
ABSTRACT

STUDY OF MAGNETIC HELICITY IN SOLAR ACTIVE REGIONS AND
ITS RELATIONSHIP WITH SOLAR ERUPTIONS

by
Sung-Hong Park

It is generally believed that eruptive phenomena in the solar atmosphere such as solar flares

and coronal mass ejections (CMEs) occur in solar active regions with complex magnetic

structures. The magnetic complexity is quantified in terms of twists, kinks, and inter-

linkages of magnetic field lines. Magnetic helicity has been recognized as a useful measure

for these properties of a given magnetic field system. Magnetic helicity studies have been

naturally directed to the energy buildup and instability leading to solar eruptions. However,

in spite of many years of study, detailed aspects of initiation mechanisms of eruptive events

are still not well understood. The objective of this dissertation is to understand a long-term

(a few days) variation of magnetic helicity in active regions and its relationship with flares

and CMEs.

The research presented in this dissertation benefited significantly from the compre-

hensive data now available, including SOHO/MDI full-disk longitudinal magnetograms,

Hinode/SOT/SP vector magnetograms, and GOES soft X-ray data. In addition, several ad-

vanced data analysis tools were utilized such as local correlation tracking, differential affine

velocity estimator, Stokes inversion, 180◦ ambiguity resolution, and nonlinear force-free

magnetic field extrapolation. Statistical studies of flare productivity and magnetic helicity

injection in ∼400 active regions were carried out. The time profile of the coronal magnetic

helicity in the active region NOAA 10930 was also investigated to find its characteristic

variation related to the X3.4 flare on 2006 December 13. In addition, the temporal varia-

ichertok
Note
Thesis, 2010
http://solar.njit.edu/SolarPhDStudents.htm



tion of magnetic helicity injected through the photosphere of active regions was examined

related to 46 CMEs and two active-region coronal arcades building up to CMEs.

The main findings in this dissertation are as follows: (1) the study of magnetic he-

licity for active regions producing major flares and CMEs indicates that there is always a

significant helicity injection of 1042–1043 Mx2 through the active-region photosphere over

a long period of ∼0.5–a few days before the flares and CMEs; (2) the study of the 2006

December 13 X3.4 flare shows that the flare is preceded by not only a large increase of

negative helicity in the corona over ∼1.5 days but also a noticeable injection of oppositely-

signed helicity though the photospheric surface around the flaring magnetic polarity inver-

sion line; (3) the gradual inflation stage of the two arcades is temporally associated with

helicity injection from the active-region photosphere; and (4) for the 30 CMEs under in-

vestigation, it is found that there is a fairly good correlation (linear correlation coefficient

of 0.71) between the average helicity injection in the CME-productive active regions and

the CME speed.

Beside the scientific contribution, a major broader impact of this dissertation is

the observational discovery of a characteristic variation of the pattern of magnetic helicity

injection in flare/CME-productive active regions, which can be used for the improvement

of solar eruption forecasting. An early warning sign of flare-CME occurrence could be

implemented based on tracking of a period of monotonically increasing helicity because

there was always a significant amount of helicity accumulation in active regions a few days

before the major flares and CMEs under investigation.
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CHAPTER 1

INTRODUCTION

Our star, the Sun, has been studied for a long time in human history, not only due to

intellectual curiosity but also due to its importance for life on Earth. As a result, many

outstanding findings have been obtained, and they have affected our society in many ways.

For example, the apparent annual motion of the Sun on the sky was measured and used

to establish a solar calendar which was necessary for planning nomadic activity, farming,

sacred feasts, etc.

By the late 20th century, solar space missions (e.g., Yohkoh, RHESSI, and SOHO)

opened up a new era in the study of the Sun by carrying out observations under conditions of

atmosphere-free space and in the expanded wavelength coverage of the extreme ultraviolet,

X-rays, and gamma rays. Consequently, it is now clearer that there are very dynamic

and eruptive phenomena in the solar atmosphere such as solar flares and coronal mass

ejections (CMEs) which can affect the Earth’s environment. In addition, it was reported that

enormous economic and commercial losses (Baker 2004; Schwenn 2006) can be caused by

flares and CMEs. Therefore, a considerable amount of effort is recently being devoted to

developing a flare/CME forecasting system as part of the study of space weather.

The main objective of this dissertation is to understand how a long-term (a few

days) variation of magnetic helicity, one of the key parameters to describe evolution of

surface magnetic field in an active region on the Sun, is associated with the energy buildup

and instability leading to solar eruptions: flares and CMEs. Before presenting the studies

and results of this dissertation in Chapters 3–6, an overview of the relevant background and

1
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previous studies related to this dissertation will be introduced in this chapter, followed by

the description of methods used for calculating the magnetic helicity in Chapter 2.

1.1 General Description of the Sun

The Sun is one of a few hundred billion stars in our Galaxy. It is located within one of the

spiral arms at a distance of ∼8,500 parsecs (1 parsec = 3.0857×1016 m) from the center of

our Galaxy, and revolves around the galactic center at a speed of ∼220 km s−1. Comparing

fundamental characteristics of the Sun to those of other stars in our Galaxy, astronomers

found that the Sun is a very ordinary star which has typical values of mass, absolute visual

magnitude, and effective temperature in the class of G-type stars.

The Sun emits energy, or radiation, in the form of electromagnetic waves that travel

at the speed of light (e.g., 3×108 m s−1 in vacuum). The solar irradiance, also called the

solar constant, F�, is used to estimate the total amount of solar radiation. Its definition is

the total amount of solar radiation energy, integrated over all wavelengths per unit time and

unit area at the mean distance of the Earth from the Sun outside the Earth’s atmosphere.

The Active Cavity Radiometer Irradiance Monitor (ACRIM) aboard the Solar Maximum

Mission (SMM) satellite measured F� from 1980 to 1989, and determined its mean value

of 1367 J s−1 m−2 (or 1367 W m−2) with variations of up to 0.2% over several days. In

addition, Fröhlich & Lean (1998) found that the long-term variation of F� is in phase with

the 11 year solar activity cycle, after investigating measurements made by five independent

space-based radiometers.

The average distance of the Sun from the Earth over the Earth’s orbital period

around the Sun, the astronomical unit (AU), is an essential measurement because it can
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be used to derive the size, mass, luminosity, and effective temperature of the Sun with

other observations. In 1976, the International Astronomical Union (IAU) formally defined

the astronomical unit as equal to the distance from the centre of the Sun at which a par-

ticle of negligible mass, in an unperturbed circular orbit, would have an orbital period

of 365.2568983 days. The astronomical unit, therefore, is exactly 149,597,870.691 km,

slightly less than the mean Sun-Earth distance.

Once the astronomical unit (AU) and the Earth’s orbital period (PE) are determined,

the Sun’s mass, M�, can be estimated from Newton’s formulation of Kepler’s third law:

M� ' 5.9165×1011 (1AU)3

PE
2 = 1.989×1030 kg. (1.1)

Using the astronomical unit and F�, the Sun’s absolute luminosity, L�, can be derived

from:

L� = 4πF�(1AU)2 = 3.85×1026 W. (1.2)

The angular diameter of the visible solar disk as seen from the Earth varies in the range of

31.6–32.7 arcminutes (′) while the Earth revolves around the Sun in an elliptical path. In

the late 20th century, several measurements of the Sun’s diameter at 1 AU (Sofia et al. 1994;

Wittmann 1997; Brown & Christensen-Dalsgaard 1998) were carried out, and they yielded

a very similar value of around 31.99′ which is used until today in the yearly Astronomical

Almanac. From that, the average solar radius, R�, is determined as 6.955×108 m. The ef-

fective temperature, T�, of the visible solar disk can be obtained using the Stefan-Boltzmann

law:

T� =

(

L�

4πσR2
�

)1/4

= 5780K, (1.3)
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where the Stefan-Boltzmann constant σ = 5.670×10−8 J m−2 K−4 s−1. Please refer to

Table 1.1 for other characteristic parameters of the Sun.

What is the chemical composition of, and physical conditions in, the Sun’s atmo-

sphere? In the 19th century, the development of spectroscopy allowed scientist to answer

this question. In 1814, Joseph von Fraunhofer (1787–1826) measured the position of over

570 dark lines in the visible spectrum of the Sun, and then Gustav Robert Kirchhoff (1824–

1887), in 1859, explained that the dark lines were caused by absorption of light by cooler

gases in the solar photosphere. The dark absorption lines therefore were used not only to

identify the chemical elements in the photosphere of the Sun but also to investigate the

relative abundance of the elements in the photosphere. The solar photosphere is composed

primarily of the chemical elements hydrogen and helium: hydrogen and helium account

for 92.1% and 7.9% of the number of atoms in the photosphere. See Table 1.2 for the 20

most abundant elements in the photosphere.

1.2 Solar Active Regions

Solar active regions are localized volumes with intense magnetic fields in the solar atmo-

sphere, from the photosphere to the corona. They develop when strong magnetic fields

emerge from inside the Sun, and last from several hours to a few months. Sunspots, fac-

ulae, and bright points (or filigree) are observed on the photospheric surfaces of active

regions, and their counterparts, plages, appear in the chromosphere. Radiation from active

regions is enhanced, when compared to neighboring areas in the chromosphere and corona,

over the whole electromagnetic spectrum, from X-rays to radio waves (see Figure 1.1 for

maps of an active region observed at different wavelengths). Furthermore, most flares and
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Table 1.1 Physical Properties of the Sun Referred from Lang (2001) and Stix (2004)

Physical Property Value

Mean distance, AU 1.49597870691×1011 m
Radius, R� 6.955×108 m (109 Earth radii)
Volume 1.412×1027 m3 (1.3 million Earths)
Mass, M� 1.989×1030 kg (332,946 Earth masses)
Mean density 1409 kg m−3

Solar irradiance, F� 1366.2 W m−2

Luminosity, L� 3.85×1026 W
Pressure (center) 2.334×1016 Pa

(photosphere) 10 Pa
Temperature (center) 1.56×107 K

(photosphere) 5780 K
(chromosphere) 6×103 – 2×104 K
(transition region) 2×104 – 2×106 K
(corona) 2×106 – 3×106 K

Rotation period (equator) 26.8 days
(30◦ latitude) 28.2 days
(60◦ latitude) 30.8 days

Magnetic Field (sunspots) 1×103 – 4×103 G
(polar) 10 G

Table 1.2 The 20 Most Abundant Elements in the Photosphere of the Sun Adopted from
Lang (2001)

Element Symbol Atomic Number Abundancea

Hydrogen H 1 2.79×1010

Helium He 2 2.72×109

Carbon C 6 1.01×107

Nitrogen N 7 3.13×106

Oxygen O 8 2.38×107

Neon Ne 10 3.44×106

Sodium Na 11 5.74×104

Magnesium Mg 12 1.07×106

Aluminum Al 13 8.49×104

Silicon Si 14 1.00×106

Phosphorus P 15 1.04×104

Sulfur S 16 5.15×105

Chlorine Cl 17 5.24×103

Argon Ar 18 1.01×105

Potassium K 19 3.77×103

Calcium Ca 20 6.11×104

Chromium Cr 24 1.35×104

Manganese Mn 25 9.55×103

Iron Fe 26 9.00×105

Nickel Ni 28 4.93×104

aNormalized to an abundance of Silicon = 1.00×106.
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CMEs occur in active regions.

(d) (f)(e)

(c)(b)(a)

Figure 1.1 Maps of solar active region NOAA 10988 observed by (a) the Solar Optical
Telescope (SOT) onboard the Hinode satellite (continuum intensity map), (b) the Michel-
son Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO)
spacecraft (line-of-sight magnetic field map), (c) Solar Magnetic Fields Telescope at
Huairou Solar Observing Station (Hα map), (d) the Extreme ultraviolet Imaging Telescope
(EIT) onboard SOHO (171 Å EUV map), (e) the X-ray Telescope (XRT) onboard Hinode
(soft X-ray map), and (f) Nobeyama Radio Heliograph (17 GHz map). Note that the field-
of-view (FOV) and spatial resolution of the maps are different from each other.

Active regions are allocated numbers by the Space Weather Prediction Center in

the US government’s National Oceanic and Atmospheric Administration (NOAA) in the

order of their appearance. The present numbering system started on 1972 January 5. The

numbers are prefixed by AR for Active Region. Active regions that exist for more than one

solar rotation are given a new number each time they reappear. Note that the active region

numbers, in this dissertation, follow this NOAA active region numbering system.
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1.2.1 Sunspots

Sunspots are the sites of strong magnetic fields in the Sun’s photosphere that appear as

dark spots compared to their surroundings. Early records of naked-eye observations of

sunspots appeared in ancient history. However, sunspots had been interpreted as a transit

of Mercury or Venus across the Sun until the first telescopic observations of sunspots were

carried out in the early 17th century. In 1613, based on the observations of the motion of

sunspots across the apparent solar disk, Galileo Galilei (1564–1642) reported that sunspots

are features on the solar surface, and not little planets. He also found that sunspots, irregular

in shape, form and disappear, which caused a great sensation in the traditional notion that all

heavenly bodies should be unchanged, incorruptible, and perfect. In 1843, Samuel Heinrich

Schwabe (1789–1875) first presented a probable 10-year periodicity in the average number

of sunspots by carefully recording the occurrence of sunspots for 17 years. Thereafter,

Christopher Carrington (1826-1875) found that the average latitude of sunspots observed

during 1853–1861 decreases continuously from the beginning to the end of a solar cycle.

By investigating all available records of sunspot observations back to the early 17th century,

Rudolf Wolf (1816–1893) made the more accurate estimate of 11 years for the average

duration of the sunspot cycle discovered by Schwabe and confirmed by Carrington. In the

early 20th century, Hale (1908) measured magnetic fields on the Sun for the first time, and

his study (Hale et al. 1919) for the magnetic polarity of sunspot pairs revealed that the

Sun’s magnetic field varies over a period of ∼22 years and it plays a fundamental role in

the 11-year cycle of solar activity.

Figure 1.2 shows a typical sunspot which consists of a dark inner core (umbra) and

a lighter periphery (penumbra) of narrow filaments in white light. The magnetic field in the
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umbra is generally perpendicular to the solar surface and typically has a strength of 2000–

3000 G (Penn & Livingston 2006). On the other hand, the penumbra shows a more inclined

magnetic field with a magnitude of about 1000 G: with growing distance from the umbra,

the magnetic field becomes more inclined and is nearly horizontal in the outer penumbra.

The average inclination angle (the angle between magnetic field lines and the surface) of

the magnetic field in the penumbra is in the range of 35–60◦ (Title et al. 1993; Langhans

et al. 2005). A nearly horizontal plasma outflow of several km s−1, the Evershed flow,

occurs in the penumbra. The effective temperatures of the sunspot umbra and penumbra

are ∼4000 K and ∼5500 K, respectively.

Figure 1.2 An ordinary sunspot taken with the 76-centimeter Vacuum Tower Telescope
at Sacramento Peak, New Mexico. This sunspot shows a fairly regular penumbral struc-
ture, and a granulation pattern appears over a large part of the umbra. Some streamers as
bright as the surrounding photosphere, called light-bridges, can be seen across the umbra
(courtesy of National Solar Observatory).
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Pores are small and short-lived dark spots in the photosphere. Sunspot groups orig-

inate as one or more sunspot pores, and develop in time. Note however that most groups

usually disappear in the initial stage. Waldmeier (1955) and Kiepenheuer (1953) described

a general development pattern of sunspot groups as follows: (1) on the 1st day, a sunspot

group is formed from a number of pores concentrated within an area of 5–10 square heli-

ographic degrees , (2) on the 2nd day, the individual pores in the group become larger up

to the size of sunspots, and the group becomes elongated; the spots are gathered together

at the preceding (west) and following (east) ends of the group, (3) in the 3rd–4th days, the

spots keep on growing and the main preceding and following spots develop a penumbra;

many small spots (about 20–50) appear between the two main spots, (4) in the 5th–12th

days, the group reaches its maximum area during this period, (5) in the 13th–30th days, the

small spots between the two main spots disappear, and the main following spot disappears

usually by breaking up into several small spots which gradually decrease in size, and (6)

in the 30th–60th days, the main preceding spot also becomes smaller and smaller until it

disappears.

There are several schemes to classify sunspot groups. Waldmeier (1955) suggested

9 characteristic stages (known as the Zürich classification) related to the configuration and

size of pores, main spots, and penumbrae in a sunspot group. This classification is based on

the visual appearance of sunspot groups, and it also takes account of evolutionary patterns

of a sunspot group during the course of its development and decay. Later on, McIntosh

(1990) proposed a more sophisticated system of sunspot group classification including the

modified Zürich classification. The McIntosh classification is accomplished by the fol-

lowing three criteria: (1) the group type based on the modified Zürich classification, (2)
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the penumbra of the largest spot of the group, and (3) the compactness of the spots of the

group. There is another way of classifying sunspots established by George Ellery Hale and

his colleagues at the Mount Wilson Observatory in Los Angeles County, California. The

Mount Wilson sunspot classification is based on the magnetic polarities of the individual

spots in a sunspot group such as unipolar, bipolar, and complex groups. Refer to Table 1.4

for the detailed description of the sunspot classification.

Table 1.3: McIntosh Sunspot Classification Scheme Referred from Jenkins (2009)

Zürich class (modified)

A Unipolar group without penumbra

B Bipolar group without penumbra on any spots

C Bipolar group with penumbra on one end of group, usually surrounding largest of leading umbra

D Bipolar group with penumbrae on spots at both ends of group and with longitudinal extent less than 10◦

E Bipolar group with penumbrae on spots at both ends of group and with longitudinal length between 10◦ and 15◦

F Bipolar group with penumbrae on spots at both ends of group and with longitudinal length more than 15◦

H Unipolar group with penumbra

Penumbra of Largest Spot

x No penumbra (class A or B)

r Rudimentary penumbra partly surrounds largest spot

s Small, symmetric penumbra, elliptical or circular and N–S size smaller than 2.5◦

a Small, asymmetric penumbra, irregular in outline and N–S size smaller than 2.5◦

h Large, symmetric penumbra, N–S size larger than 2.5◦

k Large, asymmetric penumbra, N–S size larger than 2.5◦

Spot Compactness

x Assigned to (but undefined for) unipolar groups (types A and H)

o Open– few, if any, spots between leader and follower

i Intermediate– numerous spots between leader and follower, all without mature penumbra

c Compact– many large spots between leader and follower, with at least one mature penumbra

1.2.2 Faculae, Bright Points, and Plages

A large number of tiny (a size of 10–100 km2) bright features, primarily concentrated in

active regions, are seen both in the continuum and in most photospheric lines (Guo et al.
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2010; Zwaan 1987). Near the solar limb, they look like side-illuminated granules called

“faculae” or “facular grains” (Muller 1975), and near the solar disk center mainly as “bright

points” or “filigree”, i.e., roundish bright features located in the intergranular downflow

lanes (Dunn & Zirker 1973; Mehltretter 1974; Title et al. 1987). Faculae and bright points

are considered as magnetized regions constituted of a bundle of small-scale vertical flux

tubes with a magnetic field strength of a few kG. See Figure 1.3 which presents faculae

near a sunspot pore.

Figure 1.3 A pore with faculae was observed by the Swedish 1-m Solar Telescope (SST)
on 2004 September 8 (observer Vasily Zakharov, Max Planck Institute).

Plages are bright, dense regions in the chromosphere found above sunspots or other

active areas (e.g., faculae and bright points) of the solar photosphere, and they always

accompany and outline sunspot groups. Figure 1.4 shows a Hα plage image near a sunspot.

