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ABSTRACT

We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the
emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential
arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the
corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting
coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope
to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate,
consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence
is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current
layer developing. Preferential heating of field lines going through this current layer may give rise to the observed
quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static
stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height
and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part
of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and
the flare ribbons at their footpoints.

Key words: magnetic fields – magnetohydrodynamics (MHD) – methods: numerical – Sun: activity – Sun: corona
– Sun: coronal mass ejections (CMEs)
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1. INTRODUCTION

It is now generally accepted that eruptive flares and coronal
mass ejections (CMEs) correspond to a sudden, explosive
release of the free magnetic energy stored in the previously
quasi-equilibrium, twisted/sheared coronal magnetic field (see,
e.g., review by Forbes et al. 2006). However, the detailed
magnetic field structure for the eruption precursors and the
physical causes for their sudden disruption remain fundamental
unanswered questions under investigation. A wide range of
CME models exists. Some models have considered sheared
core fields for CME precursor structures (e.g., Mikić & Linker
1994; Antiochos et al. 1999), and others have considered twisted
magnetic flux ropes containing helical field lines (e.g., Forbes
& Priest 1995; Lin et al. 1998; Amari et al. 2000; Low 2001;
Sturrock et al. 2001; Roussev et al. 2003; Török & Kliem 2005,
2007; Fan 2005; Fan & Gibson 2007; Isenberg & Forbes 2007).
With regard to the causes for the onset of eruption, some models
have considered ideal MHD instabilities and loss of equilibrium
(e.g., Forbes & Priest 1995; Lin et al. 1998; Sturrock et al.
2001; Roussev et al. 2003; Török & Kliem 2005, 2007; Fan
2005; Kliem & Török 2006; Fan & Gibson 2007; Isenberg &
Forbes 2007), and some of the others have considered a sudden
enhancement of the rate of magnetic reconnection (e.g., Mikić
& Linker 1994; Antiochos et al. 1999) as the trigger.

A coronal flux rope containing helical field lines twisting
about each other by close to or more than one wind between the
two ends anchored to the dense photosphere has been shown to
be an appealing candidate for the basic underlying magnetic field
structure for CME precursors (e.g., Titov & Demoulin 1999;
Low 2001; Gibson & Fan 2006). Such coronal flux ropes can
form as a result of active region flux emergence from the interior
(e.g., Lites et al. 1995; Okamoto et al. 2008). MHD simulations
in recent years suggest that a twisted subsurface flux tube does

not rise bodily into the corona as a whole due to the heavy plasma
that is trapped at the bottom concave portions of the helical field
lines (e.g., Fan 2001; Archontis et al. 2004; Manchester et al.
2004; Fan 2009; Archontis & Hood 2010). Shear and rotational
flows (corresponding to the observed sunspot rotations) on the
photosphere driven by the Lorentz force of the twisted flux tube
during flux emergence are the crucial means whereby twist is
transported from the interior into the solar corona, leading to the
formation and ascent of a coronal flux rope with a new axial field
line, and containing sigmoid-shaped dipped field lines twisting
about the axial field line (Manchester et al. 2004; Magara 2004,
2006; Archontis et al. 2009; Fan 2009; Archontis & Hood 2010).
For quiescent filaments, it has been shown that coronal flux ropes
can form as a result of photospheric supergranular diffusion in
decaying active regions (e.g., van Ballegooijen et al. 1998, 2000;
Mackay & van Ballegooijen 2001, 2005; Amari et al. 2003).

In this work, we focus on studying the conditions for the
eruption of a three-dimensional (3D) line-tied corona flux rope.
We carry out a sequence of simulations of the evolution of the
magnetic field in the corona, where the emergence of a twisted
flux tube is driven (kinematically) through the lower boundary
into a pre-existing coronal arcade and where the emergence is
stopped at variable times such that a different amount of twisted
flux is driven into the corona. In these simulations, the imposed
(kinematic) emergence of a twisted flux tube through the lower
boundary may not reflect what realistically happens, but is a
means to obtain a sequence of near-force-free coronal flux rope
equilibria with an increasing amount of locally detached, twisted
flux. In all of our simulated cases, a quasi-equilibrium of a
line-tied coronal flux rope confined by the external arcade field
is established immediately after the emergence is stopped and
we follow the subsequent evolution. We find that in all cases,
current layers of sigmoid morphology develop underlying the
flux ropes during the quasi-static stage immediately after the
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emergence is stopped. Magnetic reconnections in the current
layer are found to continue to add detached, twisted flux to the
flux rope during the initial quasi-static phase, even though the
total magnetic energy decreases slowly due to the reconnections
(and note that no more Poynting flux and helicity flux are
being transported through the lower boundary since the flux
emergence is stopped). This continued addition of the detached
flux allows the flux rope to continue to rise quasi-statically.
We find that a transition to dynamic eruption of the coronal
flux rope takes place when it exceeds a critical height, where
the corresponding potential field decreases with height at a
sufficiently steep rate, consistent with the onset of the torus
instability of the flux rope. This result indicates the fundamental
role played by the torus instability in triggering an ejective
eruption of a 3D line-tied coronal flux rope and suggests that
the “tether-cutting” reconnections (Moore et al. 2001) in the
pre-eruption sigmoid current layer during the initial quasi-
static phase are means to bring the flux rope to the critical
height. This is in agreement with the result of a previous,
substantially different numerical model of a coronal flux rope
driven by photospheric shear and flux cancellation by Aulanier
et al. (2010), where they concluded that photospheric flux-
cancellation and tether-cutting coronal reconnections do not
trigger CMEs, but are key mechanisms for flux ropes to build
up and to rise to the critical height where the torus instability
causes the eruption.

