
INTRODUCTION TO IMAGE PROCESSING
Dan Seaton, Royal Observatory of Belgium

IDL> image = readfits(<filename>, header)

IMAGE SCALING

IMAGE SCALING
Linear

IDL> TVSCL, image

IDL> tv, bytscl(image, 10, 100)

IDL> tv, bytscl(image, 10, 100)

Scales image from data space (many bits)
to display space (8 bits)

IDL> tv, bytscl(image, 10, 100)

Cool Trick: To repeat the last line,
 use the ↑ key

IMAGE SCALING
Square Root

IDL> sqrt_image = sqrt(image)
IDL> tv, bytscl(sqrt_image, 0, 15)

IMAGE SCALING
Logarithmic

IDL> log_image = alog10(image)
IDL> tv, bytscl(log_image, -2, 5)

IMAGE SCALING
Other Nonlinear Scaling

IDL> scaled_image = image^2
IDL> tv, bytscl(scaled_image, 0, 1000)

Try some other functions for scaling

IDL> scaled_image = image^2
IDL> tv, bytscl(scaled_image, 0, 1000)

Try some other functions for scaling

Question:
Why don’t linear operations affect

the appearance of the scaled image much?

SPATIAL FILTERS

UNFILTERED

IDL> tv, bytscl(sqrt(image), 0, 15)

MEDIAN FILTERED
3×3 Pixel Filter (Removes Noise)

IDL> filtered_image = median(image, 3)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

IDL> filtered_image = median(image, 3)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

Question:
What happens when you vary the

3 in the median command?

SMOOTHED
10×10 Pixel Boxcar (Low Frequencies)

IDL> filtered_image = smooth(image, 10)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

IDL> filtered_image = smooth(image, 10)
IDL> tv, bytscl(sqrt(filtered_image), 0, 15)

Question:
How are smooth and median different?

HIGH FREQUENCIES
(Normal Image) - (Smoothed Image)

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

Question:
Why can’t we take the sqrt of this image?

IDL> hifq_image = image - smooth(image, 10)
IDL> tv, bytscl(hifq_image, -10, 10)

Question:
How does the 10 in smooth affect the
appearance of the image you display?

NEXT: UNSHARP MASKING
Amplify High Frequencies

UNSHARP MASKED
(High Frequencies)×Const. + (Normal Image)

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Question:
How does the 10 in smooth affect the
appearance of the image you display?

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + 0.5 * hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Advanced Sharpening:
Adjust the amount of sharpening
by adding a constant in front of
the high frequency components.

IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + 0.5 * hifq_image
IDL> tv, bytscl(sqrt(sharp_image), 0, 15)

Advanced Sharpening:
Adjust the amount of sharpening
by adding a constant in front of
the high frequency components.

Question:
How does the constant affect the result?

NEXT: RUNNING DIFFERENCE
Highlights Dynamic Features

RUNNING DIFFERENCE
(Current Frame) - (Previous Frame)

IDL> image1 = readfits(<file1>, header1)
IDL> image2 = readfits(<file2>, header2)
IDL> diff_image = image2 - image1
IDL> tv, bytscl(diff_image, -10, 10)

Get Two (or more) Sequential Images:

http://proba2.oma.be/swap/level1/2010/10/19/

IDL> image1 = readfits(<file1>, header1)
IDL> image2 = readfits(<file2>, header2)
IDL> diff_image = image2 - image1
IDL> tv, bytscl(diff_image, -10, 10)

Get Two (or more) Sequential Images:

http://proba2.oma.be/swap/level1/2010/10/19/

Question:
How does the result change when time between

the two images increases?

ADVANCED TECHNIQUES

NEXT: SUMMING IMAGES
Improves Signal to Noise

SUMMED IMAGES
5 Frames Added

In brief, the multiscale nature of coronal features is the reason
that standard image-processingmethods do notwork so efficiently
(Stenborg & Cobelli 2003, hereafter Paper I). Multiresolution
approaches, i.e., those techniques by which an image can be de-
composed into its different components at different scales (spa-
tial frequencies), are the proper next step. The wavelet transform
is a popular multiresolution approach because it presents consid-
erable advantages over traditional methods: it is able to discrim-
inate structures as a function of scale and shape, and thus is able
to detect, enhance, and filter small-scale structures embedded
within larger scale features.

2.1. Details of the New Cleaning Technique

Most books address the application of the wavelet transform
to signals in the time domain. In that case, a timescale decom-
position of the signal is obtained. We are interested in its appli-
cation to two-dimensional intensity maps. The extrapolation is
straightforward if one thinks of the time domain as the spatial
extent of the image. Therefore, the wavelet transform applied to
a 2D intensity map will result in a 2D space scale decomposition
of the image.