Plages appear much brighter in the monochromatic spectral lines (e.g., Hα , Ca II H and K,
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Mg II h and k, and Lα ) and in ultraviolet emission lines originating in the transition region

(Zwaan 1987). Martinez Pillet et al. (1997) measured the magnetic field in plages, they

found the average field strength of ∼1400 G inclined with respect to vertical of less than

10◦.

Figure 1.4 This high resolution Hα film image was taken with the 65-cm vacuum telescope
of the Big Bear Solar Observatory located in Big Bear Lake, California on 1991 June 5.
It has been recently digitized through the Solar Film Digitization (SFD) project of the
Space Weather Research Laboratory at NJIT. Plages are shown as a white cloud-like feature
around a sunspot.
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1.2.3 Coronal Loops

Observations at extreme-ultraviolet (EUV) and soft X-ray wavelengths have revealed that

hot and dense plasma in the corona is concentrated in magnetic loops called “coronal

loops”. Figure 1.5 shows coronal loops observed by the Transition Region and Coronal

Explorer (TRACE) satellite in the 195 Å pass band (sensitive mostly to plasma emission

around 1 MK). The electrons contained in coronal loops have temperatures of 1–10 MK and

densities of 109–1011 cm−3. The magnetized coronal loops are often anchored in bipolar

sunspots within active regions.

Yohkoh Soft X-ray Telescope (SXT; Tsuneta et al. 1991) images showed that there

are S- or inverse S-shaped coronal loops (Acton et al. 1992; Sakurai et al. 1992), called

“sigmoids”. Sigmoidal loops are considered as evidence for helically kinked magnetic flux

ropes, which have a large amount of stored free energy (Rust & Kumar 1996). They fre-

quently appear in active regions that have a high probability of producing flares and CMEs

(Sterling & Hudson 1997; Hudson et al. 1998; Canfield et al. 1999; Glover et al. 2000).

Sterling et al. (2000) found that sigmoid-associated flares usually follow the “sigmoid-

to-arcade” evolution pattern, and later the same pattern was revealed in hard X-ray sig-

moidal structure observed by RHESSI (Ji et al. 2008). Recently, several magnetohydrody-

namic simulations (Magara & Longcope 2001; Kliem et al. 2004; Kusano 2005; Fan 2009)

showed that a sigmoid-like current sheet can be formed due to the kink instability of an

emerging flux tube. In addition, the formation and development of X-ray arcade-like loops

are studied related to the occurrence of CMEs (Rust & Webb 1977; Švestka et al. 1998),

and the coronal arcades are interpreted as a consequence of magnetic reconnection in the

course of the eruptions (Kopp & Pneuman 1976).
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Figure 1.5 The image of coronal loops taken with NASA’s Transition Region and Coronal
Explorer (TRACE) satellite on November 9, 2000 (courtesy of NASA).
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1.3 Solar Eruptions

1.3.1 Solar Flares

Solar flares are sudden, rapid (a few minutes to tens of minutes), and intense brightenings

in the chromosphere and corona that can release up to 1032–1033 ergs of energy. Figure 1.6

shows a large flare that occurred on 2006 December 13. Most flares occur in active re-

gions where intense magnetic fields emerge from the Sun’s surface into the corona, and

it is generally thought that flare-productive active regions have complex and non-potential

magnetic structures; release of the stored magnetic energy powers flares. Solar flares pro-

duce high energy particles, radiation, and erupting magnetic structures that are related to

geomagnetic storms. Their strong electromagnetic radiations from gamma-rays to radio

waves have direct effect on cell phones and the global positioning system and may heat up

the terrestrial atmosphere within minutes so that satellites drop into lower orbits (Schwenn

2006). Enormous economic and commercial losses can be caused by these effects (Baker

2004).

In general, there are three classification methods of solar flares. First, their peak

flux (in W m−2) of 1–8 Å soft X-ray band measured by the Geostationary Operational

Environmental Satellite (GOES) is used for flare classification. There are five GOES soft

X-ray flare classes, A, B, C, M, and X in order of magnitude (see Table 1.5 for their peak

flux range). A number following the letter of each class is the multiplicative factor. For

example, an X5.2 event indicates a soft X-ray flare with a peak flux of 5.2×10−4 W m−2.

Second, based on the morphology of flaring site, flares are classified as compact point-

like flares (Pallavicini et al. 1977; Tang 1985) and larger, longer-duration two-ribbon flares

(Jing et al. 2005; Su et al. 2007). Lastly, the flares are divided into two groups by the time
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Table 1.4 Mount Wilson Sunspot Classification Scheme Referred from Bray & Lough-
head (1979)

Class Description

α Unipolar sunspot group
β Sunspot group having both positive and negative magnetic polarities (bipolar),

with a simple and distinct division between the polarities
γ Complex sunspot group in which the positive and negative polarities are

so irregularly distributed as to prevent classification as a bipolar group
βγ Sunspot group that is bipolar but which is sufficiently complex that

no single, continuous line can be drawn between spots of opposite polarities
δ Sunspot group in which the umbrae of the positive and negative polarities are

within 2 degrees of one another and within the same penumbra
βδ Sunspot group of general beta magnetic classification

but containing one (or more) delta spots
βγδ Sunspot group of beta-gamma magnetic classification

but containing one (or more) delta spots
γδ Sunspot group of gamma magnetic classification

but containing one (or more) delta spots

Figure 1.6 The Hinode/SOT Ca II H broadband image of a solar flare on 2006 December
13 (courtesy of Hinode Team).
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profile of soft X-ray emission: single burst flare and multiple-burst flare. The multiple-

burst flares include homologous flares (Waldmeier 1938; Martres 1989), sympathetic flares

(Richardson 1951; Pearce & Harrison 1990), and successive flares (Liu et al. 2009).

Solar flares were first observed and carefully recorded by Carrington (1859) and

independently by Hodgson (1859) who noticed localized visible brightenings of small ar-

eas near a complex sunspot group, lasting a few minutes. Since the first flare observation,

there have been extensive studies to investigate an energy build-up process and a trigger

mechanism of flares. From the observations of the magnetic field in active regions, con-

siderable attention has been paid to investigating the structure of magnetic fields in the

flaring site of active regions and its evolution related to flares (e.g., the temporal evolu-

tions of magnetic shear angle the horizontal gradient of longitudinal magnetic fields). In

addition, based on the reconnection of magnetic field lines in the flaring site, several flare

models are developed such as CSHKP model (Carmichael 1964; Sturrock 1966; Hirayama

1974; Kopp & Pneuman 1976), emerging flux model (Heyvaerts et al. 1977), flux rope

catastrophic model (Forbes & Priest 1995), magnetic breakout model (Antiochos 1998),

loop-loop model (Uchida 1980) and tether-cutting model (Moore et al. 2001). However, in

spite of many years of studies, there still remain many challenging and unsolved problems

Table 1.5 GOES Soft X-ray Classification of Flares

Class Peak Fluxa

(W m−2)

A 10−8–10−7

B 10−7–10−6

C 10−6–10−5

M 10−5–10−4

X 10−4 and above

ameasured at 1–8 Å band
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in understanding solar flares.

1.3.2 Coronal Mass Ejections

CMEs are the transient ejections into interplanetary space of as much as ∼100 billion

kilograms of plasma and embedded magnetic fields from the solar corona, usually observed

with white-light coronagraphs. Figure 1.7 shows a typical CME which has a three-part

structure: a bright expanding loop (called front or helmet streamer), followed by a cavity

embedded with a bright core of dense material (e.g., Illing & Hundhausen 1986). CMEs

are propelled outward at speeds ranging from <20 to ∼3000 km s−1, with an average speed

of ∼480 km s−1 (Gopalswamy 2006). When fast CMEs, traveling faster than the ambient

solar wind, are directed at Earth, they frequently cause intense geomagnetic storms. It has

been also observed that they are often associated with eruptive prominences (Gopalswamy

et al. 2003; Gilbert et al. 2000), strong flares (Moon et al. 2003; Vršnak et al. 2005), X-ray

sigmoids (Sterling 2000), coronal dimmings (Zhukov & Auchère 2004), EIT and Moreton

waves (Eto et al. 2002; Chen 2009), and post-eruptive arcades.

The first CME detection was made on 1971 December 14 by Tousey (1973) using

white-light coronagraph data taken by the 7th Orbiting Solar Observatory (OSO-7) satel-

lite. Since then, there have been many studies on the initiation and propagation, including

the phases of slow rise, acceleration, constant velocity, and deceleration, of CMEs. From

many observations and simulations for CMEs, it is generally believed that typical three-

part CMEs are related to an erupting flux rope system. The overall eruption process of

the flux rope can be explained well based on the classical CSHKP framework. However,

a triggering mechanism, making the flux rope unstable in the initial stage of the eruption,
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Figure 1.7 A typical CME image taken by the Large Angle and Spectrometric Corona-
graph (LASCO)/C2 onboard the SOHO satellite on 2002 January 4. A SOHO/EIT image
is enlarged and superimposed on the LASCO/C2 image (courtesy of SOHO Team).
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has not been understood clearly yet. Related to the CME initiation, therefore, several trig-

gering mechanisms are proposed based on numerical simulations of CMEs: reconnection-

favorable emerging flux model (Chen & Shibata 2000; Chen 2008), flux cancelation model

(van Ballegooijen & Martens 1989; Linker et al. 2001), breakout model (Antiochos et al.

1999; MacNeice et al. 2004), and kink instability by the emergence of twisted flux tube

(Hood & Priest 1981; Fan & Gibson 2004; Török & Kliem 2005). More observational

studies are however needed to determine and/or suggest a most convincing model which

can explain the detailed processes involved in the occurrence and propagation of CMEs.

1.4 Magnetic Helicity

Magnetic helicity is a measure of the amount of twist of magnetic field lines around the

tube axis in a flux tube, the amount of kink in the tube axis, and the extent of interlinking

of flux tubes in a magnetic field system (Berger & Field 1984; Pevtsov 2008). Figure 1.8

shows twist, kinks, and inter-linkages of magnetic field lines which contribute to magnetic

helicity. Magnetic helicity is a useful parameter to indicate topology and non-potentiality

of a magnetic field system, and a quantity that is approximately conserved in real plasmas.

Mathematically, magnetic helicity, H, inside a volume, V , of a magnetic field system is

defined by:

H =

∫

V
A ·BdV, (1.4)

where A is the vector potential of the magnetic field, B, i.e., B = ∇ × A. In addition,

considering magnetic fields as a system of thin flux tubes with magnetic flux, Φ, magnetic
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helicity can also be described as (Berger & Field 1984):

H = ∑
i
(Ti +Ki)Φ2

i +∑
i

∑
j 6=i

Li jΦiΦ j, (1.5)

where Ti is the twist number of field lines in the ith tube, Ki is the kink number of the ith

tube axis, and Li j is the inter-linkage number between the ith and the jth tubes.

(a) (b)

Figure 1.8 Magnetic helicity consists of: (a) twists of magnetic field lines inside a flux
tube and kinks of flux tube axes, and (b) inter linkage between flux tubes. These images
are adopted from Figure 2 of Berger & Prior (2006) and Figure 1 of Berger (1999).

In the last half-century, magnetic helicity has recieved the significant attention in

studying the Sun. There have been studies of a “solar active-region hemispheric helicity

rule′′, i.e., regions of negative (left-handed) helicity occur predominantly in the northern

solar hemisphere and those of positive (right-handed) helicity in the southern hemisphere.

Longcope et al. (1999) and Longcope & Pevtsov (2003) investigated the possible mecha-

nisms for this hemispheric helicity rule taking into account solar differential rotation, direct

action of the Coriolis force, solar dynamo, and turbulent convection in upper portion of the

convection zone. Berger & Ruzmaikin (2000) showed that the magnetic helicity produc-
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tion in the interior by solar differential rotation follows the hemispheric rule in the northern

and southern hemispheres (refer to Figure 1.9). This hemispheric dependence extends from

photospheric observations to in situ measurements of magnetic clouds in the solar wind:

morphology of filaments (Martin et al. 1994), morphology of coronal loops (Rust & Kumar

1996), in situ measurements of interplanetary fields (Burlaga 1988; Bieber et al. 1987b,a).

From observations of 69 active regions in solar cycle 22, Pevtsov et al. (1995) found that

76% of the regions in the northern hemisphere had negative helicity and 69% in the south

had the opposite helicity. Subsequent to this study, Longcope et al. (1998) reconfirmed

this hemispheric rule with a much larger data set of 203 active regions. From observations

with the Huairou Solar Magnetic Field Telescope, Abramenko et al. (1996) and later Bao

& Zhang (1998) found a similar tendency. Almost all existing dynamo models predict that

the hemispheric helicity rule should be invariant with respect to phase of the solar cycle and

is supported by observations (e.g., Hale 1927; Pevtsov et al. 1995; Abramenko et al. 1996;

Bao & Zhang 1998; Longcope et al. 1998; Pevtsov et al. 2001). However, Choudhuri et al.

(2004) proposed based on a dynamo model that when new cycle active regions interact with

previous cycle large scale magnetic fields, the magnetic helicity may not obey the hemi-

spheric rule. It was observationally supported by Hagino & Sakurai (2005). Therefore, it

is still an important task to reveal whether the hemispheric helicity rule is independent of

solar cycle or it reverses its sign during certain periods of solar activity.

In addition, magnetic helicity studies have been conducted to understand the energy

buildup and instability leading to solar eruptions such as prominence eruptions (Romano

et al. 2003, 2005), the occurrence of major flares (Moon et al. 2002a,b; Kusano et al. 2003b;

Park et al. 2008), and CMEs (Nindos et al. 2003). This linkage was motivated by obser-
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Figure 1.9 Magnetic helicity in the interior of the Sun produced by differential rotation
during 1976–1998 (Berger & Ruzmaikin 2000). Negative helicity is predominantly in the
northern hemisphere (red line), while positive helicity, in the southern hemisphere (blue
line).

vations of solar eruptions being associated with twisted magnetic field configuration (see

Figure 1.10 for a helically twisted prominence). However, we need to quantitatively investi-

gate how magnetic helicity is related to energy storage, pre-flare conditions, and triggering

mechanisms of flares with a large number sample of events. This dissertation aims at the

study of magnetic helicity injection in active regions related to (1) the occurrence and in-

tensity of flares and (2) the initiation, slow rise phase, and speed of CMEs, which not only

helps to understand physical processes of energy build-up and onset of solar eruptions, but

also provides a unique tool for a more reliable flare/CME predictions.
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Figure 1.10 A solar eruptive prominence as seen in extreme UV light on 2010 March 30
(courtesy of SDO Team).



CHAPTER 2

CALCULATION OF MAGNETIC HELICITY IN ACTIVE REGIONS

Magnetic helicity inside a volume, V , of a system having magnetic field, B, is defined in

Equation 1.4. In principle, magnetic helicity can be derived from B and its vector potential,

A. However, only if magnetic field lines never pass through the boundary surface enclosing

V is magnetic helicity invariant with respect to the gauge for A. This condition would not

be satisfied for magnetic fields in a coronal volume, Vcor, where most of the field lines

are anchored in the photosphere or some of them expand out into interplanetary space

passing through the boundary surface, Scor, enclosing Vcor. In this case, it is necessary to

define a gauge-invariant formula of magnetic helicity for investigating the topology and

non-potentiality of magnetic fields inside Vcor.

2.1 Magnetic Helicity in a Coronal Volume

The relative magnetic helicity, Hr, derived by Finn & Antonsen (1985) is a gauge-invariant

measure of helicity inside Vcor:

Hr =
∫

Vcor

(A+Ap) · (B−P)dV, (2.1)

where P is the potential field having the same normal component as B on Scor, and Ap is

the vector potential for P. Hr represents the amount of helicity subtracted by that of the

corresponding potential field P.

25
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DeVore (2000) calculated Hr in the unbounded half space, i.e., z>0 in a Cartesian

domain, using the following specific vector potentials, A and Ap:

A(x,y,z) = Ap(x,y,0)− ẑ×
∫ z

0
B(x,y,z′)dz′, (2.2)

Ap(x,y,z) = ∇× ẑ
∫ ∞

z
φ(x,y,z′)dz′, (2.3)

where

φ(x,y,z) =
1

2π

∫ ∫ Bz(x′,y′,0)

[(x− x′)2 +(y− y′)2 + z2]1/2 dx′dy′. (2.4)

In Chapter 5, Hr in a coronal volume of NOAA AR 10930 is calculated using Fan’s

code (Fan 2009) in which the vector potentials given in Equations 2.2 through 2.4 are de-

termined by treating the photosphere as an infinite plane (z=0) in a Cartesian coordinate

system. Note that outside of the coronal magnetic field domain of AR 10930 under inves-

tigation, the magnetic field is assumed to be negligible even though, on average, ∼30%

of the photospheric unsigned magnetic flux passed through the boundary surface of the

domain above the photosphere. The helicity calculation, therefore, gives an approximate

value of Hr in a coronal volume above the photospheric surface of AR 10930.

2.2 Magnetic Helicity Injection through a Photospheric Surface

Magnetic helicity refers to the relative magnetic helicity in the rest of this Dissertation, i.e.,

the helicity relative to that of the potential field state. Berger & Field (1984) derived the
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change rate of magnetic helicity, Ḣr, in an open volume through a boundary surface, S:

Ḣr = −2
∫

S
[(vt ·Ap)Bn− (Bt ·Ap)vn]dS, (2.5)

where v represents the plasma velocity, and subscripts n and t denote the vertical component

and the horizontal component to S, respectively. Ap is a specific vector potential satisfying:

n̂ ·∇×Ap = Bn, (2.6)

∇ ·Ap = 0, (2.7)

Ap · n̂ = 0. (2.8)

The first term of Equation 2.5 is related to the helicity change by horizontal motions of

field lines on the surface, and the second term corresponds to the change by the transport

of helical fields across the surface. Démoulin & Berger (2003) considered the velocity u of

field line footpoint motion given by:

u ≡ vt −
vn

Bn
Bt , (2.9)

and consequently, the two terms in Equation 2.5 can be combined into one:

Ḣr = −2
∫

S
(u ·Ap)Bn dS. (2.10)

Chae (2001) developed a practically useful way of measuring Ḣr from Equation 2.10

using vLCT, the velocity of the apparent horizontal motion of field lines determined by the
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technique of local correlation tracking (LCT), instead of using u:

Ḣr '
∫

S
GA(x)dS, (2.11)

with the integrand GA = −2(vLCT ·Ap)Bn, called magnetic helicity flux (magnetic helic-

ity per unit area per unit time). Figures 2.1 and 2.2 present vLCT and Ap of AR 10930,

respectively, plotted as arrows on the grayscale map of Bn derived from the SOHO/MDI

line-of-sight magnetogram at 06:27 UT on 2006 December 10. The grayscale GA map is

also shown in Figure 2.3: positive value (i.e., helicity flux density of right-handed sign) of

GA is displayed as white tone, while negative value (i.e., helicity flux density of left-handed

sign) of GA is displayed as black tones).

2006−12−10  06:27:30 UT

0.4 km/s

Figure 2.1 vLCT (arrows) of AR 10930 determined from the LCT method is superposed
on the grayscale map of Bn derived from the MDI line-of-sight magnetogram at 06:27 UT
on 2006 December 10.