2. MODEL DESCRIPTION

For the simulations carried out in this study, we solve the
following isothermal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ

(
∂v
dt

+ (v · ∇)v
)

= − ∇p − ρ
GM�

r2
r̂

+
1

4π
(∇ × B) × B, (2)

∂B
∂t

= ∇ × (v × B), (3)

∇ · B = 0, (4)

p = a2
s ρ, (5)

in a spherical domain representing the solar corona, given by r ∈
[R�, 5.496 R�], θ ∈ [5π/12, 7π/12], φ ∈ [−π/9.6, π/9.6]
(see the black box in Figure 1). In the above equations, v,
B, ρ, p, as, G, M� denote, respectively, the velocity field,
the magnetic field, the density, the pressure, the isothermal
sound speed, the gravitational constant, and the mass of the
Sun. The temperature of the isothermal corona is assumed
to be T0 = 1 MK, and thus the isothermal sound speed
as = 128 km s−1. The domain is resolved by a grid of
432 × 192 × 240 which is uniform in θ and φ and non-
uniform in r: in the range from r = R� to r = 1.788 R�, the
grid size dr = 0.0027271 R� = 1.898 Mm, and dr increases
gradually for r > 1.788 R�, reaching about dr = 0.09316 R�
at the outer boundary. The above isothermal MHD equations are
discretized spatially in the spherical domain using a staggered
finite-difference scheme (Stone & Norman 1992a) and advanced
in time using an explicit, second-order accurate, two-step
predictor-corrector time stepping. A modified, second-order
accurate Lax-Friedrichs scheme as described in Rempel et al.

Figure 1. Initial configuration of the simulations (see the text for details).

(2009, see Equation (A3) in that paper) is used for evaluating
the fluxes in the continuity equation for density. Compared to
the standard second-order Lax-Friedrichs scheme, this scheme
significantly reduces numerical diffusivity in regions of smooth
variation, while retaining the same robustness in regions of
discontinuities (such as shocks). The standard second-order
Lax-Friedrichs scheme is used for evaluating the fluxes in the
momentum equation. A method of characteristics that is upwind
in the Alfvén waves (Stone & Norman 1992b) is used for
evaluating the v × B term in the induction equation, and the
constrained transport scheme is used to ensure ∇ · B = 0 to the
machine precision.

Initially, the domain is assumed to be in the state of a
hydrostatic isothermal atmosphere with the density and pressure
given by

ρ = ρ0 exp

(
− R�

Hp0

(
1 − R�

r

))
(6)

p = RT0ρ

μ
. (7)

The pressure scale height at the bottom of the domain,
which corresponds to the base of the corona, is Hp0 =
(RT0/μ)(GM�/R2

�)−1 = 60 Mm. The density at the base is
ρ0 = 8.365 × 10−16 g cm−3. The initial atmosphere contains
a pre-existing potential arcade field (see the red field lines in
Figure 1), whose normal field Br (0, θ, φ) at the lower boundary
(see the gray-scale image on the sphere in Figure 1) is given by

Br (0, θ, φ) = 1

R2� sin θ

dAs(θ )

dθ
, (8)
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where
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(9)
in which θa = 0.05, θt = 0.0432, θp = π/2 − θt − θa/2, and
B0 = 20 G is the peak field strength in the arcade field. Thus,
the peak Alfvén speed at the footpoint of the arcade field is
vA0 = B0/

√
4πρ0 = 1951 km s−1 which is more than a factor

of 10 greater than the isothermal sound speed as.
At the lower boundary of the domain at r = R�, we impose

