscillations due to
a standing Alfvén wave,

T ≈ L/VA, (3)

where VA is the Alfvén speed and L is the length of the coronal
loop L ≈ 2πh = 2π (R − 1), i.e., the oscillation period is of the
order of the Alfvén travel time. Here, the dominant factor is L,
since the value of VA should not change too much because in the
CME expansion both the CME density and CME magnetic field
decrease with height. For two different Alfvén speeds (3000 and
500 km s−1), the period is calculated using the above formula
and shown in Figure 7. For VA = 1000 km s−1, at R = 5 R� we
get T ≈ 50 minutes, and T ≈ 160 minutes at R = 15 R�. For
lower VA, periods become too large.

In order to study the nature of forces causing the described
oscillations, we have examined acceleration time profiles of
our CMEs, applying the two-point difference method. Using
the speed–time data, we obtained the acceleration–time profile
a(t), as shown in Figure 8. As seen in these graphs, the overall
acceleration has oscillating pattern. Actually, in the LASCO
FOV (2–30 R�), the main acceleration phase might be over
for most of CMEs (Zhang & Dere 2006). Generally, only the
residual acceleration remains in this range. Hence, the motion
of CMEs is governed mainly by the solar wind drag (ad),
gravitational force (g = 274/R2), and any residual acceleration
due to the Lorentz force (aL):

an = aL − g − ad = aL − g − γ (v − w) , (4)
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Figure 7. Period of the quasi-periodic oscillations for several events are shown
(lines with symbols). Superimposed is the period of the loop oscillation due
to Alfvén standing wave: dashed line, VA = 500 km s−1; solid line, VA =
3000 km s−1 (see the text for more details).

where we have used a linear approximation for the drag,
γ (v − w). Since the CME velocity and the net acceleration
at various distances are known for our data, one can obtain the
Lorentz force. In order to calculate the Lorentz force for our
CMEs, we use the solar wind empirical model proposed by
Sheeley et al. (1997):

w(R) = w0

√
1 − e−(R−R1)/R2 , (5)

where R1 = 2.8 and R2 = 8.1, and we adopted the asymptotic
wind speed w0 = 400 km s−1.

Utilizing the empirical scaling for the drag parameter γ as
given by Vrsnak (2001), γ = 1.16 R−1.35 × 10−3 s−1, we have
estimated the variation of the Lorentz force in the LASCO FOV
using Equation (4). The results are shown in Figure 9 for CMEs
of 2005 January 8 and 10. In this figure, the accelerations due to
gravitation (g), drag (ad), and net acceleration from Figure 8 (an)
are also shown for comparison. Since the oscillation is present in
the velocity profile of the CME, the drag also shows oscillating
pattern. Due to the oscillating pattern in the net acceleration,
it is also present in the Lorentz acceleration. As seen in this
figure, the acceleration due to Lorentz force seems to be of
same magnitude as other forces.

Furthermore, we examined a list of 30 events (reported during
the period 1999–2006) whose heights were measured in at least
30 coronagraphic images and were characterized by a high-
quality index (�4). Almost all of them display the same kind of
quasi-periodic oscillations in their speed–distance profile.

The quasi-periodic oscillations in the velocity profile of
CMEs can be explained by the flux-rope model when the driving
Lorentz force is weak. Depending on the interplay of the Lorentz
force and the gravity, an unstable (or metastable) flux rope in
the solar atmosphere can jump to an upper equilibrium position

(a)

(b)

Figure 8. Acceleration–time profile of the two CMEs presented in Figure 1.

an

ad

ad

an

(a)

(b)

g

Figure 9. Lorentz acceleration (wavy solid gray line) estimated by assuming
the solar wind model with an asymptotic speed of 400 km s−1 and using an
empirical relation for drag coefficient. The accelerations due to gravitation (g:
monotonously decreasing dash-dotted red line), drag (ad: wavy dotted blue line),
and net acceleration from Figure 8 (an: wavy dashed line) are also shown.
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(e.g., Vrsnak 1990, 2008; Torok & Kliem 2005; for observations,
see Vrsnak et al. 1990; Vrsnak 2001). In the absence of the solar
wind the flux rope is expected to show a damped oscillation at
this upper equilibrium (Vrsnak 2001). However, if the upper
equilibrium position is at heights where the solar wind becomes
effective, i.e., if the Lorentz force drives the rope into the
solar wind, the rope starts to feel the solar wind drag, which
continues to drive it into interplanetary space. Thus, instead
of oscillating around a fixed height, the rope oscillates while
propagating outward. Furthermore, it is expected that the period
of eigenmode oscillations increases since the size of the structure
increases.

Note that the interpretation according to which some slow
CMEs are driven by the solar wind, i.e., that they passively
trace the solar wind outflow, was put forward by Sheeley et al.
(1997). The idea was founded on the fact that the kinematics
of some CMEs is similar to the kinematics of small-scale
transient features observed in the LASCO FOV, for which it
was demonstrated to be consistent with an isothermal solar
wind expansion at a temperature of 1.1 MK and a sonic point
near 5 R�. On the other hand, the idea about existence of an
upper equilibrium position, failed eruptions, and oscillations
at the upper equilibrium was put forward by Vrsnak (1990)
and observationally demonstrated by Vrsnak et al. (1990). In
this paper for the first time these two aspects are combined, to
explain the oscillatory expansion of slow CMEs.

4. CONCLUSION

We have analyzed the speed–distance profile of a sample
of 116 CMEs which have at least 10 height measurements
in the Solar and Heliospheric Observatory (SOHO)/LASCO
range of 2–30 R�. Using these data, we have obtained the
speed–distance profile for all the CMEs. We found quasi-
periodic oscillations in 15 cases and we have determined their
periods and amplitudes. The periods of these quasi-periodic
oscillations range between 48 and 240 minutes. The amplitudes
of oscillations are higher than the typical error in the CME
speed measurements, suggesting that the oscillations are real.
The properties of oscillations are similar to that reported by Krall
et al. (2001). The oscillations are seen mainly when the CMEs
are observed over long distances. The origin of such oscillations
can be explained in the scope of the flux-rope model.
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