In a following work, Chae et al. (2004) showed that vLCT is a good estimation for
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2006−12−10  06:27:30 UT

2 x 104 G Mm

Figure 2.2 Ap (arrows) of AR 10930 is superposed on the grayscale map of Bn.

2006−12−10  06:27:30 UT

0.4 km/s

Figure 2.3 GA map is displayed in grayscale with vLCT (arrows) of AR 10930. Note that
the saturation level of |GA| is set as 1.67×106 G2 km/s Mm for purpose of display visibility.
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u when there is no significant new flux emergence. In addition, the study of Lim et al.

(2007) indicated that the difference between magnetic helicity injection calculated from

Equation 2.11 and coronal helicity estimated from the linear force-free field method is less

than 15%. Chae’s LCT method has been applied in many studies of measuring magnetic

helicity injected into the corona through the photosphere by many researchers (e.g., Nindos

& Zhang 2002; Moon et al. 2002a; Romano et al. 2005; Jeong & Chae 2007; LaBonte et al.

2007; Park et al. 2010), even though this method has the unavoidable limitations (Démoulin

& Berger 2003; Chae et al. 2004; Kusano et al. 2004a; Schuck 2005): plasma motion along

the magnetic field lines can not be detected with LCT nor can a horizontal plasma motion

between areas with the same vertical magnetic field. In Chapters 3, 4, and 6, Ḣr is estimated

using Chae’s LCT method.

Recently, Chae (2007) developed a revised version of the original LCT method

(Chae 2001) by adopting a better proxy, Gθ , of the helicity flux density proposed by Pariat

et al. (2005):

Gθ = −
Bn

2π

∫

S′

(

x−x ′

|x−x ′|2
× [u−u′]

)

n
B′

n dS′, (2.12)

where x is the position vector. In Chae’s revised version (Chae 2007), the numerical inte-

gration of Gθ is carried out over all the pairs of discrete pixels so that the form of magnetic

helicity flux at the ith pixel is written as:

Gi ≡ Gθ (xi) = −
Bi

n

2π

∫

S′

(

xi −x ′

|xi −x ′|2
× [ui −u′]

)

n
B′

n dS′. (2.13)

Furthermore, Gi can be divided into two parts, GS
i and GM

i representing the contributions
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of self helicity and mutual helicity, respectively:

Gi = GS
i +GM

i , (2.14)

GS
i = −

Bi
n

2π

∫

S′

(

xi −x ′

|xi −x ′|2
× [ui −u′]

)

n
B′

n dS′, (2.15)

GM
i = −

Bi
n

2π
∆S ∑

j 6=i

(

xi −x j

|xi −x j|2
× [ui −u j]

)

n
B j

n, (2.16)

where ∆S is the area of each pixel. In addition, he estimated u by applying the normal

component of the magnetic induction equation and the differential affine velocity estimator

(DAVE) method developed by Schuck (2006). Figure 2.4 shows uDAVE (arrows) which is

determined by the DAVE method with the same MDI magnetograms used for calculating

vLCT in Figure 2.1. The magnitude and direction of uDAVE are generally similar to those

of vLCT as shown in Figure 2.5. The linear (Pearson) correlation coefficient (CC) between

vLCT and uDAVE is ∼0.6. However, there is a trend that uDAVE is a little larger than vLCT:

the average discrepancy between vLCT and uDAVE is ∼0.05 km/s. From u and Bn, GS
i and

GM
i can be calculated from Equations 2.15 and 2.16, respectively, and they are shown in

Figure 2.6. In Chapter 5, Chae’s revised version of the Ḣr calculation (i.e., Equations 2.14

through 2.16) is used together with the DAVE method.

After Ḣr is determined as a function of time, the amount of helicity accumulation,

∆Hr, is determined by integrating Ḣr with respect to time:

∆Hr =
∫ t

t0
Ḣr dt, (2.17)

where t0 and t are the start and end time of the magnetogram data set under investigation,



32

2006−12−10  06:27:30 UT

0.4 km/s

Figure 2.4 u (arrows) of AR 10930 determined from the DAVE method, is superposed on
the same grayscale map of Bn in Figure 2.1.

-0.4 -0.2 0.0 0.2 0.4
vLCT  [km/s]

-0.4

-0.2

0.0

0.2

0.4

u D
A

V
E
  [

km
/s

]

x-component

(a) CC=0.59

-0.4 -0.2 0.0 0.2 0.4
vLCT  [km/s]

-0.4

-0.2

0.0

0.2

0.4

u D
A

V
E
  [

km
/s

]

y-component

(b) CC=0.60

Figure 2.5 uDAVE vs. vLCT for their (a) x-components and (b) y-components. The linear
CC is specified in each panel. The red line with a slope of 1 is plotted in each panel for
purpose of displaying the discrepancy between vLCT and uDAVE.
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(a) (b)

Figure 2.6 Grayscale maps of (a) GS
i and (b) GM

i in AR 10930 at 06:27 UT on 2006
December 10.

respectively. Figure 2.7 shows ∆Hr in AR 10930 calculated from the two different methods:

(1) the original method (GA with the LCT method) shown as cross symbols and (2) the

revised method (Gθ with the DAVE method) as triangle symbols. As shown in Figure 2.7,

the revised one yielded systematically higher values of helicity injection than the original

one. By the comparison between these two methods of Ḣr calculation, Chae (2007) also

found that their discrepancy is typically less than 10%.



34

AR 10930

10.2 10.4 10.6 10.8 11.0
Time [day] December 2006

-500

-400

-300

-200

-100

0

H
el

ic
ity

 A
cc

um
ul

at
io

n 
[1

040
 M

x2 ]

Figure 2.7 Time variations of helicity accumulation in AR 10930 calculated by the original
method (GA with the LCT method, shown as cross symbols) and the revised method (Gθ
with the DAVE method, shown as triangle symbols).



CHAPTER 3

TEMPORAL VARIATION OF MAGNETIC HELICITY INJECTION IN

ACTIVE REGIONS AROUND MAJOR FLARES

In this chapter1, the variation of magnetic helicity is investigated over a span of several days

around the times of 11 X-class flares which occurred in 7 active regions (AR 9672, 10030,

10314, 10486, 10564, 10696, and 10720) using the magnetograms taken by SOHO/MDI.

As a major result, it is found that each of these major flares is preceded by a significant

helicity accumulation, (1.8–16)×1042 Mx2 over a long period (0.5–a few days). Another

significant finding is that the helicity accumulates at a nearly constant rate, (4.5–48)×1040

Mx2 hr−1, and then becomes nearly constant before the flares. This led us to distinguish

the helicity variation into two phases: a phase of monotonically increasing helicity and

the following phase of relatively constant helicity. As expected, the amount of helicity ac-

cumulated shows a modest correlation with time-integrated soft X-ray flux during flares.

However, the average helicity injection rate in the first phase shows even stronger corre-

lation with the time-integrated soft X-ray flux. The physical implications of this result

and the possibility that this characteristic helicity variation pattern can be used as an early

warning sign for solar eruptions are discussed.

1This chapter is based on the following paper:
Park, S.-H., Lee, J., Choe, G. S., Chae, J., Jeong, H., Yang, G., Jing, J., & Wang, H. 2008, Astrophys. J., 686,
1397

35
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3.1 Introduction

While the source of the magnetic helicity lies below the surface of the Sun, it was recently

recognized as a useful parameter in describing solar features observed above the surface

such as spiral patterns of sunspot fibrils, helical patterns in filaments and coronal mass

ejections (CMEs; for a review, see Rust 1999). Naturally magnetic helicity studies have

been directed to the energy buildup and instability leading to eruptions and CMEs (e.g.,

Rust 2001; Kusano et al. 2004b; Phillips et al. 2005).

More recently, several studies were carried out to relate the injection of magnetic

helicity to the problem of impending or triggering solar flares. Moon et al. (2002b) studied

the magnetic helicity injection around major flares to find its rapid helicity injection before

flares, and concluded that a sudden helicity injection may trigger flares. Moon et al. (2002a)

applied the same approach to 7 homologous flares in the active region, AR 8100, over a

period of 6.5 hours to find a good correlation between the amount of incremental helicity

and the soft X-ray flux during each homologous flare. The results from both studies thus

point to the idea that the helicity injection occurring over short timescales (around a half

hour) can be a significant factor in triggering flares.

Kusano et al. (2003b) proposed annihilation of magnetic helicity as a triggering

mechanism for solar flares. Numerical simulations were carried, which show that, if the

helicity is sharply reversed within a magnetic arcade, reconnection quickly grows in the

helicity inversion layer, driving explosive dynamics. Yokoyama et al. (2003) studied flare

activities in AR 8100 to find that most of the flare events occurred about half a day after

the helicity injection rate changed its sign, and the positions of Hα emission in flares well

correspond to the helicity inversion lines in space. Sakurai & Hagino (2003) studied two
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active regions that appeared in 2001 (AR 9415 and 9661), both of which have produced

X-class flares. Their finding was, on the contrary, that the magnetic helicity integrated

over the regions evolved slowly and did not show abrupt changes at the time of the flares,

although the distributions of magnetic helicity changed significantly over a few days in the

regions.

In this chapter, long term (a few days) variations of the magnetic helicity around

major X-class flares are studied. While some of the above studies suggest short-term he-

licity change as an important topic for flare triggering, Hartkorn & Wang (2004) found that

the rapid helicity injection at the time of a flare can occur as an artifact under the influ-

ence of flare emission on the spectral line adopted in MDI measurements. This means that

a short term variation during strong flares can hardly be measured with enough accuracy.

This chapter is therefore focused on a long-term variation of the magnetic helicity in active

regions to find a possible characteristic helicity evolution pattern that is associated with

flare impending mechanisms.

3.2 Data Processing and Helicity Calculation

With the time-dependent measurement of longitudinal magnetic fields in the photosphere,

the injection rate of the relative magnetic helicity can be approximately determined (Dé-

moulin & Berger 2003). A simplified expression for the helicity injection rate (Chae 2001)

given by Equation 2.11 is used to estimate helicity accumulation in active regions. In Equa-

tion 2.11, dS is the surface integral element and the integration is over the entire area of

the target active region. Although this expression does not explicitly include the helicity

injection by the vertical motion of field lines (see Kusano et al. 2002), Démoulin & Berger
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(2003) pointed out that it actually accommodates both the vertical and horizontal motions

of flux tubes as far as no flux tube newly emerges from or totally submerges into the sur-

face. Note however that this requirement is not always met for all the active regions under

investigation.

The quantities in Equation 2.11 are determined following the procedure described

in Chae & Jeong (2005) with full disk MDI (Scherrer et al. 1995) magnetograms. First,

Bn is approximately determined from the line-of-sight magnetic field Bl in the MDI mag-

netograms, simply considering the projection effect, i.e., Bl = Bn cosψ where ψ is the

heliocentric angle of the point of interest, assuming that the magnetic field on the solar

photosphere is normal to the solar surface. Second, Ap is calculated from Bn by using the

fast fourier transform (FFT) method as usual. The extent of the spatial domain of the FFT

is taken about twice the width of the active region in order to minimize the artifacts arising

from the periodic boundary condition in the fast Fourier transform (Alissandrakis 1981).

Third, vLCT is calculated using the LCT technique (November & Simon 1988). For LCT,

all magnetograms are aligned in each event to the first image of the data set after correct-

ing the differential rotation. The full width at half maximum (FWHM) of the apodizing

window function and the time interval between two frames are set as 10′′ and 96 minutes,

respectively. Then, LCT is performed for all pixels with an absolute flux density greater

than 5 G. Only the pixels with cross correlation above 0.9 are considered. in constructing

velocity maps.

In selecting data, it was found that use of 1 minute cadence full-disk MDI (Scherrer

et al. 1995) magnetograms is adequate for the purpose of investigating the long-term he-

licity evolution. However, there are occasionally found data gaps in the 60 minute cadence
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data set in which case the data gaps is supplemented with 96 minute MDI magnetograms.

The time interval of the supplemented data set is therefore not longer than 96 minutes. To

reduce the effect of the geometrical projection, the active regions lying within 60% of the

solar radius from the apparent disk center are selected. Note that only full disk MDI mag-

netograms having 2′′×2′′ pixel size are used. Therefore the LCT velocities calculated here

may have been systematically underestimated compared with the LCT velocities calculated

with the higher resolution (0.6′′×0.6′′) MDI data (Longcope et al. 2007).

After the helicity injection rate is determined as a function of time, the amount of

helicity accumulation described in Equation 2.17 is calculated by integrating the injection

rate with respect to time. If t0 is a time when the magnetic field is in the potential state,

∆Hr is simply the helicity, Hr(t), at time t. However, there is no guarantee that an active

region in the potential energy state can be observed by chance. Therefore, t0 is set as the

earliest time without significant helicity accumulation at which the average value of the

helicity injection rate over 4 hours is less than the nominal threshold in helicity injection

rate, 1×1040 Mx2 hr−1. If that time cannot be determined, t0 is defined as the time when the

data set starts or when the previously accumulated helicity is released by a flare. The exact

time of t0 here is unimportant because it is only a trial value. After determining Hr(t), t0

is redefined as the time when the resulting helicity starts to increase from a nearly constant

value.
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3.3 Results

3.3.1 Magnetic Helicity Variation

The helicity variation calculated for the 7 active regions is presented in Figures 3.1 and 3.2.

In both figures, the magnetic helicity accumulation is plotted together with the GOES soft

X-ray light curve and magnetic flux as functions of time. The soft X-ray light curve

is shown to indicate the flare times and the magnetic flux is shown to check the above-

mentioned requirement for the approximation made in Equation 2.11. Note that the fluxes

shown in this study are total unsigned magnetic flux, i.e., sum of the absolute amounts

of positive and negative fluxes, because net magnetic flux may show little change despite

significant flux change in each polarity.

For the events shown in Figure 3.1, the helicity accumulates at a monotonic rate

of injection about 0.5–2 days before the flare onset, and then becomes almost constant

before the flares. The magnetic helicity variation can be categorized into two stages: a

phase of monotonically increasing helicity (phase I) and the following phase of relatively

constant helicity (phase II). This pattern is obvious for the 4 flares (2001 October 25, 2004

November 7, and 2005 January 16 and 17). For the 2005 January 15 event, the helicity

increased up to 22:00 UT on January 14 and then decreased afterward. In this case, the

flare which occurred in phase II is not considered. It is then noted that these flares took

place after a significant amount, ∼(1.8–11)×1042 Mx2, of helicity accumulation.

Figure 3.2 shows the result for the other 4 active regions. Like the events in Fig-

ure 3.1, these flares also occurred after a significant helicity accumulation, ∼(1.9–16)×1042

Mx2. However, they occurred in the middle of the continuous helicity accumulation, unlike

those events shown in Figure 3.1. In other words, the flares in Figure 3.2 occurred in phase
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Figure 3.1 Time variations of helicity accumulation, magnetic flux, and GOES X-ray flux
for 3 active regions. The helicity is shown as cross symbols and the magnetic flux is shown
as diamonds. The GOES X-ray flux is shown as the dotted lines. Phase I, the interval
over which the helicity accumulation is considered, and phase II, the following phase of
relatively constant helicity, are marked.
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Figure 3.2 Same as in Fig. 1, but for additional events.

I, while those in Figure 3.1 occurred in phase II. One common trend is, however, that all the

events are apparently associated with a considerable amount of helicity build-up before the

flares, whether they occurred in phase I or in phase II. In case where flares occur in phase

II, it may imply that solar active regions can wait for major flares after the helicity accumu-

lated to some limiting amount. This is seemingly contrary to the general belief that a flare

occurs as soon as the system reaches some threshold. An active region may evolve to a

certain stage where the helicity no longer increases, and the system waits until it unleashes

the stored energy by producing flares due to certain mechanism of triggering.

Since it is claimed that these large flares are always preceded by significant accumu-

lation of helicity, as a reference it is required to check the corresponding helicity variation

in non-flaring times. Figure 3.3 shows such data. For all active regions under investigation,
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the amount of helicity injection during non-flaring periods (Figure 3.3) is much less than

that around the major flare time. This convinces us that the above monotonically increasing

helicity before major flares is a process associated with the flares and is not occurring in

non-flare times. Another point to note in Figure 3.3 is that not only the helicity but also the

total unsigned magnetic flux changes much less during the non-flaring time compared with

the period before major flares. This implies that the increase of the magnetic helicity before

major flares is, in part, related to the simultaneous increase of total unsigned magnetic flux.

It is also worthwhile to mention how the characteristic pattern of the helicity vari-

ation found here will depend on the sign of helicity. In the result obtained for the 7 active

regions, similar amounts of both of positive and negative helicity were accumulated contin-

uously and simultaneously during the whole time. It is therefore unlikely that counting the

helicity in one and the other polarity separately yields a significantly different conclusion.

On the other hand, some studies suggested that the sign-reversal of the helicity injection

rate is important for flare activity so that it is needed to compare them with the present

result. Kusano et al. (2003b) emphasized spatially sharp reversal of helicity sign triggers

magnetic reconnection based on model simulation. In addition, Yokoyama et al. (2003)

have found that flares tend to occur after reversal of helicity injection rate changed its sign.

Although this is occasionally seen in the samples, (i.e., in the case of AR 10030 and AR

10720) as well, it is not always the case and it is not clear whether this is a necessary con-

dition for the flares. More often than not, the helicity either remains constant or increases

in one sign when the flare occurs. Note that this conclusion is valid only for the long term

variation of helicity.
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Figure 3.3 Time variations of helicity accumulation, and magnetic flux for 6 non-flare ac-
tive regions. The helicity is shown as crosses, and the magnetic flux is shown as diamonds.
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3.3.2 Correlation with Soft X-ray Flux

The helicity injection rate and the amount of helicity accumulation are compared with

the GOES soft X-ray flux taken as the proxy for the flare energy release. In addition,

the helicity accumulation time, ∆τ , defined as the time interval of helicity accumulation

measured from t0 and the first coming flare, is studied. Prior to making such a comparison,

the range of uncertainty of each quantity needs to be known. In general it is hard to trace

all the possible uncertainties involved with each quantity in Equation 2.11. Fortunately,

the targeted quantity given by Equation 2.17 involves integration in space and time and

the uncertainty in each measured quantity is not propagating, but rather may cancel out

in the process of spatial and time integration if it is random in nature. Therefore, the

uncertainty estimation is focused only on the linear approximation of the helicity variation.

First, the best-fit linear function is found to the points, ∆Hr(ti), lying in phase I (i.e., t0 ≤

ti ≤ t0 +∆τ) in the form of F(t) = a(t − t0)+F(t0). Second, the standard deviation, σ , of

the scatter points is calculated with respect to this linear function, and two additional lines

corresponding to the ±σ levels of the scatter points are plotted. Finally, the y-axis and x-

axis offsets of these two lines are used to determine σ∆Hr and σ∆τ , respectively. In addition,

the uncertainty of the slope a itself is calculated in the form of (∆Hr−σ∆Hr)/(∆τ +σ∆τ)≤

a ≤ (∆Hr + σ∆Hr)/(∆τ −σ∆τ). The center value of a here is taken as the average helicity

injection rate, |<Ḣr>|, in the rest of this chapter. Therefore, |<Ḣr>| is referred to as the

best fit slope to ∆Hr (Equation 2.17) in phase I, but not as the average of the quantities given

in Equation 2.11. The uncertainties shown in Figure 3.4 and Table 3.1 are those associated

with the linear function fit only.