(kinematically) the emergence of a twisted, arched flux tube
Btube by specifying at the r = R� boundary a time-dependent
transverse electric field E⊥|r=R� that corresponds to the upward
advection of the flux tube at a velocity v0:

E⊥|r=R� = r̂ ×
[(

−1

c
v0 × Btube(R�, θ, φ, t)

)
× r̂

]
. (10)

Here, the imposed velocity field on the lower boundary is a
constant v0 in the area where the emerging tube intersects the
lower boundary and zero in the rest of the area. The magnetic
field Btube used for specifying E⊥|r=R� is an axisymmetric torus
defined in its own local spherical polar coordinate system (r ′, θ ′,
φ′) whose origin is located at r = r0 = (r0, θ0, φ0) of the Sun’s
spherical coordinate system and whose polar axis is parallel to
the polar axis of the Sun’s spherical coordinate system:

Btube = ∇ ×
(

A(r ′, θ ′)
r ′ sin θ ′ φ̂′

)
+ Bφ′(r ′, θ ′)φ̂′, (11)

where

A(r ′, θ ′) = 1

2
qa2Bt exp

(
−� 2(r ′, θ ′)

a2

)
, (12)

Bφ′(r ′, θ ′) = aBt

r ′ sin θ ′ exp

(
−� 2(r ′, θ ′)

a2

)
. (13)

In the above equations, a is the minor radius of the torus,
� = (r ′2 + R′2 − 2r ′R′ sin θ ′)1/2 is the distance to the curved
axis of the torus, where R′ is the major radius of the torus, q
denotes the angular amount (in rad) of field line rotation about
the axis over a distance a along the axis, and Bta/R′ gives the
field strength at the curved axis of the torus. Here, we have
a = 0.04314 R�, R′ = 0.25 R�, q/a = −0.0166 rad Mm−1,
and Bta/R = 2.24B0. The magnetic field Btube is truncated to
zero outside of the flux surface whose distance to the torus axis
is � = a. For specifying the flux emergence via E⊥|r=R� given
by Equation (10), it is assumed that the torus’ center is initially
located at r0 = (r0 = 0.707 R�, θ0 = π/2, φ0 = 0) (thus the
torus is initially entirely below the surface) and it moves bodily
toward the lower boundary at a constant velocity v0 = v0r̂0,
with v0 = 0.001vA0, until a time tstp, when the emergence
is stopped and E⊥|r=R� is set to zero. Note that the coronal
domain and the size of the driving emerging torus we use in this
study are both about a factor of 2 smaller than those used in
Fan & Gibson (2007), leading to flux ropes in the corona being

more representative of the typical size of a coronal prominence/
filament.

In this paper, we have performed a sequence of simulations
where we vary the time tstp when the emergence is stopped,
so that a varying amount of the twisted flux of the torus is
transported into the corona, to examine the critical condition for
the onset of eruption of the coronal flux rope (see Table 1 for
the parameters used for the different simulations). We assume
that the density inside the torus entering the lower boundary is
ρ0 (same as the initial density at the bottom of the domain),
and thus, during the imposed flux emergence, an inflow of mass
flux ρ0v0r is also imposed at the lower boundary in the area
where the emerging tube intersects the boundary (outside of
this area on the lower boundary, the mass flux is zero). After the
emergence is stopped, there is zero mass flux flowing through
the lower boundary. Note that throughout the simulation, the
density inside the domain is evolved naturally by solving the
continuity equation, with an imposed lower boundary mass flux
distribution, which is zero after the emergence is stopped. We
assume perfectly conducting walls for the side boundaries of
the simulation domain. For the outer boundary, we use a simple
outward extrapolating boundary condition that allows plasma
and magnetic field to flow through.

In the remainder of the paper, quantities are expressed in
the following units unless otherwise specified: R� = 6.96 ×
1010 cm, ρ0 = 8.365 × 10−16 g cm−3, B0 = 20 G, vA0 =
B0/

√
4πρ0 = 1.951 × 108 cm s−1, and τA0 = R�/vA0 =

356.8 s, as units for length, density, magnetic field, velocity, and
time, respectively.