The wavelet transform analyzes signals by means of (1) di-
lation and compression, i.e., scaling, of an analyzing wavelet
(therefore, it adapts to frequency) and (2) translations, i.e., shift-
ing, of the analyzing wavelet over the signal domain. The result-
ing wavelet coefficients are a measure of the correlation between
the wavelet and a localized section of the signal. The continuous
wavelet transform (CWT) uses discretely sampled data (a con-
tinuous signal sampled in discrete picture elements or pixels).
The shifting process is a smooth operation across the length of
the sampled data, and the scaling can be defined from aminimum
(original signal scale) to a maximum chosen by the user, thus
giving a much finer resolution. The trade-off for this improved
resolution is the increased computational time and memory re-
quired to calculate the wavelet coefficients.

In particular, the 2D version of the so-called a-trous CWT
(Holschneider & Tchamitchian 1990; Shensa 1992) produces
a set of resolution-related views of the image, called wavelet
scales (or planes), plus a smoothed version of the original image.
The sum of all the wavelet scales plus the smoothed version of
the image returns the original image (hereafter we will call this
process ‘‘reconstruction’’). Moreover, since the wavelet trans-
form is not its own inverse, each scale can be considered as an
image and can be further decomposed (wavelet splitting). In
Paper I, we developed a contrast-enhancement technique based
on the wavelet-splitting algorithm to enhance the internal struc-
ture of CMEs observed by the LASCO coronagraphs on board
SOHO. In its simplest form, the enhancement algorithm works
as a sophisticated unsharp-masking filter, where different weight
is given to each wavelet scale before reconstruction. With this
approach, the wavelet-enhanced version of a given image is not
unique, by which we mean that different enhanced versions of
the image can be obtained by choosing different parameters for
the algorithm (which weights are assigned to each scale, the shape
and size of the kernel used, the direction in which the wavelet
transform is performed, etc.). The selection of a given set of pa-
rameters will depend on the aim of the study.
In this work, we extend the work initiated in Paper I to enhance

the images obtained with the EIT in the four available wavelengths
(171, 195, 284, and 304 8). The EIT images contain remnant
instrumental noise and stray light, even after being treated with
the standard reduction steps (dark current subtraction, exposure
time normalization, degrid, flat field, and degradation corrections).
To improve the visibility of the EUV structures, these problems
must be taken into account.
Our new algorithm is a two-step procedure that can be custom-

ized according to the aim of the study. The first step is designed
to increase the relative intensity of the high-frequency compo-
nents, wj, of the images via the 2D version of the a-trous and
weighted recomposition. We used a 2D B3-spline as kernel for

Fig. 1.—Comparison between a regularly processed EIT 195 8 image (left) and the same image processed with our wavelet technique (right) using the same color
scale. The wavelet-processed image looks sharper overall, and several structures such as the cavity (B) and postflare loops (C) are much clearer. Note the long loop (A),
which is invisible in the untreated image with this scaling (see corresponding online movie).

STENBORG, VOURLIDAS, & HOWARD1202 Vol. 674

WAVELET FILTER
Multiscale Filter, Enhances Coherent Structures

Stenborg et al., 2009

WAVELET FILTER

WAVELET FILTER
Mierla, 2010

WAVELET FILTER
Mierla, 2010

observer 1
observer 2

observer 1
observer 2

projection
surfaces

observer 1
observer 2

Figure 1: Backprojection to reconstruct point-like, curve-like and surface-like objects to demonstrate the
different conditions of solvability.

2

3D RECONSTRUCTIONS

Inhester., 2007

3D RECONSTRUCTIONS
Combining SWAP & STEREO Views

STEREO B SWAP STEREO A

3D RECONSTRUCTIONS
Combining SWAP & STEREO Views

RADIAL FILTERING

NOW IT’S YOUR TURN...

Task:
Using any of the techniques we’ve discussed

produce a result that reveals something
you can’t see in the linearly scaled image.

IDL> sqrt_image = sqrt(image)
IDL> log_image = alog10(imge)
IDL> filtered_image = median(image, 3)
IDL> hifq_image = image - smooth(image, 10)
IDL> sharp_image = image + hifq_image
IDL> diff_image = image2 - image1

SUPER-ADVANCED DATA
ANALYSIS & MANIPULATION

http://grian.phy.tcd.ie/solarmonitor/objects/swap/