In Figure 3.4, the helicity parameters against the GOES soft X-ray fluxes integrated
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Figure 3.4 Helicity parameters with GOES X-ray flux integrated over the flaring time.
Correlations of the integrated soft X-ray flux with (a) average helicity injection rate of phase
I, (b) the amount of helicity accumulation during phase I, and (c) helicity accumulation
time. The linear CC is specified in each panel. In (d), the amount of helicity accumulation
is plotted as a function of the accumulation time. The uncertainties of the average helicity
injection rate, the amount of helicity accumulation, and the helicity accumulation time are
shown by error bars in each panel.
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over the flaring time (FX , hereafter) is plotted as cross symbols. Each symbol is identified

with the event ID number in the figure together with uncertainty range represented by

the bar (see also Table I). The solid lines show the least-squares linear fits to the data

points. The CCs of the linear fits are also given in each panel. Figure 3.4a shows that

there is a fairly good correlation (CC=0.88) between |<Ḣr>| and FX . |∆Hr| also shows a

modest correlation with FX (CC=0.69) as shown in Figure 3.4 b, although not as good as

for |<Ḣr>|. On the other hand, the correlation between ∆τ and FX is very poor with a weak

tendency that the longer ∆τ , the weaker FX (Figure 3.4c).

It was initially expected, on a general basis, that |∆Hr| would strongly correlate with

FX . It is therefore puzzling why Ḣr shows even a better correlation with FX in Figure 3.4.

As a possibility, it is considered that ∆τ may be a factor in complicating the relationship

between |∆Hr| and FX . A intriguing idea is that the magnetic energy decays much faster

than the magnetic helicity in the presence of magnetic diffusion (Berger 1999). If two

initially identical systems have gained the same amount of magnetic helicity by the same

process over different time spans, the system that acquired the helicity more quickly would

then be in a higher energy state than the other. In this case, it may be that the helicity does

not show a straightforward relationship with FX depending on the accumulation time.

To check this hypothesis, |∆Hr| is therefore compared with ∆τ in Figure 3.4d. Two

groups of events are marked as follows: one group of events with similar |∆Hr| and different

∆τ (marked with the gray colored box), and the other group with similar ∆τ and different

|∆Hr| (the transparent box). The majority of the events are placed in the first group because

all of them except three events numbered 5, 6, and 8, show comparable amounts of helicity

change. Within this group, it can be shown that the events numbered 11, 10, 1, 3, and
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7 follow the trend of increasing FX with shorter ∆τ , as expected in the above hypothesis.

However, the other events 2, 4, and 9 do not follow the trend. The second group contains

only three events: 5, 6 and 1, that are selected to show a wide variation of FX at similar

∆τ (see the corresponding box in Figure 3.4c). If event 6 is ignored for the time being,

the large difference between the integrated fluxes of the events 1 and 5 can be attributed to

the corresponding difference in the accumulated helicity. Event 6 is certainly an exception

to this tentative rule, but has a slightly longer ∆τ than event 5, which is, qualitatively

speaking, a condition for a smaller amount of energy for flaring. The general trend found

in both groups is thus in agreement with the above hypothesis.

As a final check, an alternative grouping is considered. For instance, the events 2,

4, 9, 1, 3, and 7 are selected in Figure 3.4c as producing similar FX over a wide range of ∆τ ,

which is just the opposite behavior expected under the above hypothesis. To justify such

grouping the event 10 and 11 should be excluded. The events 2, 4, and 9 however show

similar helicity change rate and ∆τ , and they practically represent one point in this scatter

plot. On the other hand, the events 10 and 11 have helicity properties well distinguished

from that of other events, and should not be excluded in search of any trend. The events

11, 10, 1, 8, 3, and 7 are responsible for the trend of increasing FX with shorter ∆τ , and

they should be grouped together. Since the events 2, 4, and 9 are exceptions to this trend,

it is concluded that three out of eleven events do not agree with the hypothesis. The small

number of events used in this study is another restriction for finding a trend here. With the

present result alone, it is fair to presume that the weaker correlation between FX and |∆Hr|

may arise from the inaccurate determination of the helicity accumulation amount due to the

unknown initial time of helicity build-up.
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3.4 Summary

The variation of magnetic helicity has been investigated over a time span of several days

around the times of 11 X-class flares which occurred in the 7 active regions using MDI

magnetograms. The major findings of this study are as follows.

First, a substantial amount of helicity accumulation is found before the flare in all

the events. The helicity increases at a nearly constant rate, (4.5–48)×1040 Mx2 hr−1, over a

period of 0.6–a few days, resulting in total amount of helicity accumulation in the range of

(1.8–16)×1042 Mx2. Such a wide range of helicity accumulation indicates that each active

region has its own limit of helicity storage to keep a stable magnetic structure in the corona.

The finding of a monotonically increasing phase is similar to the earlier one by Sakurai &

Hagino (2003) that the magnetic helicity integrated over the regions evolved slowly and did

not show abrupt changes at the time of the flares. The helicity increase over days before

the flares reconfirms the conventional idea that helicity accumulation by a certain amount

is necessary for a large flare to occur (Kusano et al. 1995; Choe & Lee 1996).

Second, there is a strong positive correlation between |<Ḣr>| of phase I and the

corresponding FX . |∆Hr| also correlates with FX , as expected, but the correlation between

|<Ḣr>| and FX is stronger than that between |<Ḣr>| and FX . This result probably implies

that the helicity injection rate is more accurately determined than the amount of helicity

injection itself as the initial time of helicity build-up is poorly determined.

If the above correlations hold for a large number of events, it may be possible to

predict the flare strength (e.g., FX ) based on the helicity injection rate. Monitoring of

helicity variation in target active regions may also aid the forecasting of flares. A warning

sign of flares can be given by the presence of a phase of monotonically increasing helicity,



50

as it is found that all the major flares occur after significant helicity accumulation. As a

reference, it has been checked that the 6 active regions in non-flaring times have much

lower helicity injection rates compared with those of the 7 active regions around the major

flares. Therefore, it is concluded that the magnetic helicity can be a powerful tool for

predicting major flares. This motivates the further statistical study in the next chapter.
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Table 3.1 List of Flares, Helicity and Accumulation Time

ID Flares AR Peak time FX
a |<Ḣr>|b |∆Hr |

c ∆τd

Number (UT) (10−1 Jm2) (1040 Mx2 hr−1) (1042 Mx2) (hr)

1 X 1.3 on Oct 25, 2001 9672 15:02 2.3 6.2±0.9 1.8±0.1 29±2
2 X 3.0 on Jul 15, 2002 0030 20:08 1.4 13.3±1.5 1.9±0.1 14±1
3 X 1.5 on Mar 17, 2003 0314 19:05 1.3 6.4±1.6 3.9±0.5 63±8
4 X 1.5 on Mar 18, 2003 0314 12:08 1.3 13.3±1.4 2.3±0.1 17±1
5 X 18 on Oct 28, 2003 0486 11:10 20.0 48.4±6.3 14.5±0.9 30±2
6 X 10 on Oct 29, 2003 0486 20:49 9.1 46.8±3.0 15.9±0.5 34±1
7 X 1.2 on Feb 26, 2004 0564 02:03 0.75 4.5±0.4 3.1±0.1 70±3
8 X 2.2 on Nov 07, 2004 0696 16:06 2.1 19.8±0.7 10.7±0.2 54±1
9 X 1.3 on Jan 15, 2005 0720 00:43 1.3 22.2±4.1 4.2±0.4 19±2
10 X 2.8 on Jan 15, 2005 0720 23:00 6.6 22.5±1.2 4.3±0.1 19±1
11 X 4.1 on Jan 17, 2005 0720 09:52 9.1 40.8±5.5 3.2±0.2 8±1

aIntegrated GOES X-ray flux.

bAverage helicity injection rate of phase I.
cThe amount of helicity accumulation during phase I.

dHelicity accumulation time.



CHAPTER 4

PRODUCTIVITY OF FLARES AND MAGNETIC HELICITY INJECTION IN

ACTIVE REGIONS

The main objective of this chapter1 is to better understand how magnetic helicity injection

in an active region is related to the occurrence and intensity of solar flares. Magnetic he-

licity injection rate and unsigned magnetic flux, as a reference, are therefore studied. In

total, 378 active regions are analyzed using SOHO/MDI magnetograms. The 24 hr aver-

aged helicity injection rate and unsigned magnetic flux are compared with the flare index

and the flare-productive probability in next 24 hr following a measurement. In addition,

the variation of helicity is investigated over a span of several days around the times of the

19 flares above M5.0 that occurred in selected strong flare-productive active regions. The

major findings of this study are as follows: (1) for a sub-sample of 91 large active regions

with unsigned magnetic fluxes in the range from 3 to 5×1022 Mx, there is a difference in

magnetic helicity injection rate between flaring active regions and non-flaring active re-

gions by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity

injection displays a sharp boundary between flare-productive active regions and flare-quiet

ones; (3) the history of helicity injection before all the 19 major flares displayed a common

characteristic: a significant helicity accumulation of (3–45)×1042 Mx2 during a phase of

monotonically increasing helicity over 0.5–2 days. These results support the notion that

helicity injection is important in flares, but it is not effective to use it alone for the purpose

1This chapter is based on the following paper:
Park, S.-H., Chae, J., & Wang, H. 2010, Astrophys. J., 718, 43.
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of flare forecast. It is necessary to find a way to better characterize the time history of

helicity injection as well as its spatial distribution inside active regions.

4.1 Introduction

It is generally thought that flare-productive active regions exhibit complex and non-potential

magnetic structures related to the stored magnetic energy to power flares. For this reason,

many studies of relationship between the solar flare and photospheric magnetic field prop-

erties have been carried out since the flare was first observed and recorded by Carring-

ton (1859) and Hodgson (1859). Some examples include the unbalanced changes in the

photospheric line-of-sight magnetic field (Cameron & Sammis 1999; Spirock et al. 2002;

Wang et al. 2002); rapid changes of the sunspot structure associated with a substantial

fraction of flares (Liu et al. 2005; Deng et al. 2005; Wang et al. 2004a, 2005; Chen et al.

2007); the magnetic shear angle evolution (Hagyard et al. 1984; Hagyard & Rabin 1986;

Sivaraman et al. 1992; Schmieder et al. 1994; Wang et al. 1994, 2004a); the horizontal

gradient of longitudinal magnetic fields (Zirin & Wang 1993; Zhang et al. 1994; Tian et al.

2002); electric current (Canfield et al. 1993; Lin et al. 1993); magnetic helicity injection

(Moon et al. 2002a,b; Sakurai & Hagino 2003; Yokoyama et al. 2003; Park et al. 2008).

Based on the above-mentioned studies, current flare forecasting models are moving toward

multiple-magnetic parameter-based approaches (Leka & Barnes 2003a,b; Li et al. 2008)

from sunspot-morphological evolution-based approaches (McIntosh 1990; Gallagher et al.

2002).

Magnetic helicity studies have been carried out to understand an energy buildup

process and a triggering mechanism of solar flares. There were a number of studies related
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to a rapid magnetic helicity change as an impending condition or a trigger for solar flares

(e.g., Moon et al. 2002a,b). LaBonte et al. (2007) surveyed magnetic helicity injection

in 48 X-class flaring active regions and 345 non-X-class flaring regions, and found that a

necessary condition for the occurrence of an X-class flare is that the peak helicity flux has a

magnitude > 6×1036 Mx2 s−1. Park et al. (2008) found that a substantial amount of helicity

is accumulated before the flare in all the 11 X-class flare events, and suggested a warning

sign of flares can be given by the presence of a phase of monotonically increasing helicity.

Motivated by these results, in this chapter, the feasibility of using magnetic helicity to build

a flare forecasting system is explored with a data sample covering almost one solar cycle.

4.2 Data and Analysis

Using a set of the full-disk 96 minute MDI (Scherrer et al. 1995) magnetogram data, 24 hr

profiles of magnetic helicity injection rate and unsigned magnetic flux of an active region

are determined. Note that the newly calibrated level 1.8.2 MDI magnetograms are em-

ployed in this study. The level 1.8.2 MDI data have been available since 2008 December

24, and its magnetic field value on average over the solar disk increased by a factor of ∼1.6

compared to that of the previous level 1.8 data (Tran et al. 2005; Ulrich et al. 2009). A total

of 378 active regions were selected during the time period from mid-1996 to 2006, almost

the entire duration of Solar Cycle 23. Normally each data set corresponding to a given

active region has around 15 MDI magnetograms covering 24 hr during its disk passage.

To reduce the effect of the geometrical projection in calculation of the normal component

of the magnetic field, the start time of each data is set as the time when the corresponding

active region appears or rotates to a position within 0.6 of a solar radius from the apparent
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disk center.

The unsigned magnetic flux, Φ, of the entire area of a given active region is defined

by:

Φ =
∫

s
|Bn| dS, (4.1)

where dS is the surface integral element and the integration is over the entire area of the

target active region. Bn is approximately determined from Bl in the MDI magnetograms,

assuming that the magnetic field on the solar photosphere is normal to the solar surface,

i.e., Bl = Bn cosψ where ψ is the heliocentric angle of the point of interest. Ḣr and ∆Hr

of an entire active region are calculated from Equations 2.11 and 2.17 following the same

procedure described in Section .

For each of the 378 active region data sets, the uncertainty of the helicity injection

rate corresponding to measurement uncertainty (∼20 G) of MDI magnetograms is esti-

mated as follows. First, pseudo-random noise is added to each magnetogram. The noises

have normal distribution with the standard deviation of 20 G. Then Ḣr described in Equa-

tion 2.11 is calculated. The same process is repeated 10 times for the same active region

domain with different sets of errors to calculate the standard deviations of Ḣr. Finally,

the average of the standard deviations during the entire 24 hr period is considered as the

uncertainty of the helicity calculation for each active region data set. It is found that the

average uncertainty of Ḣr is around 5% so that it does not significantly affect the helicity

calculation and conclusion of the study.

From the time profiles of Ḣr and Φ, the two average parameters are defined to in-

vestigate their feasibility for flare forecasting as follows. The first parameter is the absolute

value of the average helicity injection rate, |<Ḣr>|, which indicates the average amount of



56

injected helicity per unit time to an entire active region defined by:

|< Ḣr >| =
∑t1

t0 |Ḣr|

N
, (4.2)

where t0 is the start of each data set under investigation, t1 is 24 hours after t0, and N is the

total number of MDI magnetograms in each data set during the time period, ∆t, between

t0 and t1. As for the second parameter, the average unsigned magnetic flux, <Φ>, is used

with:

<Φ>=
∑t1

t0 Φ
N

, (4.3)

where t0, t1, and N are the same as defined Equation 4.2. These parameters were studied

by many authors before so that it is used as a reference in this study. Please refer to the

other two helicity parameters which are the maximum values of the data sets of absolute

helicity injection rate, |Ḣr|, and absolute helicity accumulation, |∆Hr|. They show a similar

correlation result with flare productivity as |<Ḣr>| so that in this study |<Ḣr>| is only

represented as a helicity parameter.

To investigate a relationship between these two parameters of an active region and

flares occurred in the region for the following day of the parameters’ measurement, the flare

index, Fidx, which represents each active region’s average daily GOES soft X-ray peak flux

is used. Fidx was first introduced by Antalova (1996) and was later applied by Abramenko

(2005):

Fidx =
(

100S(X) +10S(M) +1.0S(C) +0.1S(B)
)

/τ, (4.4)

where τ is the time interval (measured in days) and S(i) is the sum of GOES flare signifi-

cants in the ith GOES class over τ . This flare index is calculated for each active region, and
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τ is selected to be 1 to evaluate the flare productivity of a given region for the time window

of the next day following ∆t. Note that in the GOES soft X-ray flare catalog, there are some

X-ray events of which locations (indicated as NOAA active region numbers) are unknown

so that it might affect the results; however, these are typically weaker events. Wheatland

(2001) reported that of the C-class flares in the catalog during the period 1981–1999, 61.5%

are identified with an active region, while of the M- and X-class flares the fractions are 82%

and 94%, respectively.

4.3 Results

Figure 4.1 presents 24 hr profiles of Ḣr and Φ for all the 378 active regions with three differ-

ent groups classified by the flare index ranges which are Fidx≥10 (51 samples, left column),

1≤Fidx<10 (74 samples, middle column), and Fidx<1 (253 samples, right column). Note

that Fidx values of 1, 10, and 100 are equivalent to the specific flare productivity of one

C 1.0, M 1.0, and X 1.0 flare per day, respectively. The dotted lines show the average of

the maximum values for |Ḣr| (top panels) and Φ (bottom panels) of the samples in each

panel. As it is anticipated, there is a general trend that the larger Fidx an active region has,

the larger values of helicity injection rate and unsigned magnetic flux it represents. This

trend is more evident in the case of Ḣr; the average value (46×1040 Mx2 hr−1) of the sam-

ples for Fidx≥10 is almost twice greater than that (25×1040 Mx2 hr−1) of the samples for

1≤Fidx<10 and about 4.5 times greater than that (10×1040 Mx2 hr−1) of the samples for

Fidx<1. For the active regions having the large Fidx, it is found that although the magnetic

flux does not change too much in time, the helicity, however, accumulates significantly and

consistently. This finding agrees with the previous study by Park et al. (2008) that 11 X-
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class flares are preceded by a monotonically significant helicity accumulation, 1042–1043

Mx2 over a period of half to a few days.
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Figure 4.1 24 hr profile of magnetic helicity injection rate, Ḣr, and unsigned magnetic
flux, Φ. It shows three different groups classified by the ranges of flare index, Fidx, which
are Fidx<1 (left column), 1≤Fidx<10 (middle column), and Fidx≥10 (right column). The
number of samples in the three groups is specified in each panel. The average maximum
values for |Ḣr| (top panels) and Φ (bottom panels) of the samples in each panel are plotted
as dotted lines.

To examine how Ḣr and Φ are related to flare productivity, the two average parame-

ters (|<Ḣr>| and <Φ>) are studied in more detail for the 378 active regions (see Table 4.1

for the statistical properties of the parameters) and compared with Fidx taken as the proxy

for the flare productivity in the next day following the measurement of the parameters.

By only considering the 153 samples with non-zero flare index, in Figure 4.2, Fidx versus

|<Ḣr>| and <Φ> are plotted, as cross symbols, in a logarithmic scale. The solid and dot-

ted lines show the least-squares linear fit and its standard deviation to the data points. The
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CCs and the power law index of the linear fits are also given in each panel. While the data

points are widely scattered, there is a moderate correlation between the parameters and the

flare index with a tendency that the larger the parameters the larger the flare index. CCs

of Fidx versus |<Ḣr>| and <Φ> are 0.42 and 0.43, respectively. In Figure 4.2, the other

225 samples with zero flare index are marked as square symbols using Fidx = 0.05 for the

plotting purpose only. Note that the zero flare index samples are excluded from the linear

fit. In the rescaled range of each parameter (the maximum value of the samples is consid-

ered as 1 and the minimum as 0), most of the data samples of the helicity parameter are

distributed in the range less than 0.2 with flare indexes near zero values, and a few samples

are scattered in the range greater than 0.2 with relatively high flare indexes. Instead, <Φ>

has well-distributed data samples. This difference would make it easier to define a critical

value for the helicity parameter to forecast flare-active or flare-quiet conditions.

