

INTRODUCTION TO IMAGE PROCESSING Dan Seaton, Royal Observatory of Belgium

IDL> image = readfits(<filename>, header)

IMAGE SCALING

IMAGE SCALING

Linear

IDL> TVSCL, image

IDL> tv, bytscl(image, 10, 100)

IDL> tv, bytscl(image, 10, 100)

Cool Trick: To repeat the last line, use the 1 key

IMAGE SCALING

Square Root

IDL> sqrt_image = sqrt(image)
IDL> tv, bytscl(sqrt_image, 0, 15)

IMAGE SCALING Logarithmic

IDL> log_image = alog10(image)
IDL> tv, bytscl(log_image, -2, 5)

IMAGE SCALING Other Nonlinear Scaling

Try some other functions for scaling

IDL> scaled_image = image^2 IDL> tv, bytscl(scaled_image, 0, 1000)

Try some other functions for scaling

IDL> scaled_image = image^2 IDL> tv, bytscl(scaled_image, 0, 1000)

Question:

Why don't linear operations affect the appearance of the scaled image much?

SPATIAL FILTERS

UNFILTERED

IDL> tv, bytscl(sqrt(image), 0, 15)

MEDIAN FILTERED 3×3 Pixel Filter (Removes Noise)

IDL> filtered_image = median(image, 3)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

IDL> filtered_image = median(image, 3)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

Question:

What happens when you vary the 3 in the *median* command?

SMOOTHED 10×10 Pixel Boxcar (Low Frequencies)

IDL> filtered_image = smooth(image, 10)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

IDL> filtered_image = smooth(image, 10)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

Question:

How are smooth and median different?

HIGH FREQUENCIES (Normal Image) - (Smoothed Image)

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

Question:

Why can't we take the sqrt of this image?

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

Question:

How does the 10 in smooth affect the appearance of the image you display?

NEXT: UNSHARP MASKING Amplify High Frequencies

UNSHARP MASKED (High Frequencies)×Const. + (Normal Image)

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Question:

How does the 10 in smooth affect the appearance of the image you display?

Advanced Sharpening: Adjust the amount of sharpening by adding a *constant* in front of the high frequency components.

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + 0.5 * hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Advanced Sharpening: Adjust the amount of sharpening by adding a *constant* in front of the high frequency components.

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + 0.5 * hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Question:

How does the constant affect the result?

NEXT: RUNNING DIFFERENCE Highlights Dynamic Features

RUNNING DIFFERENCE (Current Frame) - (Previous Frame)

Get Two (or more) Sequential Images:

http://proba2.oma.be/swap/level1/2010/10/19/

IDL> image1 = readfits(<file1>, header1)
IDL> image2 = readfits(<file2>, header2)
IDL> diff_image = image2 - image1
IDL> tv, bytscl(diff_image, -10, 10)

Get Two (or more) Sequential Images:

http://proba2.oma.be/swap/level1/2010/10/19/

IDL> image1 = readfits(<file1>, header1)
IDL> image2 = readfits(<file2>, header2)
IDL> diff_image = image2 - image1
IDL> tv, bytscl(diff_image, -10, 10)

Question:

How does the result change when time between the two images increases?

ADVANCED TECHNIQUES

NEXT: SUMMING IMAGES Improves Signal to Noise

SUMMED IMAGES

5 Frames Added

WAVELET FILTER Multiscale Filter, Enhances Coherent Structures

WAVELET FILTER

Mierla, 2010

WAVELET FILTER

Inhester., 2007

3D RECONSTRUCTIONS

STEREO B

SWAP

STEREO A

3D RECONSTRUCTIONS Combining SWAP & STEREO Views

3D RECONSTRUCTIONS Combining SWAP & STEREO Views

RADIAL FILTERING

NOW IT'S YOUR TURN...

Task:

Using any of the techniques we've discussed produce a result that reveals something you can't see in the linearly scaled image. IDL> sqrt_image = sqrt(image)
IDL> log_image = alog10(imge)
IDL> filtered_image = median(image, 3)
IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> diff_image = image2 - image1

SUPER-ADVANCED DATA ANALYSIS & MANIPULATION http://grian.phy.tcd.ie/solarmonitor/objects/swap/