3. RESULTS

3.1. The Onset of Eruption

Figure 2 shows snapshots of the 3D coronal magnetic field
evolution from two simulations, cases s1 and e1 in Table 1, for
which the times tstp at which the flux emergence is stopped only
differ slightly (tstp = 89.0 for case s1 and tstp = 89.125 for case
e1). The relative magnetic helicity (Berger & Field 1984) of the
coronal magnetic field Hm reached at the time the emergence is
stopped (given in the third column in Table 1) is thus also very
close for the two cases (with the relative difference being only
about 5 × 10−4). Note that the relative magnetic helicity Hm is
computed in the same way as described in Fan & Gibson (2007,
see Equations (15), (A2), and (A3) in that paper). After the
flux emergence is stopped at tstp, the coronal flux ropes in both
cases are found to settle into a quasi-static rise. The evolution
of the coronal magnetic field in the two cases remains nearly
identical for most of this quasi-static rise (from t = 90 to about
t = 197). Then the flux rope in case e1 reaches a critical height,
after which it accelerates and results in a dynamic ejection of
the flux rope. In contrast, the quasi-static rise of the flux rope in
case s1 does not reach this critical height before it begins to fall
back down again quasi-statically. The side-by-side evolution of
the 3D coronal magnetic field of the two cases is also available
as an animation in the online version of the journal. It clearly
shows the nearly identical evolution for the two cases during the
emergence and the earlier quasi-static rise after the emergence is
stopped, and the later divergent behavior of the two coronal flux
ropes after the flux rope in case e1 has crossed the critical height.

Figure 3 shows the evolution of the rise velocity of the coronal
flux rope as a function of the height of the axial field line of the
flux rope for all of the simulations with varying tstp and Hm (see
Table 1). The axial field line we track to represent the center
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Figure 2. Side-by-side snapshots of the 3D coronal magnetic field evolution
from two simulations, case s1 (left column) and case e1 (right column).

(An animation of this figure is available in the online journal.)

Table 1
Summary of Simulations

Case Label tstp/τA0(tstp in s) Hm/Φ2 a Erupts?

e5 91.0 (32469 s) −0.20660 Yes
e4 90.0 (32112 s) −0.20442 Yes
e3 89.5 (31934 s) −0.20312 Yes
e2 89.25 (31844 s) −0.20246 Yes
e1 89.125 (31800 s) −0.20215 Yes
s1 89.0 (31755 s) −0.20206 No
s2 88.0 (31398 s) −0.19975 No

Note. a Total relative magnetic helicity normalized by the square of the total
flux of one polarity threading through the surface.

Figure 3. Evolution of the rise velocity of the flux rope as a function of the
height of the axial field line of the flux rope, for all of the simulations (cases
e5, e4, e3, e2, e1, s1, s2 in Table 1), each of which is represented by a different
colored curve. The relative magnetic helicity reached by the coronal magnetic
field at the time the emergence is stopped (normalized by the square of the total
signed flux through the lower boundary) is also listed for each case, the same as
that shown in the third column of Table 1.

of the flux rope does not remain the same field line (carrying
the same plasma as would be the case under ideal frozen-in
conditions) due to the small but finite numerical diffusion and
the long quasi-static evolution. The way we track the axial field
line is as follows. At tstp, we determine the footpoints of the axis
of the coronal flux rope as the intersections of the axis of the
(prescribed) subsurface rising torus with the lower boundary.
Then, (1) using one of the footpoints as the starting point, we
trace out a field line in the coronal domain. In ideal conditions,
this field line should go through the central vertical line of
the domain and land on the other footpoint. But due to finite
numerical diffusion, there is a slight deviation. (2) We then find
the maximum height of the traced field line and use the point with
that height on the central vertical line as the apex point to trace
out a new field line, which we consider as the “axial field line”
at the current time. This axial field line has two new footpoints
which differ slightly from the original footpoints. These new
footpoints of the current axial field line will then be used for
the next output time step as the starting points to repeat the
above procedure (steps (1) and (2)) again to determine the axial
field line for the next time step, and so on. In ideal conditions,
the footpoints for the axial field lines should remain fixed after
tstp. Due to the finite numerical diffusion in the simulation, the
footpoints of the axial field line determined through the above
procedure drift slightly on the lower boundary (by a few grid
points) during the course of the quasi-static rise of the flux rope.
On the other hand, the rise velocity of the flux rope in Figure 3 is
determined by tracking (approximately) a Lagrangian element
within the flux rope, and along the central vertical line of the
domain, using only the velocity fields at the output times (the
output interval is Δt = 1 R�/vA0). The basic conclusion we
draw from the results of Figure 3 is that there is a critical height
(at r ∼ 1.22 R�), if exceeded, the coronal flux rope becomes
eruptive. If the coronal flux rope is unable to reach this height,
it remains in a quasi-static state and eventually falls back down
quasi-statically. The two cases shown in Figure 2 correspond to
the light blue and black curves (cases s1 and e1). In Figure 4, we
further show the acceleration of the flux rope as a function of the
height of the axial field line of the flux rope for all the simulation
cases (with the color of the points indicating the cases in the
same way as that labeled for the curves in Figure 3). It shows
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Figure 4. Acceleration of the flux rope as a function of the height of the axial
field line of the flux rope, for all of the simulations, with the colors of the points
indicating the cases e5, e4, e3, e2, e1, s1, s2 in the same way as that labeled for
the curves in Figure 3.

that the transition from quasi-static evolution (with nearly zero
ar) to significant acceleration and dynamic eruption follows
approximately the same height dependence for all the cases,
even though their times for the onset of acceleration and eruption
are very different (see Figure 5(a)). For those cases where the
flux rope does not reach the critical height and eventually falls
back down (light and dark blue points in Figure 4), the flux rope
remains in a quasi-static state with nearly zero ar.