Furthermore, it is interesting to investigate why some of the samples with the large

parameters do not produce major flares. Therefore, two groups of samples were selected

and their average values for each of the two parameters were compared. The first group

contains the samples with Fidx≥1 and the relatively large parameters (hereafter, f laring

group), and the samples in the second group are picked out from the same range of the

parameters as those in the f laring group but produced no flares (hereafter, non- f laring

Table 4.1 Statistical Properties of the Two Magnetic Parameters

X Xmin Xmax Xmed
a Xavg

b Xstv
c

|<Ḣr>| (1040 Mx2 hr−1) 0.011 94.6 2.15 7.42 14.9
<Φ> (1020 Mx) 51.5 1180 274 320 206

aThe median value of X
bThe average value of X

cThe standard deviation of X
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Figure 4.2 Flare index, Fidx, vs. magnetic parameters. Correlations of Fidx with (a) the
absolute average helicity injection rate, |<Ḣr>|, and (b) the average unsigned magnetic
flux, <Φ>, in a logarithmic scale. The solid and dotted lines show the least-squares linear
fit and its standard deviation to the data points. The linear CC is specified in each panel. The
total number of samples used for the correlation studies is 153 marked as cross symbols.
The other 225 samples with zero flare index are marked as square symbols with a small
value Fidx = 0.05 for the plotting purpose only.
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group). For the comparison, the f laring and non- f laring groups for the parameters of

|<Ḣr>| and <Φ> are considered. The samples in the f laring and non- f laring groups

are marked with the gray boxes in each panel of Figures 4.2a and 4.2b. First, for a sub-

sample of 118 active regions with large |<Ḣr>| in the range from 2 to 10×1040 Mx2 hr−1

(Figure 4.2a), the f laring group has the average unsigned magnetic flux of 3.7×1022 Mx,

greater than that of the non- f laring group, 3×1022 Mx. This difference is not significant.

However, for a sub-sample of 91 active regions in the range, (3–5)×1022 Mx, of large

<Φ> (Figure 4.2b), the f laring group has |<Ḣr>| about twice greater than that of the

non- f laring group. This indicates that in an active region with large flux, a large amount of

consistent helicity injection is essential to the occurrence of flares. Please refer to Table 4.2

for the detailed values of these comparisons.

Table 4.2: Comparison of the Two Magnetic Parameters for Flaring Groups and Non-
f laring Groups

Flaring Group 1 Non- f laring Group 1 Flaring Group 2 Non- f laring Group 2

Sample Number 56 62 44 47

|<Ḣr>| (1040 Mx2 hr−1) 4.68 4.73 6.85 3.48

<Φ> (1020 Mx) 368 297 385 377

In Figure 4.3, <Φ> versus |<Ḣr>| is plotted in a logarithmic scale for the 378

samples with Fidx<0.1 as plus symbols, 0.1<Fidx<10 as triangle, and Fidx>10 as square.

Fidx is derived for the three different time windows of the first day (Figure 4.3, top) fol-

lowing ∆t, the second day (Figure 4.3, middle), and the third day (Figure 4.3, bottom). In

each plot, four sections are determined by the vertical and horizontal dashed lines marking

the median values of both the parameters for the samples. By only considering the samples

in each of the four sections, the probability of flare occurrence classified by two groups
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of criteria Fidx≥10 and Fidx≥0.1 are calculated, and they are marked as black and gray

colored numbers in each section. It is found that the flaring probability in the upper right

section is not only much greater than those in the upper left and lower right sections but

also the probability in the lower right section is always greater than that in the upper left

section except only one case for the flare criterion of Fidx≥0.1 in the second day; especially

for the cases of the flare criterion of Fidx≥10, the probability in the lower right section is

almost 2–5 times greater than that in the upper left section. This remarkable thing indicates

that magnetic helicity injection will contribute extra weight to improve the flare prediction

based on the total unsigned magnetic flux. Another finding is that the flaring probability in

the upper right section shows its maximum at the first day time window and it keeps going

down for the second and third days. However, for the case of the lower left section, the

flaring probability indicates the minimum at the first day and the maximum at the second

day. This suggests that the flare forecasting based on the parameters would be best for time

window 0–24 hr after the measurement of the parameters.

To make this study more useful for flare forecasting, the probability of flare occur-

rence is calculated as a function of each parameter of |<Ḣr>| and <Φ> for the 3 day time

window, τ3-day, following ∆t. For this investigation, the flare-productive probability in the

ith GOES class, Pi, is used with:

Pi(X) =
Si

A(≥X)

ST (≥X)
, (4.5)

where i represents the GOES flare class and X is a value of each parameter. Si
A(≥X) is

the number of active samples producing at least one i-class flare during τ3-day, and ST (≥X)
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Figure 4.3 <Φ> vs. |<Ḣr>| for the 378 active region samples with Fidx<0.1 as plus
symbols, 0.1<Fidx<10 as triangle, and Fidx>10 as square. Fidx is calculated for the three
different time windows of the first day (top) following the 24 hr period of the measurement
of the parameters, second day (middle), and third day (bottom). The vertical and horizontal
dashed lines, in each plot, mark the median values of both the parameters and divide the
domain into four sections. For the samples in each of the four sections, the probability of
flare occurrence is calculated with two criteria Fidx≥10 and Fidx≥0.1, and marked as black
and gray colored numbers in each section.
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is the number of the total sample in the range [X ,∞]. Figure 4.4 shows Pi corresponding

to 14 points of the parameters for C-class as diamond symbols, M-class as triangles, and

X-class as squares. Gray bars represent the number of the total ST (≥X), and the dotted line

denotes the range where ST (≥X) is greater than 10, which maybe considered as statistically

meaningful. The ratio of all the active samples in the total sample is 46%, 14%, and 3%

for C-, M-, and X-classes, respectively. In case of Pi as a function of <Φ>, there is a fairly

good linear correlation in the range of (50–570)×1020 Mx of <Φ>, and the number of

total samples decreases gradually. Instead, the helicity parameter shows a sharp increase in

Pi and a significant decrease in the number of total samples in the rescaled range of 0–0.15

of the parameter. PC as a function of |<Ḣr>|, especially, quickly reaches up to ∼90% from

46% in the very low rescaled range, 0–0.15, of the parameter, and it retains a high value

above 90% in the rest, 0.15–0.6, of the statistically meaningful range. This trend indicates

that the helicity parameter can be used for differentiation between C-flare-productive and

C-flare-quiet active regions. Please refer to Table 4.3 for further details.

For the evaluation of skill scores and success rates of the flare forecasting using

the two magnetic parameters, a 2×2 contingency table analysis commonly used by the

meteorological and space physics communities (e.g., Fry et al. 2001, 2003) is adopted. In

the contingency table, there are four categories of hit, false alarm, miss, and correct null

marked as a, b, c, and d in Table 4.4, respectively, and defined as follows: a is the number

of active region samples that are predicted to produce a flare and observed with at least

one flare above M-class within the 3-day time window τ3-day; b is the number of samples

predicted to produce a flare but not observed with any flares within τ3-day; c is the number

of samples predicted to be flare-quiet but observed with at least one flare above M-class



65

0 10 20 30 40 50 60 70 80 90
|< Hr >|  [1040 Mx2 hr-1]

0.0

0.2

0.4

0.6

0.8

1.0
Fl

ar
e-

Pr
od

uc
tiv

e 
Pr

ob
ab

ili
ty C-class

M-class

X-class

0

100

200

300

400

N
um

be
r 

of
 S

am
pl

es
 

0 100 200 300 400 500 600 700 800 900 1000 1100
< Φ >  [1020 Mx]

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ar

e-
Pr

od
uc

tiv
e 

Pr
ob

ab
ili

ty

C-class

M-class

X-class

0

100

200

300

400

N
um

be
r 

of
 S

am
pl

es
 

Figure 4.4 Flare-productive probability, Pi, vs. magnetic parameters. The probabilities
producing at least one C-, M-, and X-class flare during τ3-day are shown as diamond, trian-
gle, and square symbols, respectively. Gray bars represent the number of samples and the
dotted line denotes the range where the number of the total samples is greater than 10.
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Table 4.3: Number of Active Regions Producing at Least One Flare in the ith GOES Class
During τ3-day as a Function of Magnetic Parameters

GOES Class Absolute average helicity injection rate |<Ḣr>| (1040 Mx2 hr−1)

≥0.1 ≥7.4 ≥14.6 ≥21.9 ≥29.2 ≥36.5 ≥43.7 ≥51.0 ≥58.3 ≥65.5

C-class 174(378) 93(116) 48(54) 33(35) 25(26) 17(18) 15(16) 10(11) 9(10) 8(9)

M-class 54(378) 38(116) 21(54) 14(35) 12(26) 10(18) 9(16) 6(11) 6(10) 5(9)

X-class 10(378) 9(116) 7(54) 6(35) 6(26) 4(18) 4(16) 3(11) 3(10) 3(9)

GOES Class Average unsigned magnetic flux <Φ> (1020 Mx)

≥52 ≥138 ≥225 ≥312 ≥398 ≥485 ≥572 ≥658 ≥745 ≥832

C-class 174(378) 163(304) 139(221) 112(157) 87(110) 60(68) 38(43) 27(30) 18(18) 11(11)

M-class 54(378) 51(304) 45(221) 40(157) 34(110) 24(68) 21(43) 14(30) 10(18) 6(11)

X-class 10(378) 10(304) 10(221) 9(157) 8(110) 7(68) 6(43) 5(30) 3(18) 1(11)

Note. — Total number of samples are marked by parenthesis.

within τ3-day; and d is the number of samples that were predicted to remain flare-quiet and

did so within τ3-day. In order to make a prediction on whether or not an active region will

produce a flare, a threshold of each of the two parameters is determined as the value which

makes the maximum of the Heidke skill score (HSS, hereafter) from the data sets:

HSS =
(a+d − e)

(N − e)
, (4.6)

where N=a+b+c+d is the total number of samples and e=[(a+c)(a+b)+(b+d)(c+d)]/N is

the number of correct forecasts by chance. HSS measures the fraction of the correct fore-

casts after eliminating those forecasts which would be correct due purely to random chance

(Balch 2008). The positive values of HSS indicate that the forecasting performance is bet-

ter than predictions by chance, and a maximum score of +1 means all correct predictions.

The maximum values of HSS for |<Ḣr>| and <Φ> are 0.32 and 0.35, respectively. In ad-

dition, by using Fisher’s linear discriminant analysis, a threshold is found considering both
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the parameters. However, the maximum HSS is 0.34 which is similar to that of each pa-

rameter. This is understandable because magnetic helicity and flux are dependent on each

other somehow. For an additional assessment of the forecasting, the following quantities

(Balch 2008; McKenna-Lawlor et al. 2006) are also considered:

POD =
a

(a+ c)
, (4.7)

FAR =
b

(a+b)
, (4.8)

TCC =
a

(a+ c)
+

d
(b+d)

−1, (4.9)

where POD is the probability of detection, FAR is the false alarm rate, and TCC is the true

skill score used to evaluate the flaring and non-flaring accuracy. PODs are 56% and 39%,

FARs are 64% and 51%, and TCCs are 39% and 32% for |<Ḣr>| and <Φ>, respectively.

Please see, in Table 4.4, the details of the contingency tables for |<Ḣr>| and <Φ>, and

the combination of |<Ḣr>| and <Φ>.

Table 4.4: Contingency Table for Evaluating the Ability of the Flare Prediction by the Two
Magnetic Parameters

|<Ḣr>| <Φ> |<Ḣr>| & <Φ>

Forecast Forecast Forecast Forecast

Yes No Yes No Yes No Yes No

Observation
Yes a c 30 24 21 33 22 32

No b d 53 271 22 302 26 298

Total a+b c+d 83 295 43 335 48 330

Finally, Figure 4.5 presents long-term (a few days) variations of the magnetic he-

licity calculated for 8 active regions which have the flare indexes greater than 100. The
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magnetic helicity accumulation (cross symbols) is plotted together with the GOES soft X-

ray light curve (dotted line) and unsigned magnetic flux (diamond symbols) as a function of

time. In the 8 active regions, there are 19 major flares with a GOES peak flux greater than

M5.0, and they are marked with the ID numbers of 1–19 in Figure 4.5. For the AR 10696

and 10720, the helicity evolution pattern had already been examined over a span of several

days around the times of X-class flares which occurred in those regions in the previous

paper (see Park et al. 2008). In that paper, Park et al. (2008) concluded that each of major

flares was preceded by a significant helicity accumulation, 1042–1043 Mx2 over a period of

half to a few days. Another finding was that the helicity accumulates at a nearly constant

rate, (4.5–48)×1040 Mx2 hr−1, and then becomes nearly constant before the flares for 4 out

of 11 events. These tendencies were checked for other active regions in this study, and the

major findings are as follows. First, there was always a significant helicity accumulation of

(3–45)×1042 Mx2 before all the 19 major flares with a phase of monotonically increasing

helicity over ∼0.5–2 days. In principle, an increase of magnetic helicity can be achieved

without a flux emergence and it is frequently shown during post-flare periods for some of

active regions in Figure 4.5. However, the increasing helicity phase before the flares always

accompanied the increasing phase of magnetic flux except AR 10652, and this might be an

observational result supporting the MHD simulation studies (e.g., Fan & Gibson 2004)

which show that the emergence of twisted flux ropes into pre-existing overlying field plays

a critical role to produce major flares. Second, of the 19 flares, four flares (1, 5, 7, and

12) occurred when helicity injection rate becomes slow or almost zero after the significant

helicity accumulation with fast injection rate. These flares are the additional examples for

the almost constant helicity phase before a major flare reported by Park et al. (2008). In
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addition to the above two phases of helicity injection, AR 9236 and 10720 seem to have an

abnormal helicity evolution pattern before the major flares compared to the monotonically

increasing pattern with one sign of helicity shown in the other active regions. A remarkable

feature for both active regions is that the eight major flares (2, 3, 4, 13, 14, 15, 16, and 17)

occurred during the period when the helicity injection rate started to reverse its sign so that

the helicity starts to accumulate with opposite sign.

4.4 Summary and Discussion

The time variations of Ḣ and Φ have been investigated in 378 solar active regions, and

the two average parameters, |<Ḣr>| and <Φ>, have been compared with Fidx. Although

there is a large amount of scatter in the data samples, a moderate correlation between the

parameters and Fidx is found. The larger Fidx an active region has, the larger values of Ḣ

and Φ it presents. To improve the correlation, a new parameter has been defined as an

equally weighted linear combination of the two rescaled parameters (0.5 of each). The

logarithmic-scale CC of Fidx versus the new parameter increased slightly to 0.47. It is not

surprising because |<Ḣr>| is well correlated with <Φ> as shown in Figure 4.3. More-

over, by considering 48 and 72 hr profiles of Ḣr and Φ for calculation of the two average

parameters, the same correlation study have been executed between the two parameters and

the next-day flare index. It was found that the longer the period is for average, the worse

the correlation will be, especially in the case of |<Ḣr>| (CC=0.38 and 0.21 for 48 and 76

hr periods, respectively). This might be because the flaring history before or during the

measurement period of the parameters is not considered, but the parameters are compared

with Fidx calculated only for the following day of the measurement period.
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Figure 4.5 Time variations of helicity accumulation, magnetic flux, and GOES soft X-
ray flux for 8 active regions which have the flare indexes greater than 100. The helicity is
shown as cross symbols and the magnetic flux is shown as diamonds. The X-ray flux is
shown as dotted lines and all the 19 flares above GOES M5.0 level are marked with their
ID numbers.
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It is understandable that no matter which method is used, the correlation between

the parameters and flare index is not high. This is an intrinsic problem for flare forecasting

as the occurrence of a flare depends not only on the amount of magnetic energy built up in

an active region, but also on how it is triggered. For example, if new flux-rope emergence is

the driver of flares (Schrijver 2009), or if a flare is exactly a result of a small and localized

(quite possibly unobservable) perturbation affecting the whole system like self-organized

criticality dynamics (Bak et al. 1987; Bélanger et al. 2007), then it is not feasible to carry

out prediction of flare onset time and magnitude by using present-day parameters derived

from photospheric magnetic field observations. More specifically, helicity accumulation

might be a necessary, but not sufficient condition for flares. Perhaps a triggering mechanism

is necessary even a magnetic system has enough non-potentiality to power a flare (so-called

metastable state). This idea agrees with the study that a number of X-class flares occurred

during the phase of almost constant helicity after the phase of 2–3 days of monotonically

increasing helicity (Park et al. 2008).

Interestingly, contrary to the expectation that magnetic helicity injection is more

closely related to flare productivity than to magnetic flux, the result of this study shows that

the correlation between |<Ḣr>| and Fidx is not stronger than that between <Φ> and Fidx.

The logarithmic-scale CCs of Fidx versus |<Ḣr>| and <Φ> are 0.42 and 0.43, respectively.

If only the flaring groups with non-zero flare index are considered, then |<Ḣr>| is not

better than <Φ> in predicting how strong the flares will be. This might be due to the

fact that the 1 day average of Ḣr in the entire active region is simply used for comparison

with Fidx without more specifically characterizing the temporal and spatial evolution of

helicity in the active region related to a flaring condition. Magnetic helicity, however, is
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useful in predicting whether an active region will produce flares or not. Note that predicting

the occurrence of flares is different from predicting the strength of flares. By examining

more careful studies such as the helicity injection difference between flare-productive and

flare-quiet active regions, the flare-productive probability as a function of |<Ḣ>|, and the

temporal evolution of helicity in major flare-producing active regions, it has been found

that magnetic helicity injection has some interesting features related to flares as follows.

1. For 91 active region samples in the range (3–5)×1022 Mx of large <Φ> the f laring

group has |<Ḣr>| about twice greater than that of the non- f laring group. On the

other hand, 118 active region samples of large |<Ḣr>| do not show the significant

difference in <Φ> between the f laring and non- f laring groups.

2. The helicity parameter |<Ḣr>| demonstrates a rapid increase of Pi compared to that

of <Φ> in the rescaled range of 0–0.15 of the parameter. PC(|<Ḣr>|), especially,

quickly reaches up to ∼90% from 46% in the very low rescaled range, 0–0.15, of

the parameter, and it retains a high value above 90% in the rest, 0.15–0.6, of the

statistically meaningful range.

3. Helicity of (3–45)×1042 Mx2 accumulates significantly and consistently over 0.5–2

days for all the 19 major flares under investigation supporting the major finding of

Chapter 3. More specifically, following the significant amount of long-term helicity

accumulation with fast injection rate, 4 and 8 flares occurred when helicity injection

rate starts to become slow (sometimes almost zero) and reverse its sign, respectively.

Based on these results, the magnetic helicity can be used for the improvement of

flare forecasting. First of all, when an active region has large <Φ>, it might be better de-
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termined whether or not it will produce a flare by considering |<Ḣr>| of the active region.

Second, the helicity parameter |<Ḣr>| would allow to establish a better defined cutoff be-

tween C-flare-productive and C-flare-quiet active regions than <Φ> if a sharp increase of

Pi in the very low rescaled range of the parameter is taken into account. Third, an early

warning sign of flare occurrence could be based on tracking of a phase of monotonically

increasing helicity because there is always a significant amount of helicity accumulation a

few days before major flares. An urgent warning sign might be also made when helicity in-

jection rate becomes very slow or the opposite sign of helicity starts to be injected after the

significant helicity accumulation phase. The sign reversal of the magnetic helicity may sup-

port the numerical simulation model for solar flare onset proposed by Kusano et al. (2003b)

in which they showed that magnetic reconnection quickly grows in the site of the helicity

annihilation with different signs. Some observations of helicity inversion, similar to this

result, were also reported around the time of flare onset (Kusano et al. 2003a; Yokoyama

et al. 2003; Wang et al. 2004b). For more practical and advanced flare forecasting, there

should be studies on how to consider the past history of flare occurrence in an active region

under investigation and combine the helicity parameter with others with different weight-

ing coefficients. Besides that it would be required to better characterize not only the time

history of helicity injection but also its spatial distribution inside active regions.

Finally, this study may lead to some physical understanding of flare on-set. For

example, why do only some of the samples with the large helicity injection produce major

flares, but not for all? Is a significant amount of helicity accumulation necessary or suffi-

cient conditions for flares? The study of magnetic helicity in a coronal volume of an active

region will help to better explain physically for these questions and understand pre-flare
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conditions and energy storage process of flares in more detail. To explore this idea further,

the study of the coronal helicity by using three-dimensional nonlinear force-free magnetic

field extrapolations will be discussed in the following Chapter 5.



CHAPTER 5

TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE

FLARING ACTIVE REGION NOAA 10930

In this chapter1, taking the advantage of unprecedented observations and coronal mag-

netic field modeling tools, the coronal relative magnetic helicity in the flaring active region

NOAA 10930 is investigated during the time period of December 8–14 to study the three-

dimensional (3D) magnetic field topology and its long-term evolution associated with the

X3.4 flare of 2006 December 13. The coronal helicity is calculated based on the 3D nonlin-

ear force-free (NLFF) magnetic fields reconstructed by the weighted optimization method

of Wiegelmann (2004), and is compared with the amount of helicity injected through the

photospheric surface of the active region. The helicity injection is determined from the

magnetic helicity flux density proposed by Pariat et al. (2005) using SOHO/MDI magne-

tograms. The major findings of this study are: (1) the time profile of the coronal helicity

shows a good correlation with that of the helicity accumulation by the injection through

the surface; (2) the coronal helicity of the AR is estimated to be -4.3×1043 Mx2 just before

the X3.4 flare; (3) this flare is preceded by not only a large increase of negative helicity,

-3.2×1043 Mx2, in the corona over ∼1.5 days but also noticeable injections of positive he-

licity though the photospheric surface around the flaring magnetic polarity inversion line

during the time period of the channel structure development. It is conjectured that the oc-

currence of the X3.4 flare is involved with the positive helicity injection into an existing

1This chapter is based on the following paper:
Park, S.-H., Chae, J., Jing, J., Tan, C., & Wang, H. 2010, Astrophys. J., in press.

75
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system of negative helicity.

5.1 Introduction

The photospheric magnetic fields in the active region NOAA 10930 have been observed

comprehensively by the MDI (Scherrer et al. 1995) aboard the SOHO spacecraft and the

SOT (Tsuneta et al. 2008) onboard the Hinode satellite. In recent years, following the

observations, considerable attention has been paid to investigate the structure of magnetic

field lines and its evolution in AR 10930 related to the occurrence of the X3.4 flare on

2006 December 13. There were studies of sunspot rotation associated with the flare such as

remarkable counterclockwise rotation of the positive polarity sunspot Yan et al. (2009), in-

teraction between the fast rotating positive sunspot and ephemeral regions near the sunspot

(Zhang et al. 2007), and non-potential magnetic stress (Su et al. 2008). AR 10930 was

also investigated for a change of magnetic field lines at the flaring site before and after the

flare, e.g., azimuth angle (Kubo et al. 2007). Moreover, time variations of magnetic helicity

injection rate (Zhang et al. 2008; Magara & Tsuneta 2008) and intermittency (Abramenko

et al. 2008) were examined over a time span of several days around the time of the flare.

To resolve limitations of using photospheric magnetic field data, some studies have

been carried out on the X3.4 flare with the 3D coronal magnetic fields derived from NLFF

extrapolation methods. Jing et al. (2008) reported that magnetic shear around the flaring

magnetic polarity inversion line decreased after the flare at coronal heights in the range

8–70 Mm. By calculating the 3D electric current in AR 10930, Schrijver et al. (2008)

showed that there are long fibrils of strong current slightly above the photosphere that al-

most completely disappear after the flare. Later on, Wang et al. (2008) found that the strong
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current-carrying fibrils are associated with magnetic channel structure of AR 10930 and the

flare occurred during the period that the channels were rapidly developed. In addition, the

free energy of the NLFF fields were studied to understand energy build-up, storage and re-

lease processes in the corona for the flare. The free energy release of 2.4×1031 ergs during

the flare was measured by Guo et al. (2008), and Jing et al. (2010) found that a significant

amount of free energy is continuously built up during the 2 days prior to the flare.

Encouraged by interesting results of the previous studies with NLFF fields, in this

study, the variation of the coronal relative magnetic helicity in AR 10930 is investigated

over a span of several days to find its relationship with the flare. Magnetic helicty is a

measure of how much magnetic field lines in a flux tube are twisted around the tube axis,

how much the tube axis is kinked, and how much flux tubes are interlinked each other in a

magnetic field system. It has been studied to understand an energy build-up process and a

trigger mechanism for flare occurrence. It is expected that coronal magnetic helicity study

will bring a better understanding of the long-term evolution of the large-scale magnetic

field non-potentiality in the corona related to the X3.4 flare despite of a critical assessment

(e.g., De Rosa et al. 2009) in NLFF extrapolation that existing NLFF extrapolation models

are not able to accurately reproduce coronal fields and physical quantities of interest in the

active-region corona due to some problematic issues such as the non-force-free nature of the

photospheric magnetic field, the limited FOV and the noise level of vector magnetograms,

etc. The coronal helicity will also be compared with the helicity injection through the

photospheric surface to check their relationship and consistency.
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5.2 Data Processing and Helicity Calculation

For the calculation of Hr in a 3D coronal volume, it is required to obtain the three com-

ponents of the magnetic field in that coronal volume. Therefore, the coronal NLFF fields

in AR 10930 is derived from the Stokes profiles taken by Hinode/SOT SP following the

same way described in Jing et al. (2010). The high-resolution vector magnetic fields in

the photosphere were first derived from the Stokes profiles using an Unno-Rachkovsky

inversion based on the Miler-Eddington atmosphere (e.g., Lites & Skumanich 1990; Klim-

chuk et al. 1992); Klimchuk et al. 1992). In addition, the removal of the 180◦ ambiguity

in the transverse magnetic fields was accomplished using the minimum energy algorithm

(Metcalf et al. 2006), and the photospheric vector magnetograms were projected onto the

tangent plane at the heliographic location of the center of the magnetograms. To reduce the

inaccuracy of NLFF field extrapolation, it is important to derive suitable boundary fields

for the NLFF field modelling from the photospheric magnetograms. Therefore, using a pre-

processing method developed by Wiegelmann et al. (2006), the effect of the Lorentz force

acting in the photosphere was minimized so that the NLFF boundary fields are prepared

to be in the condition of the low plasma-β force-free chromosphere. Finally, the weighted

optimization method (Wiegelmann 2004) was used to extrapolate the NLFF coronal fields

from the photospheric magnetograms. This method has been well recognized as an out-

standing performance algorithm by some model tests of NLFF fields (e.g., Schrijver et al.

2006; Metcalf et al. 2006). Refer to Figure 5.1 to see an example of 3D coronal magnetic

fields extrapolated from the Hinode/SOT SP vector magnetogram (gray image) at 20:30

UT on 2006 December 12.

AR 10930 appeared on the east limb of the solar disk on 2006 December 6, and was
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Figure 5.1 Extrapolated NLFF field of AR 10930 at 20:30 UT on 2006 December 12. The
grayscale image is the normal component of the photospheric magnetic field which was
taken by the Hinode/SOT SP and used for the extrapolation.
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successfully and continuously observed during the time interval of its entire disk passage

by Hinode/SOT and SOHO/MDI. In this study, Hr in AR 10930 is determined from Equa-

tions 2.1 through 2.4 described in Section 2.1 during the time span of 2006 December 8,

21:20 UT through 2006 December 14, 5:00 UT. 27 Hinode/SOT-SP vector magnetograms

are used as the boundary fields for NLFF field extrapolation. The computational dimen-

sions of the 3D NLFF field data were considered as 240×132×180 pixel3 corresponding

to 288×158×216 Mm3. To check the influence of the preprocessing on the magnetogram

data, L1 and L2 of the original data and those of the preprocessed data were calculated,

which are associated with the force-balance condition and the torque-free condition, re-

spectively. They were proposed by Wiegelmann et al. (2006) to investigate how well a

photospheric magnetic field agrees with Aly’s criteria. Refer to Wiegelmann et al. (2006)

for the details of the preprocessing method and the definitions of L1 and L2. As shown in

Table 5.1, the preprocessed data satisfy the Aly criteria much better than the original data.

It has been reported that this preprocessing procedure significantly improves the boundary

fields towards a force-free condition (e.g., see Wiegelmann et al. 2006, 2008). Recently,

Jing et al. (2010) also showed the capability of the preprocessing method by comparing the

unpreprocessed/preprocessed photospheric line of sight (LOS) magnetogram of AR 10930

with the co-aligned chromospheric LOS magnetogram. To evaluate the performance of

the NLFF extrapolation, the current-weighted sine metric (CWsin) and <| fi|> metric pro-

posed by Wheatland et al. (2000) were also calculated for each extrapolated field. CWsin

and <| fi|> measure the degree of convergence to a force-free and divergence-free field, re-

spectively. For the 27 NLFF fields under investigation, the average CWsin was estimated as

∼0.39 and the average <| fi|> as ∼0.0014 indicating that residual forces and divergences
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exist in the NLFF fields.

In addition, the error estimation of Hr is carried out with a Monte Carlo method by

only taking into account the sensitivity of the SP measurement as follows (e.g., see Guo

et al. 2008): first, 3 sets of artificial noises are added to Bx, By, and Bz of the original SP

vector magnetogram at 20:30 UT on 2006 December 12. Each noise set consists of pseudo-

random numbers in normal distribution with the standard deviation of 5 G for Bz and 50 G

for Bx and By. Note that these values of 5 G and 50 G are estimated as the maximum values

of the SP sensitivity in the line-of-sight direction and the transverse direction, respectively

(Tsuneta et al. 2008). Then, the 3D NLFF fields are extrapolated from the noise-imposed

vector magnetogram following the procedure described in the above paragraph, calculate

Hr, and repeat the same process 10 times. Finally, the standard deviation of 10 sets of Hr is

considered as the uncertainty of the Hr calculation. The uncertainty was found as 8×1041

Mx2 corresponding to 2–4% of |Hr| during the measurement period.

In order to calculate Ḣr, the data set consisting of 63 full-disk MDI magnetograms

at the 96 min cadence was used in the time span of 2006 December 8, 20:51 UT through

2006 December 13, 16:03 UT. Note that the MDI magnetograms in the data set show the

Zeeman saturation in the central part of the negative sunspot umbral region so that the

Table 5.1 Comparison of the Average L-values for the Original Data and Preprocessed
Data of Hinode/SOT-SP Vector Magnetograms

Original Preprocessed

L1
a(G4) 1.12×1019 9.56×1012

L2
b(G4 Mm2) 2.02×1023 1.08×1019

aL1=
[

(ΣBxBz)
2 +(ΣByBz)

2 +
(

ΣB2
z −B2

x −B2
y
)2

]

bL2=
[

(

Σx(B2
z −B2

x −B2
y)

)2
+

(

Σy(B2
z −B2

x −B2
y)

)2
+(ΣyBxBz − xByBz)

2
]
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calculation of Ḣr might be underestimated. The window function of DAVE used in the

Ḣr calculation is the top-hat profile which puts the same weight of unity to every pixel

inside the window (e.g., Schuck 2006) and the window size is selected as 10 arcseconds.

DAVE was also applied to two MDI images with the spatial derivatives being calculated

from the average of the two images (e.g., Welsch et al. 2007; Chae 2007; Chae & Sakurai

2008). The uncertainty of Ḣr corresponding to measurement uncertainty (∼20 G) of MDI

magnetograms was also estimated using the same Monte Carlo method used in the error

estimation of Hr. It is found that the uncertainty of Ḣr is 8.4×1039 Mx2/hr which is equiv-

alent to ∼3% of the average Ḣr during the measurement time. The uncertainty therefore

does not significantly affect the calculation of Ḣr and ∆Hr.

5.3 Results and Discussion

The main objective in this study is to examine how well Hr and ∆Hr are correlated with

each other and whether the Hr calculation using the NLFF coronal fields is verified by the

comparison of Hr derived from Hinode/SOT-SP data with ∆Hr derived from SOHO/MDI

data. In Figure 5.2, therefore, the temporal variations of Hr (black solid line) and ∆Hr

(gray solid line) are plotted. The estimated error of Hr is marked with error bars. The

initial value of ∆Hr is set as same as that of Hr. |Hr|, the absolute value of Hr, is also

shown as dotted line for convenience. The day-to-day variations of Hr in AR 10930 is also

investigated for a better understanding of pre-flare conditions and a trigger mechanism of

the X3.4 flare. For this, Hr (black solid line) is plotted with the total unsigned magnetic

flux (dashed line) and the GOES soft X-ray light curve (dotted line) in Figure 5.3. Note

that Lim et al. (2007) have done a similar study in which they compared coronal helicity
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in AR 10696 with helicity injection through the photosphere. In their study, the coronal

helicity was estimated as a probable range using a linear force-free (LFF) assumption with

a force-free constant which gives the best fit with each of individual coronal loops, even

though the real coronal field is not LFF. The photospheric helicity injection was calculated

by inferring the velocity of the apparent horizontal motion of field lines determined by

the LCT technique, as originally proposed by Chae (2001), instead of using u determined

by the DAVE technique. They found that the temporal variation of the coronal helicity is

similar to that of the photospheric helicity injection with a discrepancy of ∼15%.

AR 10930
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Figure 5.2 Time variations of the coronal relative magnetic helicity Hr (black solid line
with error bars) and the helicity accumulation ∆Hr (gray solid line). The absolute value of
Hr decreases for more than 9 hours in the periods marked as I, IIb, and III while it shows a
significant increase of 3.2×1043 Mx2 during the period of IIa. In general, the time profile
of Hr shows a good correlation with that of ∆Hr during the entire measurement period.
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AR 10930
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Figure 5.3 The coronal relative magnetic helicity Hr (black solid line with error bars)
and the unsigned magnetic flux Φ (dashed line) of AR 10930 are plotted with and GOES
soft X-ray flux (dotted line) during the time period of December 8, 21:20 UT through
December 14, 5:00 UT. The X3.4 flare occurred in AR 10930 and peaked at 2:40 UT on
2006 December 13. During the periods of IIb and III, there were two CMEs inferred to
be originated from AR 10930, and their first appearance times in the LASCO/C2 FOV are
marked with the black vertical dashed lines. The characteristic periods of I, IIa, IIb, and III
are marked in the same way as in Figure 5.2.
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During the first day of the helicity measurement, Hr showed little change from its

initial value, −2.8×1043 Mx2, though there were small fluctuations in the range of 2–15%.

Then, |Hr| decreased by 28% from 2.9×1043 Mx2 to 2.1×1043 Mx2 for 14 hours from

December 10. Note that the decrease of |Hr| could be due to: (1) a pre-existing negative

helicity is expelled from the volume of the NLFF field extrapolation, e.g., via coronal

mass ejections (CMEs), and/or (2) a new magnetic flux with positive helicity is injected

from outside into the volume or positive helicity is produced by shearing motions of pre-

existing field lines. It was found that there are three time periods (I, IIb, and III) over

which |Hr| decreases consistently for more than 9 hours, and they are shown as the shaded

areas. Between periods I and III, there was a consistently large increase of negative helicity,

−3.2×1043 Mx2, in the corona over ∼1.5 days (marked as period IIa in Figure 5.2). After

period III, a negative helicity kept on increasing for ∼1 day with flux increase. The detailed

information of the characteristic periods is shown in Table 5.2.

The overall pattern of the temporal evolution of Hr calculated using the NLFF fields

is compared with that of ∆Hr measured using the MDI magnetograms. In general, the time

profile of Hr well matches that of ∆Hr. Moreover, in both cases, the absolute amount

of negative helicity accumulation during the entire measurement period of December 9–14

was similar (2.1×1043 Mx2 and 1.7×1043 Mx2, respectively). This gives us confidence that

Table 5.2 Characteristic Periods of the Temporal Variation of the Coronal Helicity

Periods Duration Initial/Final |Hr | |Hr | Change Initial/Final Flux Flux Change
(hr) (1043 Mx2) (%) (1022 Mx) (%)

I 13.8 2.9 / 2.1 -28 5.2 / 5.0 -4
IIa 40.1 2.1 / 5.3 152 5.0 / 5.5 10
IIb 9.0 4.8 / 4.0 -17 5.6 / 5.3 -5
III 16.6 5.3 / 4.3 -19 5.5 / 5.6 2
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the NLFF extrapolation and the Hr calculation are reasonably well established. However,

some detailed patterns of helicity evolution show a difference between Hr and ∆Hr. For

example, the temporal variation of Hr shows a rapid and large increase of negative helicity

with flux increase at the time period of the fast rotational speed in the southern positive

sunspot measured by Min & Chae (2009) and Yan et al. (2009). In addition, |Hr| represents

decreasing phases such as periods I, IIb, and III, while |∆Hr| increases monotonically during

the entire period. Note that Hr should not necessarily be exactly the same as ∆Hr: e.g., the

ejection of magnetic helicity via the launch of a CME would not be detected in ∆Hr while

it would be reflected in Hr.

What could cause the three periods of the remarkable |Hr| decrease? To inquire this,

a possibility associated with the negative helicity ejection via CMEs originated from AR

10930 was first checked. The SOHO/LASCO CME catalog (Yashiro et al. 2004) was used

for searching all the CMEs occurred during the periods. Then, only the CMEs inferred to

be produced in AR 10930 was identified with the following criterion: the position angle of

a CME should be within ±5 degrees from that of AR 10930 on the solar disk at the first

appearance time of the CME in the LASCO/C2 FOV. Note that there was no AR except

AR 10930 on the front side of the solar disk during the periods. Two CMEs were found,

and they are shown in Figure 5.4: one in period IIb and the other in period III. Their initial

appearances in the LASCO/C2 FOV were at 09:36 UT on December 11 and at 20:28 UT on

December 12, respectively, which are marked with the vertical dashed lines in Figure 5.3.

Although the uncertainty of the Hr calculation is estimated as 8×1041 Mx2, it was found

that the decrease in |Hr| is 2.4×1042 Mx2 between 08:31 UT and 11:48 UT on December

11 and 1.9×1042 Mx2 between 18:12 UT and 21:01 UT on December 12 covering the time
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of the occurrence of the first CME and that of the second CME, respectively. These values

agree with the helicity content of a typical CME, 2×1042 Mx2, estimated by DeVore (2000).

This finding of the CME-related change of |Hr| is similar to the earlier one by Lim et al.

(2007) in which they found a helicity decrease of ∼4.1×1042 Mx2 after the occurrence of

two CMEs.

2006−12−12  20:28 UT  

2006−12−11  09:36 UT  

LASCO/C2

(b)

(a)

Figure 5.4 LASCO/C2 images. Two CMEs inferred to be originated from AR 10930
appeared at (a) 09:36 UT December 11, 2006 and (b) 20:28 UT December 12, 2006. They
are marked in a rectangle in each panel.
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The feasibility of positive helicity injection through the photospheric surface of AR

10930 into the corona was also investigated. Note that Zhang et al. (2008) have calculated

Ḣr in AR 10930 using the LCT method (Chae 2001). They found the sign of Ḣr changes

from negative to positive and then from positive to negative during the period (01:30 UT–

04:30 UT) of the flare, while Ḣr is predominantly negative during 2006 December 8–14.