At the critical height for the onset of eruption, the correspond-
ing potential field Bp (with the same normal flux distribution on
the lower boundary) declines with height h above the surface
at a rate −d ln Bp/d ln h ∼ 1.74. The above behavior of the
eruption of the coronal flux ropes is consistent with the onset
of the torus instability. The torus instability is fundamentally
the expansion instability associated with a toroidal current ring
confined by an external poloidal magnetic field (e.g., Bateman
1978; Kliem & Török 2006). The ring or torus experiences an
outward “hoop force” due to the self-repulsion of the toroidal
current, which is effectively an outward magnetic pressure gra-
dient. This outward force is counteracted by an inward force
due to the external poloidal field acting on the toroidal current.
The expansion instability occurs if for a small increment δR of
the major radius of the torus, the decline of the hoop force is
slower than the decline of the confining force due to the external
field and thus δR is amplified. This happens if the strapping,
external field Bext declines with the major radius R sufficiently
rapidly, i.e., n ≡ −d ln Bext/d lnR > ncr, where ncr is a critical
value. Different values of ncr are obtained depending on how
the toroidal current I varies with R during the expansion. If one
assumes that the total number of field line turns in the torus
remains constant during the outward expansion, then ncr ≈ 2
is obtained (Titov & Demoulin 1999; Fan & Gibson 2007). If,
on the other hand, magnetic reconnection sets in at the rear
side of the expanding ring and lets the ring effectively “slide”
through the external poloidal field, such that the sum of the flux
induced by the toroidal current I and the flux of the fixed exter-
nal poloidal field enclosed in the (expanding) toroidal current
ring remains constant, then ncr ≈ 3/2 is obtained (Bateman
1978; Kliem & Török 2006). However, the above derivations of
ncr for the torus instability is based on a freely expanding, two-
dimensional axisymmetric toroidal current. The torus instability
associated with a 3D line-tied, arched coronal flux rope is far
more complicated. Isenberg & Forbes (2007) carried out a 3D

Figure 5. Temporal evolutions of (a) the rise velocity of the flux rope, (b) the free
magnetic energy, i.e., the difference between the magnetic energy Em and the
corresponding potential magnetic field energy Ep, and (c) the relative magnetic
helicity for all the cases (e5, e4, e3, e2, e1, s1, s2) with the different colored
curves corresponding to the different cases as indicated in Figure 3.

analytical calculation of the stability of a line-tied coronal flux
rope based on the equilibrium configuration described in Titov
& Demoulin (1999). In this case, the coronal magnetic field is
decomposed into a corresponding potential magnetic field Bp
with the same normal flux distribution on the lower boundary,
which remains fixed during eruption as a result of the line-tying
lower boundary condition, and a completely detached coronal
field generated by the flux rope’s current in the corona and its
image. Thus, here the hoop force that drives the flux rope out-
ward is the self-force due to the current circuit formed by the
flux rope current in the corona and its image, and the hoop force
is counteracted by the confining force due to the potential field
Bp acting on the coronal current. Therefore, crudely speaking,
the height h of the coronal flux rope is a measure of the size of
the current circuit and is analogous to the major radius R of the
toroidal current described above, and Bp is the strapping field
analogous to Bext described above. By considering specific per-
turbations, Isenberg & Forbes (2007) found that the force equi-
librium at the apex of the coronal flux rope is subject to the torus
instability when the flux rope becomes sufficiently long, i.e.,
when the height h of the flux rope apex exceeds a critical value.
For our set of simulations of the evolution of a 3D line-tied
coronal flux rope confined by an arcade field, we also find
that the condition for the onset of eruption is for the height
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Figure 6. Iso-surfaces (orange surfaces) of J/B = |∇ × B|/B, with the level
set at J/B = 1/l where l = 10 grid resolution elements, shown in relation to
the 3D magnetic field lines at four time instances for case e1.

h of the flux rope to exceed a critical value. We find that
ncr ≡ −d ln Bp/d ln h at the critical height is about 1.74. In
general, the critical height and the critical value ncr should de-
pend on the detailed normal flux distribution on the surface and
the profile of the coronal flux rope.