Integrating the positive (negative) Gθ over the photospheric surface of AR 10930, Ḣ+
r

(Ḣ−
r ), i.e., the injection rate of positive (negative) helicity, was determined. Figure 5.5

shows the time variations of Ḣ+
r (diamonds), Ḣ−

r (crosses), and Ḣr (solid line) during the

∆Hr measurement period. The characteristic periods are marked in the same way as in

Figure 5.2, and the peak time of the X3.4 flare is shown as the vertical dotted line. It was

found that a remarkable accumulation of positive helicity into the corona is established over

the entire period with the average injection rate of 2.8×1041 Mx2/hr, even though for the

most time Ḣ−
r is dominant with the average injection rate of -4.4×1041 Mx2/hr. Especially,

during the span of December 11, 12:51 UT (middle of period IIb) through December 12,

04:48 UT (start of period III), the average of Ḣ+
r showed a large value of 4.5×1041 Mx2/hr,

and Ḣ+
r was sometimes larger than Ḣ−

r . Additionally, the Gθ maps at several times marked

with the vertical solid lines in Figure 5.5 were examined to find out how the positive Gθ is

distributed and developed on the AR. Figure 5.6 shows the maps of the normal component

of magnetic field, Bn, (left panels) and Gθ (right panels). Assuming that the magnetic field

on the solar photosphere is normal to the solar surface, Bn was approximately determined

from the MDI line-of-sight magnetograms. It was found that there are noticeable injec-

tions of positive helicity around the flaring magnetic polarity inversion line (see the three

Gθ maps in Figure 4: 2006-12-11 12:51 UT, 2006-12-12 04:48 UT, and 2006-12-12 23:59
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UT). In addition, the examination of the other Gθ maps during the period of December 11,

12:00 UT through December 13, 16:00 UT revealed that positive helicity is consistently

injected through the polarity inversion line. The location and time span of the positive

helicity injection are similar to those of the magnetic channel structure development ob-

served by Wang et al. (2008). Note that a simulation by Régnier (2009) shows that newly

injected currents from the photosphere can sensitively affect the coronal magnetic helicity

in existing force-free bipolar fields: i.e., Hr is increased by 2 orders of magnitude when the

current strength is increased by a factor of 2. It is therefore speculated that periods IIb and

III are associated with the helicity ejection via the two CMEs and/or the supply of positive

helicity from the photosphere into the corona.

Related to the occurrence of the X3.4 flare, two interesting phases of the long-

term Hr evolution were found. First, there was a significant increase of negative Hr for

period IIa of ∼1.5 days associated with the flare energy buildup. This helicity increasing

phase prior to the flare is in agreement with that shown in the study of Park et al. (2008,

2010). After the middle of period IIa, a large amount of helicity of the opposite (positive)

sign started to be injected through the photospheric surface around the flaring magnetic

polarity inversion line during the time span (including periods IIb and III) of the channel

structure development observed by Wang et al. (2008). The X3.4 flare was preceded by

the two characteristic phases of Hr. These two phases have been already reported by the

previous studies of major flares related to helicity injection through photospheric surfaces

of ARs (Park et al. 2008, 2010; Chandra et al. 2010). Note that the finding of the long-term

injection of positive helicity during ∼2.5 days before the flare is different from the abrupt

injection of positive helicity around the start of the flare found by Zhang et al. (2008).
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AR 10930
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Figure 5.5 Injection rates of positive helicity (diamonds), negative helicity (corsses), and
total helicity (solid line) during the time span of December 8, 20:51 UT–December 13,
16:03 UT. The characteristic periods of I, IIa, IIb, and III are marked in the same way as
in Figure 5.2, and the peak time of the X3.4 flare is shown as the vertical dotted line. The
vertical solid lines indicate the times for the investigation of the helicity flux density maps
in Figure 5.5.
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2006−12−10  08:03 UT

Bn

2006−12−10  08:03 UT

Helicity Flux Density

2006−12−11  12:51 UT 2006−12−11  12:51 UT

2006−12−12  04:48 UT 2006−12−12  04:48 UT

2006−12−12  23:59 UT 2006−12−12  23:59 UT

Figure 5.6 Temporal evolution of the photospheric magnetic field and of helicity injection
rate in AR 10930. Left panels: the normal component of the magnetic field, Bn, derived
from the MDI line-of-sight magnetograms. Right panels: helicity flux density, Gθ . Note
that the median of |Gθ | is ∼2×103 G2 km/s Mm, and the saturation level of |Gθ | as 2.5×106

G2 km/s Mm is set for purpose of display visibility. After 12:00 UT of December 11, a
large amount of positive helicity started to be injected around the flaring magnetic polarity
inversion line.
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It is conjectured that the occurrence of the X3.4 flare is involved with the emergence of

a positive helicity system into an existing negative helicity system which may cause a

reconnection between the two helicity systems. This idea is not only supported by the

numerical simulation (Kusano et al. 2003b) in which magnetic reconnection quickly grows

in the site of the helicity annihilation with different signs but also the observational reports

for the opposite sign of helicity injection through the photosphere surface of ARs before

flares (Kusano et al. 2003a; Yokoyama et al. 2003; Wang et al. 2004b).

Another interesting finding is that the temporal variation of Hr follows a similar

pattern to that of the rotational speed in the southern positive sunspot. The rotational speed

is referred from the study of Yan et al. (2009) in which they calculated the rotational speed

from Hinode/SOT SP continuum intensity images. It is understandable that the counter-

clockwise rotation of the positive sunspot could twist the field lines to have left-handed

(negative) helicity so that the faster the southern sunspot rotates, the larger negative he-

licity the rotation can generate into the corona. However, instead of the sunspot rotation,

the negative helicity increase might be related to the emergence of a pre-twisted flux tube

because the time profile of unsigned flux is also similar to that of Hr. Note that Schrijver

et al. (2008), in their NLFF field study for AR 10930, also argued that strong electric cur-

rents emerge together with magnetic flux. If so, the sunspot rotation is not the cause of

helicity supply but the manifestation of the twisted flux emergence: sunspot rotation can be

regarded as the simple advection of a twisted flux tube or it can be driven by the torque due

to the rapid stretching of twisted field lines emerging into the corona (Longcope & Welsch

2000; Chae et al. 2003; Min & Chae 2009). In addition, the temporal variation of |Hr|

shows a rapid and large increase of negative helicity with flux increase at the time period
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of the magnetic channel structure appearance (3:00–8:00 UT on December 11) studied by

Wang et al. (2008). Note that there was a C5.7 class flare right after the rapid negative he-

licity injection. If the channel structure is related to the emergence of pre-twisted flux tube,

then Chae’s method for calculating Ḣr may not work effectively for the case of helicity

injection due to newly emerging pre-twisted flux.

In conclusion, after analyzing Hr in the coronal volume of AR 10930 using the

NLFF fields, it was found that there are two characteristic phases of day-to-day variation

of helicity related to the X3.4 flare: significant helicity accumulation (period IIa) followed

by opposite sign helicity injection (periods IIb and III). Hr and ∆Hr show a roughly sim-

ilar variation during the entire measurement period. Further studies are needed to check

whether the two characteristic phases are shown in other major flaring ARs and to investi-

gate a short-term variation of helicity in a flaring region related to a triggering mechanism.



CHAPTER 6

MAGNETIC HELICITY INJECTION RELATED TO THE CME INITIATION

AND SPEED

In this chapter, magnetic helicity injection in CME-productive active regions is investigated

to find its relationships with (1) the gradual inflation of active-region coronal arcades and

(2) the occurrence and speed of CMEs. Using the wavelet-enhanced EIT observations

combined with the LASCO, MDI, and GOES soft X-ray observations, it is studied how

helicity injection of ∼1 day from the photosphere of an active region is associated with the

slow rising phase of a coronal arcade building up to a CME. Day-to-day variation of helicity

is also investigated for 28 active regions producing 46 CMEs. The major findings of this

study are as follows. First, the inflation stage of the coronal arcades sustains for hours at

a speed of less than 5 km s−1, and it is temporally associated with helicity injection from

the active-region photosphere. Second, the 46 CMEs are categorized into two different

groups by two characteristic evolution patterns of helicity injection in their active regions:

(1) a monotonically increasing of helicity accumulation (Group A; 30 CMEs in 23 active

regions) and (2) significant helicity injection followed by its sign reversal (Group B; 16

CMEs in 5 active regions). Finally, a fairly good correlation (CC=0.71) between the helicity

injection rate and the CME speed is found for the 30 CME events in Group A.

6.1 Introduction

There have been many studies to better understand a trigger mechanism of CMEs with

several numerical simulation models. Chen & Shibata (2000) showed in their simulation

94
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that a CME can be triggered by the localized reconnection between a pre-existing coronal

field and a reconnection-favorable emerging flux with observational supports (Feynman &

Martin 1995; Wang et al. 2004b; Jing et al. 2004). A flux cancelation model (van Balle-

gooijen & Martens 1989; Linker et al. 2001), in agreement with observations (Martin 1994;

Gaizauskas et al. 1997; Martin 1998), suggested that the converging motion of magnetic

arcades, by which a filament may be formed, can lead to the destabilization of the filament

followed by a CME. Antiochos et al. (1999) proposed a model (so-called breakout model)

in which the reconnection of the overlying background magnetic field with the sheared ar-

cade at the magnetic null point above the latter gradually remove the constraint over the

sheared arcade so that a CME can occur. A kink instability by the emergence of twisted

flux tube (Hood & Priest 1981; Fan & Gibson 2004; Török & Kliem 2005) was considered

to explain the initiation of CMEs, e.g., Fan & Gibson (2004) performed isothermal MHD

simulations of the three-dimensional evolution of the coronal magnetic field as a twisted

magnetic flux tube emerges gradually into a pre-existing coronal arcade. In addition, there

are other trigger mechanisms: the shear (or twist) motion of the footpoints of the magnetic

arcades (Mikic et al. 1988; Kusano et al. 2004b), the decay of the background magnetic

field (Isenberg et al. 1993), the buoyancy force due to filament mass drainage (Low 2001;

Zhou et al. 2006), and Moreton & EIT waves generated by a remote CME (Ballester 2006).

After CMEs are initiated, they accelerate and depart from the Sun at speeds rang-

ing from <20 to ∼3000 km s−1 (average speed of ∼480 km s−1) measured from the

SOHO/LASCO white-light images (Gopalswamy 2006). There have been some studies

to find a relationship between the CME speed and several magnetic properties in the CME-

productive active regions derived from photospheric magnetic fields. Qiu & Yurchyshyn
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(2005) studied 13 CME events and found that there is a strong correlation (CC=0.89) be-

tween the total reconnection flux (see Forbes & Lin 2000, and references therein) estimated

from photospheric magnetic fields and the velocity of CMEs, even though the number of

events is not enough to make a statistically meaningful conclusion. Guo et al. (2007) ex-

amined the properties of photospheric line-of-sight magnetic fields in 55 active regions

before the onset times of 86 CMEs originating from the active regions investigated. They

measured four magnetic parameters, i.e., the tile angle, the total flux, the total length of

strong-field and strong-gradient neutral lines, and the effective distance. They found a

moderate linear correlation (CC∼0.4) between the parameters and the CME speed for a

sample of 86 CMEs.

In this study, magnetic helicity injected through the photosphere of CME-productive

active regions is studied to better understand the pre-CME condition, the trigger mechanism

and the dynamics of CMEs. In Chapter 6.3.1, two coronal arcades building up to CMEs

are examined using the wavelet-enhanced EIT observations to investigate their gradual in-

flation in relation to helicity injection: (1) a post-eruptive arcade in AR 10720 and (2) an

overlying arcade in AR 10898. In addition, day-to-day variation of helicity injection is also

investigated for 28 active regions which produced 46 CMEs to find a characteristic injec-

tion pattern of helicity in relation to the CME occurrence in Chapter 6.3.2 and to carry out

a correlation study between the average helicity injection rate in the active regions and the

speed of the CMEs in Chapter 6.3.3.
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6.2 Data Selection and Analysis

To study the gradual inflation of active-region coronal arcades prior to CMEs, two different

types of events are selected from the wavelet-enhanced EIT images (Stenborg & Cobelli

2003): (1) a post-eruptive arcade (PEA) in AR 10720 which resulted from a preceding

eruption and (2) an overlying arcade (OA) in AR 10898 which was located high in the

corona and have existed a few days before its slow rise. Note that none of the active

regions show a sigmoidal shape in Yohkoh SXT or GOES SXI soft X-ray images prior

to the eruption of the arcades. Instead, the soft X-ray data indicate that there are diffuse

arcades similar in morphology to the EUV arcades during the gradual inflation stage and

bright flare loops in the wake of the eruption.

The measurement of the height-time profile of the rising arcades was carried out as

follows: (1) a reference point on the solar surface is selected as a static feature between

the two footpoints of the arcade on EIT images, (2) a fiducial line is marked out along

the growing direction of the arcade, (3) the highest point of the arcade is determined as a

place where the fiducial line intersects the arcade based on the assumption that the arcade

is oriented vertically on the surface. Projection effects are corrected for the fiducial line

considering the rotation of the reference point. If the arcade grows in the radial direction,

projection effects are further corrected by dividing the projected height of the arcade with

respect to the Sun center by the projected distance from the reference point to the Sun

center. Both are in the solar radius unit. However, if the arcade is located on the limb,

or its growth obviously departs from the radial direction, only the projected distance from

the arcade apex to the reference point is recorded. The distance after adding by 1 is then

regarded as the height with respect to the Sun center in the solar radius unit. The height
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of the resultant CME with time in the LASCO FOV is readily available from the LASCO

CME Catalogue1. Type II radio emission, if existent, can give some idea of the evolution

of the CME in the gap between the FOV of EIT and that of LASCO/C2 (from 1.5 R� to

2.2 R�), since it is generally interpreted as plasma emission near the local electron plasma

frequency due to electrons accelerated by shock waves. The height of the supposed shock-

front is obtained by examining the slowly drifting bands of emission in the radio dynamical

spectra. The results of the measurement are listed in Table 6.1.

For the statistical study of day-to-day variation of helicity in active regions in rela-

tion to CMEs, 28 active regions which produced 46 CMEs are selected. The 46 CMEs are

adopted from the CME list of Guo et al. (2007) in which the CMEs are identified with their

originating active regions by investigating not only the CME position angles with respect

to the originating active regions but also CME-related phenomena such as soft X-ray flares

and EIT brightenings in the active regions.

Ḣr and ∆Hr of the active regions under investigation are calculated from Equa-

tions 2.11 and 2.17 with full-disk 96 minute MDI magnetograms following the same pro-

cedure described in Section 3.2. From the time profiles of Ḣr and ∆Hr, the two helic-

ity parameters are defined to investigate their relationship with the CME velocity in Sec-

tion 6.3.3. The first parameter is the absolute value of the average helicity injection rate,

|<Ḣr>|, which indicates the average amount of injected helicity per unit time to an entire

active region. Its definition is described in Section 4.2. To calculate |<Ḣr>|, t0 is set as the

start time of each MDI magnetogram data set of the active region under investigation, t1 as

the occurrence time of the CMEs from the active region under investigation, and N as the

1http://cdaw.gsfc.nasa.gov/CME_list/
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total number of MDI magnetograms in each data set during the time period, ∆t, between

t0 and t1. As for the second parameter, the absolute amount of helicity accumulation at the

time of t1, |∆Hr|, is used.

6.3 Results

6.3.1 Gradual Inflation of Active-Region Coronal Arcades Building up to

CMEs

Post-Eruptive Arcade on 2005 January 15

The PEA on 2005 January 15 was located in AR 10720. The arcade was produced by a Halo

CME associated with a M8.6 flare, which peaked in soft X-rays at 06:38 UT (Figure 6.1c).

Its eruption about 16 hours later resulted in a Halo CME associated with an X2.6 flare

with the peak in soft X-rays at 22:25 UT. Although the arcade was formed as early as

about 06:24 UT, it is only taken account into this study beyond the end of the M8.6 flare

from about 12:00 UT onward, since the early rising of the PEA is largely attributed to the

reconnection of magnetic field lines at higher and higher altitudes in the corona (Priest

& Forbes 2002). Figure 6.1a displays a typical PEA which is composed of a series of

bipolar coronal loops. The loop footpoints constitute two bright, curved flare ribbons,

which are parallel to each other and aligned along the polarity inversion line of the line-

of-sight photospheric field (Figure 6.1d). The gradual inflation of the arcade is clearly

demonstrated in Figure 6.1a–c, but as time progressed, most loops got more and more

dimmer. As of 18:24 UT (Figure 6.1e), only visible are the loops at the western end of the

original arcade, whose height-time profile is measured along a fiducial as indicated by the

dotted line in Figure 6.1a.
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One can see that despite multiple flares occurring in the same active region (as

indicated by arrows at the bottom of Figure 6.1d), the group of loops grew quasi-statically

in height, at a speed of ∼2.6 km s−1, from about 12:12 UT until 22:24 UT when the

speed suddenly increased to ∼50 km s−1, coincidence with the onset of the flare. It is

temporally associated with negative helicity injection from photosphere. Note that there

was a significant injection of positive helicity for ∼1 day on January 14–15, and then

negative helicity starts to be injected with magnetic flux increase. This may suggest that

a twisted emerging flux tube of negative helicity is related to the gradual inflation of the

PEA. The occurrence of the small flares during the inflation phase might be a result of the

magnetic reconnection between the two flux system, as simulated by Kusano et al. (2003b),

i.e., the emergence of the helicity in negative sign into existing positive helicity system.
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Figure 6.1 Evolution of the PEA observed on 2005 January 15. In frame (a) a fiducial
is drawn along the growing direction of the arcade to measure the height of the arcade
(see Section 6.2 for details). The field of view in Panels (a–g) is 700′′×700′′, centering at
(0′′, 350′′), with all images registered to the image in Panel (a). EIT images in this study
are enhanced with a wavelet method based on Stenborg & Cobelli (2003).