Figure 5 shows the temporal evolution of (a) the rise velocity
of the flux rope, (b) the free magnetic energy, and (c) the relative
magnetic helicity of the coronal magnetic field, for all the cases
(with the different colored curves corresponding to the different
cases as indicated in Figure 3) after the emergence is stopped.
We see that for the cases e5 through e1, the flux rope first
settles into a quasi-static rise after the emergence is stopped,
during which the magnetic energy decreases slowly (due to
reconnections in the current layers forming under the flux ropes
as is shown in the next section). Then the flux rope undergoes a

sudden acceleration and erupts at different times for the different
cases (see Figure 5(a)), which are determined by when the flux
rope reaches the critical height (see Figure 4). For cases s1 and
s2, the flux rope does not reach the critical height and remains
in a quasi-static state. When the flux rope undergoes eruption,
its free magnetic energy decreases significantly as shown in
Figure 5(b). The decrease of the free magnetic energy during
the eruption is much faster than the decrease of the magnetic
helicity (see Figure 5(c)). The overall gradual decrease of the
magnetic helicity after the emergence is stopped for all the cases
seen in Figure 5(c) is due to the presence of the finite numerical
diffusion of the magnetic field.

3.2. Current Sheets, Sigmoid Brightening, and Post-flare Loops

Figure 6 shows iso-surfaces (orange surfaces) of J/B =
|∇ × B|/B, outlining the region in the 3D magnetic field where
J/B is above the level of 1/l with l = 10 grid resolution
elements, at four time instances for the case e1. The iso-surfaces
outline the formation of thin current layers which may, in
realistic frozen-in evolution, correspond to sites of current sheet
formation, where significant magnetic reconnections can take
place. Figure 6 shows that current layers of sigmoid morphology,
curving around and between the two legs of the flux rope, form
in the quasi-static stage (see the first three panels which are
during the quasi-static rise of the flux rope), and the current layer
intensifies and extends upward during the onset of eruption (last
panel). Magnetic reconnections take place in the current layers
which cause the overall magnetic energy to decrease gradually
during this quasi-static stage. Although the overall magnetic
energy is declining, we find that the amount of the detached
(twisted) magnetic flux associated with the flux rope is actually
increasing during this quasi-static rise. We have computed this
flux as

Φdetached =
∫

(A − Ap) · dl, (14)

where

Ap(r, θ, φ) = ∇ ×
(

r̂
∫ ∞

r

ψ(r ′, θ, φ)dr ′
)

= − θ̂

r

∫ ∞

r

r ′Pφ(r ′, θ, φ)dr ′

+
φ̂

r

∫ ∞

r

r ′Pθ (r ′, θ, φ)dr ′ (15)

is the vector potential of the potential magnetic field P = −∇ψ
having the same normal flux distribution on the lower boundary,
and

A(r, θ, φ) = θ̂

r

(
−

∫ ∞

R�
r ′Pφ(r ′, θ, φ)dr ′ +

∫ r

R�
r ′Bφ(r ′, θ, φ)dr ′

)

+
φ̂

r

(∫ ∞

R�
r ′Pθ (r ′, θ, φ)dr ′ −

∫ r

R�
r ′Bθ (r ′, θ, φ)dr ′

)

(16)

is the vector potential of the coronal magnetic field B. Thus
A − Ap is the vector potential of the completely detached
magnetic field B − P in the coronal domain, and the above
integration in Equation (14) is carried out along the flux
rope’s axial field line, which is determined as described in
Section 3.1 (see the discussion about Figure 3). Note also that in
Equation (14) the integration only needs to be carried out along
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Figure 7. Detached flux Φdetached going under the axial field line of the flux
rope (see the text for details), as a function of the apex height of the axial field
line, for all the cases (e5, e4, e3, e2, e1, s1, s2) with the different colored curves
corresponding to the different cases as indicated in Figure 3.

the axial field line in the domain, and does not need to be carried
out along the line connecting the field line’s footpoints on the
lower boundary because A − Ap = 0 on the lower boundary.
Thus, Φdetached computed from Equation (14) is the detached
flux that threads through the area between the axial field line
and the lower boundary. Since this flux is detached from the
lower boundary (must close within the domain), it corresponds
to the flux twisting about the axial field line in the domain.
Figure 7 shows that in all the cases this detached flux twisting
about the axial field line grows during the quasi-static rise (from
r ∼ 1.15 to the critical height of r ∼ 1.22) of the flux rope
after the emergence is stopped. In other words, reconnections
during this stage add detached flux to the flux rope, allowing it
to continue to rise because this detached flux enclosed under the
curved axial field line and pressed against the lower boundary
is the source of the outward magnetic pressure gradient (or the
hoop force). For cases e1 through e5, the quasi-static rise of the
flux rope exceeds the critical height of r ∼ 1.22 and the flux
rope then undergoes dynamic eruption, moving outward rapidly.
On the other hand, for cases s1 and s2 (light blue and dark blue
curves in Figure 7) the growth of Φdetached reaches a maximum
before the flux rope gets to the critical height, and the flux rope
eventually falls back down quasi-statically and Φdetached also
decreases again.