101

a) CME Height

     
1

10
(R

S
U

N
)

EIT
Type II 
LASCO

22:32 22:36 22:40 22:44 22:48
 

40
60
80

100
120
140
160
180

Fr
eq

ue
nc

y 
(M

H
z)

22:32 22:36 22:40 22:44 22:48
 

40
60
80

100
120
140
160
180

Fr
eq

ue
nc

y 
(M

H
z)

b) EIT Arcade

     

60
80

100
120
140
160
180
200

H
ei

gh
t (

M
m

)

2.6 km/s

0

10

20

30

40

50

S
pe

ed
 (k

m
/s

)

c) Photospheric Field

     
−1300

−1200

−1100

−1000

−900

−800

−700

H
el

ic
ity

 A
cc

um
ul

at
io

n 
(1

040
 M

x2 )

1.00

1.02

1.04

1.06

1.08

1.10

U
ns

ig
ne

d 
Fl

ux
 (N

or
m

al
iz

ed
)

d) X−Ray Lightcurve

08:00 12:00 16:00 20:00 00:00
Start Time (15−Jan−05 05:00:00)

10−7

10−6

10−5

10−4

10−3

G
O

E
S

 F
lu

x 
(W

 m
−2

) 1 − 8 Å
0.5 − 4 Å

0

2000

4000

6000

8000

10000

R
H

E
S

S
I (

C
ou

nt
 R

at
e)50−100 keV

Figure 6.2 Height-time profile of the PEA and the resultant CME on 2005 January 15 in
relation to the evolution of the photospheric magnetic field as well as X-ray lightcurves.
Panel (a) shows the height-time profiles of the EIT arcade, the shock front obtained from
Type II radio emission, and the CME front given by the LASCO CME catalogue, in the
solar radius unit. The inset shows the radio dynamical spectra provided by the Radio Solar
Telescope Network (RSTN), with the two drifting bands of Type II emission denoted in
dashed lines. In Panel (b), the height-time profile of the EIT arcade is given in the Mm
unit, and the derived velocity-time profile is displayed in red color and scaled by the y-axis
on the right. Panel (c) shows with time the amount of helicity accumulation as well as the
unsigned magnetic flux integrated over the active region of interest. Panel (d) shows the
GOES soft X-ray flux in 1–8 Å (grey) and 0.5–4 Å (black), and the RHESSI count rate in
50–100 keV (red). Each flare of GOES-class C and above occurring in AR 10720 is plotted
with an arrow at the bottom to indicate the soft X-ray flare peak.
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Overlying Arcade on 2006 July 4

Figure 6.3 shows the eruption of the OA on the disk on 2006 July 4. The event is much

less energetic than the PEA event. The arcade was overlying a decayed active region with

a single sunspot, AR 10898 (Figure 6.3d). The gradual inflation of the OA is sustained for

about 4.5 hours, at a speed of <5km s−1, and the subsequent eruption only resulted in a

C-class flare (Figure 6.3d). The flare was associated with a slow CME. Like the PEA event,

the morphology of the resultant CME bears similarity to the inflating arcade.

In the 2006 July 4 event, the OA of interest only became illuminated at 14:48 UT,

and its growth and subsequent eruption was observed henceforth. The loops on 2006 July 4

were located high in the corona from the beginning: the projected half length of the highest

loop is about 0.22 R�.

One may wonder how this bipolar, potential-like loop became eruptive and resulted

in a CME. GOES soft X-ray images show highly complex loops underlying the inflating

arcade in the active region (Figure 6.3e–g), but there is no sign of twisted or sheared fields,

such as the well-known soft X-ray sigmoids. The quasi-static stage in the event was tem-

porally associated with helicity injection. The helicity change rate displayed no obvious

change throughout the flare in the 2006 July 4 event (Figure 6.3c). The short-term (several

hours) profile of helicity injection is similar to the time-height profile of the OA. One re-

markable thing is that there was a significant and continuous helicity injection for ∼2 days

before the time of the OA gradual inflation study, but magnetic flux change very little in

the active region.
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Table 6.1 List of Gradually Erupting Coronal Arcades

No.
Arcade Flare CME

tia ∆t ri r f vq
b

Typec Location GOES tad PA/AWe vf ag

(hr) (R�) (R�) (km s−1) (deg) (km s−1) (m s−2)

1 2005-01-15 12:12 10.4 1.11 1.35 2.6 P N15W05 X2.6 23:06 Halo/360 2861 -127.4*
2 2006-07-04 14:48 4.6 1.22 1.36 4.3 O S13W14 C1.4 21:30 199/102 308 1.6

Note. —
a Measurement start time of the arcades shown in EIT images

b Speed obtained by linear fit of the height-time profile at the quasi-static stage.
c P (post-flare arcade), O (overlying arcade)

d First appearance time in the LASCO/C2 FOV
e Position Angle/Angular Width. For halo CMEs, the position angle refers to that of the fiducial adopted.

f Linear speed given by the LASCO CME Catalog.
g Acceleration given by the LASCO CME Catalog. The * symbol indicates that acceleration is uncertain due to either poor height measurement

or a small number of height-time measurements.
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Figure 6.3 Evolution of the OA observed on 2006 July 4. The field of view in Panels (a–g)
is 550 by 550 arcsecs, centering at (225′′, −225′′), with all images registered to the image
in Panel (a).
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Figure 6.4 Height-time profile of the OA and the resultant CME on 2007 July 4 in relation
to the evolution of the photospheric magnetic field as well as X-ray lightcurves.
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6.3.2 Two Characteristic Patterns of Helicity Injection before CMEs

The 46 CMEs under investigation can be categorized into two different groups by two char-

acteristic evolution patterns of helicity injection in their active regions: (1) monotonically

increasing of helicity (Group A, 30 CMEs in 23 active regions) and (2) significant helicity

injection followed by its sign reversal (Group B, 16 CMEs in 5 active regions).

Figures 6.5, 6.6, and 6.7 present long-term (a few days) variations of the magnetic

helicity calculated for 23 active regions in Group A. The helicity injection pattern of 5

active regions in Group B are also shown in Figure 6.8. The average speed of CMEs in

Group A is 870 km s−1 and 1330 km s−1 in Group B. The CME speed of Group B is much

faster than that of Group A. There is also a significant difference in the CME acceleration

between Group A (-24.4m s−2) and Group B (-6.3m s−2). Furthermore, the CMEs in

Group A tend to be single events, while those in Group B mainly consist of successive

events.

These differences may indicate different pre-CME conditions and trigger mecha-

nisms for the two groups. CMEs in Group A seem to be associated with the kink instability.

CMEs in Group B might be involved with the emergence of opposite sense of helicity into

an existing helicity system, and perhaps an interaction between two helicity systems may

be responsible for the CMEs in Group B. Further statistical studies, however, are needed to

check whether the two characteristic helicity patterns are shown in other CME-productive

active regions. In Table 6.2, the difference between Group A and Group B is summarized.
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Figure 6.5 Time variation of helicity accumulation (black crosses) and unsigned magnetic
flux (blue diamonds) for 8 active regions in Group A. The active regions in Group A show
a monotonically increasing pattern of helicity for a few days. In each panel, the vertical red
lines indicate the times when the CMEs originated from the 8 active regions first appeared
in the LASCO/C2 FOV.
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Figure 6.6 Same as in Figure 6.5, but for additional 8 active regions in Group A.
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Figure 6.7 Same as in Figure 6.5, but for additional 7 active regions in Group A.
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Figure 6.8 Same as in Figure 6.5, but for 5 active regions in Group B indicating a pattern
of significant helicity injection followed by its sign reversal. A total of 16 CMEs occurred
from the 5 active regions during the period when the helicity injection rate in the active
regions started to reverse its sign.
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6.3.3 Correlation of Helicity Injection with CME Speed

The 30 CMEs in Group A were used for the study of helicity injection related to the CME

speed. Note however that the 16 CMEs in Group B were not taken account into this CME

speed study because it is not easy to define a parameter of helicity injection in the active

regions of Group B which frequently show helicity reversal during the helicity injection

period before the CMEs. The two helicity parameters (|<Ḣr>| and |∆Hr|) defined in Sec-

tion 6.2 were investigated.

Figure 6.9a and b show the CME speed versus |<Ḣr>| and |∆Hr| in a logarithmic

scale as cross symbols, respectively, and the solid lines indicate the least-squares linear fits

to the data points. The CCs of the linear fits are also given in each panel. Figure 3.4a shows

that there is a fairly good correlation (CC=0.71) between |<Ḣr>| and the CME velocity.

|∆Hr| also shows a modest correlation with FX (CC=0.64) as shown in Figure 3.4b. On

the other hand, the correlation between helicity parameters and the CME acceleration in

Figure 3.4c and d is very poor with a weak tendency that the larger helicity injection in

active regions is, the larger deceleration of high-speed CMEs is.

Table 6.2 Comparison between Group A and Group B

Group CME vavg/vmed
a aavg/amed

b CME Event Helicity Injection Pattern
Number (km s−1) (m s−2) Type

A 30 870/700 -24.4/-8.7 Single Continuous injection followed by
no (or a little) injection for a while

B 16 1330/1150 -6.3/-0.8 Successive Significant injection followed by
its sign reversal

a Average Velocity/Median Velocity

b Average Acceleration/Median Acceleration



111

1 10 100 1000 10000
Helicity Injection Rate [1040 Mx2 hr-1]

100

1000

10000

C
M

E
 L

in
ea

r 
Sp

ee
d 

[k
m

 s-1
]

CC = 0.71

10 100 1000 10000
Helicity Accumulation [1040 Mx2]

100

1000

10000

C
M

E
 L

in
ea

r 
Sp

ee
d 

[k
m

 s-1
]

CC = 0.64(a) (b)

(c) (d)

1 10 100 1000 10000
Helicity Injection Rate [1040 Mx2 hr-1]

-150

-100

-50

0

50

C
M

E
 A

cc
el

er
at

io
n 

[m
 s-2

]

10 100 1000 10000
Helicity Accumulation [1040 Mx2 hr-1]

-150

-100

-50

0

50
C

M
E

 A
cc

el
er

at
io

n 
[m

 s-2
]

Figure 6.9 Helicity parameters with the velocity and acceleration of 30 CMEs originated
from 23 active regions in Group A. Correlations of the CME velocity with (a) the absolute
average helicity injection rate, |<Ḣr>|, and (b) the absolute helicity accumulation |∆Hr|.
The solid line indicates the least-square linear fit, and CC is specified in each panel. The
CME speed shows a fairly good correlation with the helicity parameters (The linear CCs
are 0.71 and 0.64 for |<Ḣr>| and |∆Hr|, respectively. The CME acceleration is plotted
versus (c) |<Ḣr>|, and (d) |∆Hr|. See Table 6.3 for the detailed information of the 30
CMEs.
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Table 6.3 Helicity Injection in 23 Active Regions Producing 30 CMEs in Group A

No.
CME Helicity Flare AR

ta
PA/AW v a |<Ḣr>|a |∆Hr |

b ∆τ ts
c

GOES No.
(deg) (km s−1) (m s−2) (1070 Mx2 hr−1) (1040 Mx2) (day)

1 1997-10-21 18:03 Halo/360 523 -2.9 0.5 22 2 17:00 C3.3 8097
2 1997-11-03 11:11 232/122 352 -1.5 5.2 400 3.2 09:13 M1.4 8100
3 1998-05-01 23:40 Halo/360 585 8.0 15.2 800 2.2 21:40 C2.6 8210
4 1998-05-02 05:31 Halo/360 542 -1.4 17.4 1000 2.4 04:48 C5.4 8210
5 1998-05-02 14:06 Halo/360 938 -28.8 18.7 1300 2.9 13:31 X1.1 8210
6 1999-09-01 02:30 188/283 253 -1.2* 0.7 50 3.1 23:56? C2.7 8677
7 1999-09-13 17:31 109/184 444 -8.7* 0.2 12 2.4 16:38 C2.6 8693
8 1999-09-13 09:30 0/182 898 -23 7.4 300 1.7 08:05 C4.9 8699
9 1999-11-26 17:30 228/145 409 6.0 7.3 350 2.0 17:40 C2.3 8778

10 2000-01-18 17:54 Halo/360 739 -7.1 20.8 900 1.8 17:10 M3.9 8831
11 2000-01-28 20:12 70/20 429 -2.8 3.6 240 2.8 19:45 C4.7 8841
12 2000-05-10 20:06 83/205 641 -15.5 13.9 150 0.5 19:32 C8.7 8990
13 2000-07-14 10:54 Halo/360 1674 -96.1 57.8 3400 2.5 10:03 X5.7 9077
14 2000-07-25 03:30 Halo/360 528 -5.8 8.0 500 2.6 02:47 M8.0 9097
15 2000-08-09 16:30 Halo/360 702 2.8 24.7 1600 2.7 15:33 C2.3 9114
16 2000-09-15 12:06 249/235 633 -64.0* 23.8 1200 2.1 10:54 C9.5 9165
17 2000-09-15 15:26 217/210 481 -10.4* 24.6 1300 2.2 14:31 M2.0 9165
18 2000-09-16 05:18 Halo/360 1215 -12.3 29.8 2000 2.8 04:07 M5.9 9165
19 2000-10-02 03:50 Halo/360 525 -4.9 3.4 700 8.5 02:47 C4.1 9176
20 2000-10-09 23:50 Halo/360 798 -9.8 2.2 180 3.4 23:22 C6.7 9182
21 2001-09-17 08:54 198/166 1009 -14.5 8.7 250 1.2 08:18 M1.5 9616
22 2001-10-19 01:27 Halo/360 558 -25.6 14.9 1500 4.2 00:47 X1.6 9661
23 2001-10-19 16:50 Halo/360 901 -0.7 22.6 2600 4.8 16:13 X1.6 9661
24 2002-08-16 12:30 Halo/360 1585 -67.1 56.8 1500 1.1 11:32 M5.2 10069
25 2003-10-28 11:30 Halo/360 2459 -105.2 125.0 3000 1.0 10:01 X17.2 10486
26 2003-10-29 20:54 Halo/360 2029 -146.5 104.2 6000 2.4 20:37 X10 10486



113

6.4 Summary

Two coronal arcade events are examined: (1) a PEA in AR 10720 and (2) an OA in AR

10898. As a result, it is found that the quasi-static inflation stage sustains for hours at a

speed of less than 5 km s−1, and it is temporally associated with helicity injection from the

active-region photosphere. In addition, an average injection rate of helicity during a few

days is also investigated for 28 active regions which produced 46 CMEs. The CMEs under

investigation are categorized into two different groups by the two characteristic evolution

patterns of helicity injection in their active regions: (1) a monotonically increasing pattern

with one sign of helicity (Group A, 30 CMEs in 23 active regions) and (2) a pattern of

significant helicity injection followed by its sign reversal (Group B, 16 CMEs in 5 active

regions). It is suspected that these two groups may have different preconditions and trigger

mechanisms. CMEs in Group A are associated with kink instability. CMEs in Group B are

involved with emergence of the helicity in the opposite sign into existing helicity system. A

fairly good correlation (CC=0.71) between the helicity injection and the speed of 30 CMEs

in Group A is found.

Table 6.3—Continued

No.
CME Helicity Flare AR

ta
PA/AW v a |<Ḣr>|a |∆Hr |

b ∆τ ts
c

GOES No.
(deg) (km s−1) (m s−2) (1070 Mx2 hr−1) (1040 Mx2) (day)

27 2004-07-25 14:54 Halo/360 1333 7.0 67.9 7500 4.6 14:19 M1.1 10652
28 2004-11-06 01:31 Halo/360 818 -81.5 83.3 2200 1.1 00:44 M5.9 10696
29 2004-11-07 16:54 Halo/360 1759 -19.7 64.0 4300 2.8 15:42 X2.0 10696
30 2006-07-04 21:30 199/102 308 1.6 10.0 600 2.5 19:06 C1.4 10898

a The absolute value of the average helicity injection rate during the period δτ
b The absolute value of helicity accumulation just during the period δτ
c Flare start time. ? indicates the time on the day prior to the date given in the first column of the table.



CHAPTER 7

SUMMARY OF THE DISSERTATION AND FUTURE WORK

This dissertation is focused on the magnetic helicity in solar active regions and its rela-

tionship with solar eruptions such as flares and CMEs. The injection of magnetic helicity

was investigated over a span of several days around the times of: (1) flares above GOES

B-class which occurred in a total of ∼400 active regions, (2) two active-region coronal

arcades which build up to CMEs, and (3) 46 CMEs in 28 active regions. There are four ma-

jor findings, as summarized below, that help to understand the long-term evolution of the

large-scale magnetic field topology and non-potentiality in active regions related to solar

eruptive events.

First, it is found that there are two characteristic phases in the long-term (a few days)

variation of magnetic helicity related to a potential precursor of solar eruptions. The major

flares and CMEs under investigation are always preceded by a significant magnetic helicity

injection of 1042–1043 Mx2 over a long period (0.5–a few days) in the active-region corona

through the photosphere. Furthermore, the magnetic helicity in the flare/CME-productive

active regions accumulates at a nearly constant rate and then its injection rate starts to

become slow (sometimes almost zero) or reverses its sign around the occurrence time of

the flares and CMEs.

Second, statistical studies of flare productivity and magnetic helicity injection shows

that the 24 hr average helicity injection rate in an active region has a good correlation with

the active region’s GOES soft X-ray peak flux in next 24 hr following the helicity measure-

ment. The larger flare index an active region has, the larger value of the helicity injection
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rate it presents. For a sub-sample of 91 large active regions in the range (3–5)×1022 Mx

of large unsigned magnetic flux, there is a difference in magnetic helicity injection rate

between flaring active regions and non-flaring active regions by a factor of 2. On the other

hand, 118 active regions in the range (2–10)×1040 Mx2 hr−1 of large helicity injection rate

do not show the significant difference in unsigned magnetic flux between the flaring and

non-flaring groups.

Third, the study of the coronal magnetic helicity in the active region NOAA 10930

indicates that the time profile of the coronal helicity roughly corresponds to that of the

helicity accumulation by the injection through the photospheric surface. First time the 3D

coronal helicity is calculated based on NLFF extrapolation. In addition, it is found that

there are two characteristic phases of day-to-day variation of helicity related to the X3.4

flare on 2006 December 13: a large increase of negative helicity, −3.2×1043 Mx2, in the

corona over ∼1.5 days followed by a noticeable injection of positive helicity though the

photospheric surface around the flaring magnetic polarity inversion line.

Finally, the study of two active-region coronal arcades shows that the gradual infla-

tion stage of the coronal arcades sustains for hours at a speed of less than 5 km/s, and it

is temporally associated with the steady injection phase of helicity from the active-region

photosphere. In addition, the speed of CMEs measured at the height of 1.5–2.2 R� is well

proportional to the average helicity injection rate in the CME-productive active regions

during the period of a few days before the CMEs.

Based on these results, characteristic variation patterns and injection rates of mag-

netic helicity in flare/CME-productive active regions can be used for the improvement of

solar eruption forecasting: (1) an early warning sign of flare/CME occurrence could be
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given by the presence of a phase of monotonically increasing helicity as it is found that all

the major flares and CMEs under investigation occur after significant helicity accumula-

tion; (2) an urgent warning sign of flare/CME occurrence could be also made when helicity

injection rate becomes very slow or the opposite sign of helicity starts to be injected after

the significant helicity accumulation in active regions; and (3) a potential strength of future

eruptions (i.e., the soft X-ray intensity of flares and the speed of CMEs) can be estimated

by the statistical studies of the correlation between the average helicity injection rate in

active regions and the strength of the previous eruptive events.

As a concluding remark to this dissertation, the future studies based on solid results

in this dissertation are outlined below:

• Extended study of the 3D coronal magnetic helicity in eruptive active regions should

be made using full-disk photospheric vector magnetograms with high spatial and

temporal resolution taken by the Helioseismic and Magnetic Imager (HMI) onboard

the SDO to understand the possible triggering mechanism of flare/CMEs;

• Magnetic helicity injected in the deepest layers of photosphere should be investigated

using infrared vector magnetograms taken by the Infra-Red Imaging vector Magne-

tograph (IRIM) which is being installed in the Coudé Lab of the New Solar Telescope

(NST)/BBSO;

• For more practical and advanced flare/CME forecasting, a way to better characterize

the time history of helicity injection as well as its spatial distribution inside active

regions needs to be developed;

• Magnetic helicity injection in active regions should be examined related to the very
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initial stage of CMEs including expanding active-region coronal loops that evolve to

produce CMEs (e.g., post-eruptive arcades, overlying arcades, and transequatorial

loops);

• Observational findings on this helicity study should be carefully checked with as-

pects shown in flare/CME numerical simulations to further understand the physics

underlying solar eruption phenomena.
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