Figure 8 traces out sampled field lines (pink field lines) that
go through the current layers curving around and between the
flux rope legs during the quasi-static rise. The current layers
correspond to those outlined by the J/B iso-surfaces in the
top three panels of Figure 6. Plasma along these field lines are
expected to be preferentially heated due to magnetic energy
dissipation in the current layers and may brighten up in X-ray,
giving rise to the observed quiescent X-ray sigmoids before
eruption (see the right column panels in Figure 8). This result
has been found in many previous investigations (e.g., Titov
& Demoulin 1999; Magara & Longcope 2001; Magara 2004;
Gibson & Fan 2006; Archontis et al. 2009; Fan 2009).

At the onset of eruption, the central current layer between the
two legs of the flux rope extends upward and the current density
intensifies (see the bottom panel of Figure 6). Figure 9 (and the
associated animation in the online version of the journal) shows
sampled field lines (red field lines) whose tops are in the most
intense part of the current layer (with J/B = 1/l and l < 4
grid resolution elements) at a set of successive time instances
during the eruption. These field lines correspond to the post-

Figure 8. Two perspective views (left and right columns) of sampled field
lines (pink field lines) going through the current layers outlined by the J/B

iso-surfaces (orange surfaces, same as those shown in the top three panels of
Figure 6), at three time instances during the quasi-static stage of case e1. The
pink field lines collectively show a sigmoid morphology as can be seen from
the top view in the right column.

flare loops which have just undergone reconnection in the most
intensely driven part of the current layer. They are expected
to be the most heated loops which indicate the morphology
of the resulting X-ray brightening, and their footpoints would
correspond to the locations of the chromospheric flare ribbons
(red points in the right column panels). We can see (from the
middle panels of Figure 9) that at the onset of eruption, the
post-flare loops initially constitute a narrow, sigmoid-shaped
bundle when viewed from the above, suggesting an initial
narrow sigmoid (transient) brightening, which later broadens
into a (curved) row of bright loops with increasing height. Such
compact sigmoid-to-arcade transition of X-ray brightening is
commonly observed during eruptive flares (e.g., Moore et al.
2001; Liu et al. 2007). When viewed from the side at certain
angles, the post-flare loops display a cusp (see the left column
panels in Figure 9). The evolution of the flare ribbons (see the
right column of Figure 9) shows that they are initially compact
sources on two sides of the polarity inversion line, and later they
lengthen (in both directions) into two curved ribbons (showing
sigmoid shape) and move apart from the polarity inversion line.

4. SUMMARY

We have carried out a sequence of MHD simulations of
the evolution of the magnetic field in the corona where the
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Figure 9. Two perspective views (left and middle columns) of sampled field lines (red field lines) whose tops are in the most intense part of the current layer (with
J/B = 1/l and l < 4 grid resolution elements), at three time instances during the eruption in case e1, indicating the morphology of the post-flare loops which have
just undergone reconnection in the most intensely driven part of the current layer and whose footpoints correspond to the location of the chromospheric flare ribbons
(red points in the right column panels). The gray-scale images in the left and middle column panels and the color images in the right column panels show the normal
magnetic field distribution Br on the lower boundary with white and yellow-red representing positive Br , and black and blue-black indicating negative Br .

(An animation of this figure is available in the online journal.)

emergence of a twisted magnetic flux tube is driven at the
lower boundary into a pre-existing coronal arcade field, and
the emergence is stopped at a variable time when a different
amount of the twisted flux of the flux tube has been driven into
the corona. The aim is to study the critical conditions for the
onset of dynamic eruption of the coronal magnetic field. For all
the simulation cases, a quasi-equilibrium line-tied coronal flux
rope confined by the external arcade field is established after
the emergence is stopped and the coronal flux rope is found
to subsequently undergo a phase of quasi-static rise. In some
of the cases (e1 through e5), the quasi-static rise is able to
bring the flux rope to a critical height, at which the flux rope
undergoes a sudden acceleration, and a dynamic eruption of
the flux rope ensues. While in the other cases (s1 and s2), the
flux rope does not reach the critical height, and it eventually
falls back down again, quasi-statically. The onset of significant
acceleration for the eruptive cases (e1 through e5) takes place

at various different times (Figure 5), all depending on when
the critical height is reached, i.e., it all follows approximately
a single height dependence (see Figure 4). We find that the
onset of eruption in these simulations is consistent with the
onset of the torus instability of a coronal flux rope (e.g., Kliem
& Török 2006; Titov & Demoulin 1999; Isenberg & Forbes
2007), which takes place when a critical height is reached
where the outward hoop force of the flux rope can no longer be
balanced by the confining force produced by the corresponding
potential field due to the sufficiently steep rate of decline of the
potential field. We find from these simulations that the decline
rate of the corresponding potential field at the critical height is
ncr = −d ln Bp/d ln h ∼ 1.74, which is within the range of ncr
derived for the torus instability of an axisymmetric current ring
(e.g., Bateman 1978; Kliem & Török 2006; Titov & Demoulin
1999; Fan & Gibson 2007). It is expected that the critical value
ncr for the onset of the torus instability for a 3D line-tied coronal
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flux rope (such as that in our simulations) should vary with
the detailed normal flux distribution on the line-tying lower
boundary as well as the detailed profile of the coronal flux rope.
Extensive 3D simulations for different field configurations are
needed to investigate how the critical height and the value ncr
vary.

We find that during the quasi-static rise phase after the
emergence is stopped, current layers of sigmoid morphology,
curving around and between the two legs of the coronal flux
rope, are formed. Reconnections in the current layers cause a
gradual decrease of the total magnetic energy. (Note that after
the emergence is stopped, there are no more Poynting flux and
magnetic helicity flux driven through the lower boundary into
the corona.) However, we also find that the reconnections during
this initial quasi-static phase add detached (twisted) flux to the
flux rope. This detached flux enclosed under the curved axial
field line and pressed against the lower boundary is what gives
rise to the outward magnetic pressure gradient (or the hoop
force). Thus, the addition of the detached flux to the flux rope
through reconnections contributes to its continued rise during
this initial quasi-static phase, and if the quasi-static rise exceeds
the critical height for the onset of the torus instability, then the
flux rope erupts dynamically. This result is consistent with the
conclusion drawn by a previous numerical study of a coronal
flux rope driven by photospheric shear and flux cancellation
by Aulanier et al. (2010), where they find that photospheric
flux cancellation and tether-cutting coronal reconnection are
not the cause of the eruption but are pre-eruption mechanisms
for the flux rope to grow and rise to the critical height at which
the torus instability causes the eruption. Here, our sequence of
MHD simulations of coronal flux ropes formed by variable flux
emergence clearly demonstrates that the critical condition for
the onset of dynamic eruption of the coronal flux rope is to reach
a critical height in the corona. We show that reconnections in
the current layers underlying the coronal flux ropes during the
initial quasi-static phases add detached flux to the coronal flux
ropes, and thus are means to allow the flux ropes to rise to the
critical height for the onset of the torus instability.

By tracing out sampled field lines that go through the sigmoid-
shaped current layers underlying the flux rope during the pre-
eruption quasi-static stage, we argue that these field lines, which
all show a sigmoid morphology, may correspond to the observed
quiescent X-ray sigmoid loops often seen in pre-eruption CME
source regions (e.g., Rust & Kumar 1996; Canfield et al. 1999;
Moore et al. 2001). Such an interpretation of the quiescent X-ray
sigmoids has been given in many previous models of coronal
flux ropes produced by flux emergence (e.g., Titov & Demoulin
1999; Magara & Longcope 2001; Magara 2004; Gibson et al.
2006; Archontis et al. 2009; Fan 2009). At the onset of eruption,
we find that the central current layer between the two legs of the
flux rope extends upward and the current density intensifies.
By identifying field lines corresponding to the most heated
post-flare loops which have just undergone reconnection in the
most intensely driven part of the current layer, we deduce the
morphology of the resulting X-ray brightening. We find that at
the onset of eruption, the post-flare loops initially form a narrow
sigmoid-shaped bundle when viewed from above, suggesting
a narrow, transient sigmoid brightening, which then broadens
into a (curved) row of loops, with increasing height. When
viewed from the side at certain angles, the post-flare loops
display a cusp. Based on the evolution of the footpoints of
the post-flare loops, we deduce that the chromospheric flare

ribbons evolve from initially a pair of compact sources into two
curved ribbons (showing sigmoid shapes), which move apart on
two sides of the polarity inversion line. The above qualitative
features with regard to the evolution of the X-ray brightening
and chromospheric flare ribbons deduced based on the evolution
of the coronal magnetic field are consistent with some of the
common features observed during eruptive flares taking place
in regions with pre-existing X-ray sigmoids.
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