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ABSTRACT

Context. Coronal mass ejections (CMEs) are enormous expulsions of magnetic flux and plasma from the solar corona into the inter-
planetary space. These phenomena release a huge amount of energy. It is generally accepted that both photospheric motions and the
emergence of new magnetic flux from below the photosphere can put stress on the system and eventually cause a loss of equilibrium
resulting in an eruption.
Aims. By means of numerical simulations we investigate both emergence of magnetic flux and shearing motions along the magnetic
inversion line as possible driver mechanisms for CMEs. The pre-eruptive region consists of three arcades with alternating magnetic
flux polarity, favouring the breakout mechanism.
Methods. The equations of ideal magnetohydrodynamics (MHD) were advanced in time by using a finite volume approach and solved
in spherical geometry. The simulation domain covers a meridional plane and reaches from the lower solar corona up to 30 R�. When
we applied time-dependent boundary conditions at the inner boundary, the central arcade of the multiflux system expands, leading
to the eventual eruption of the top of the helmet streamer. We compare the topological and dynamical evolution of the system when
driven by the different boundary conditions. The available free magnetic energy and the possible role of magnetic helicity in the onset
of the CME are investigated.
Results. In our simulation setup, both driving mechanisms result in a slow CME. Independent of the driving mechanism, the overall
evolution of the system is the same: the actual CME is the detatched helmet streamer. However, the evolution of the central arcade is
different in the two cases. The central arcade eventually becomes a flux rope in the shearing case, whereas in the flux emergence case
there is no formation of a flux rope. Furthermore, we conclude that magnetic helicity is not crucial to a solar eruption.
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1. Introduction

Solar phenomena, such as flares and coronal mass ejections
(CMEs), are often associated with sheared magnetic fields and
the emergence of new magnetic flux. Which of the two is more
critical is not yet clear (Liu & Hayashi 2006). Moreover, the
shear may already be present in the active region fields or can be
induced by photospheric motions. Observational evidence also
suggests that shearing motions along the neutral line seem to
play an important role in eruptive events. Large solar flares are
typically found to occur along the most highly sheared portions
of magnetic inversion lines. Yang et al. (2004) report shear flows
prior to an X10 flare, while Falconer (2001) show that CME pro-
ductivity is strongly correlated with magnetic shear.

On the other hand, Martin et al. (1982) studied the posi-
tions of 88 flares and concluded that at least two-thirds of these
flares were strictly related to the emergence of new magnetic
flux. Green et al. (2003) studied four young active regions and
find that the majority of CMEs and flares occurred in those re-
gions during or after new flux emergence. Zhang et al. (2008)
published a statistical study on 189 CME-source regions, 46 ac-
tive regions, and 15 newly emerging active regions. They find
that 60% of the CME-source regions show magnetic flux in-
crease during 12 h before the eruption and 40% show magnetic
flux decrease. Sterling et al. (2007) show that emergence of new

magnetic flux is intimately related to the rise of the filament and
the eruption of the CME. Observations also show that filament
eruptions can account for 75% of the observed CMEs, in which
a clear bipolar magnetic field associated to the filament is ob-
served. However, the origin and the magnetic topology of the
other 25% are not clear yet.

From a theoretical point of view, understanding the origin
of CMEs is an open challenge as well. Several papers review-
ing the different CME initiation theories and models are avail-
able in the literature (e.g. Klimchuk 2001; Zhang & Low 2005;
Forbes et al. 2006; Roussev & Sokolov 2006). One aspect seems
to have gained consensus: whichever CME model one uses, it
has to include (1) a way to build up free magnetic energy and (2)
some mechanism capable of converting magnetic energy into ki-
netic energy. According to Klimchuk (2001), the CME initia-
tion models can be characterised in directly driven and storage-
release models. In the first class of models, the magnetic energy
pumped into the system is continuously converted into energy
of the eruption. In the second class of models, the magnetic en-
ergy is first stored and then released. Magnetic energy can be
added to the coronal system by means of photospheric motions,
shearing, and/or twisting of the magnetic field. The emergence
of new magnetic flux can also pump magnetic energy into the
system, while flux cancellation processes lead, via reconnection,
to a sudden release of this energy.
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The role of photospheric motions has been investigated nu-
merically, for example, by van Ballegooijen & Martens (1989)
and Amari et al. (2003). In these works, the initially potential
magnetic field is first subjected to twisting motions, until a more
complex structure is reached. Afterwards, converging motions
towards the polarity inversion line lead to the formation and
destabilisation of the flux rope.

To investigate the dynamics of the coronal mass ejections on
2002 April 21 and August 24, Roussev et al. (2007) performed a
numerical simulation in which a reconstructed magnetic field is
made unstable by stretching the opposite polarity feet of a newly
emerged magnetic dipole. As a result, magnetic flux and helicity
are transferred from the expanding flux system, containing the
evolving dipole, to the nearby flux systems. Photospheric shear-
ing motions have generally been used as a trigger mechanism in
the breakout scenario (Antiochos et al. 1999). This CME initia-
tion model exploits the vulnerability of multipolar topologies to
rearrangements of the magnetic field’s connectivity, enabling the
eruption. The reconnection site is located above the central ar-
cade that reconnects with the overlying field to create a passage
for the CME. Subsequently, MacNeice et al. (2005) used more
sophisticated numerical techniques to investigate the behaviour
of CMEs in a breakout scenario and show that fast CMEs can be
produced.

A three-dimensional (3D) simulation of the breakout sce-
nario has recently been performed by Lynch et al. (2008) and
DeVore & Antiochos (2008). The role of flux cancellation mech-
anisms in a complex multiflux configuration, similar to that of
the breakout model, was studied by Amari et al. (2007). Their
results show similar features to those in earlier simulations for
a bipolar configuration (Amari et al. 2000). The presence of an
X-point above the twisted flux rope makes the expulsion of the
latter much easier thanks to the weaker confinement near this
point.

Archontis et al. (2007) demonstrate that during a multiple
flux emergence event from just below the photosphere into a
non-magnetised lower corona, a configuration typical of the
breakout model can be reached as a result of a diffusive re-
laxation phase. Rising tubes have also been studied by Fan
& Gibson (2004) showing that a sufficiently twisted flux tube
emerging in the solar atmosphere can become kink-unstable and
result in an eruption. Recently, Archontis & Török (2008) sim-
ulated the rise of a subphotospheric twisted flux tube into the
solar corona. The authors found that a flux rope is formed within
the expanding field because of shearing and reconnection of
field lines at low atmospheric heights. Depending on whether
the corona is magnetised or not, the expanding flux rope experi-
ences a full eruption or remains confined.

An alternative mechanism is the flux injection, or flux emer-
gence model as described by Chen & Shibata (2000). In this
model a pre-existing flux rope, in cartesian geometry, is made
unstable by the emergence of new magnetic flux of opposite po-
larity in the pre-existing coronal loops. This causes a decrease in
magnetic pressure and leads to the formation of a current sheet.
Dubey et al. (2006) extended this model including geometri-
cal effects and the gravitational stratification of the surrounding
medium. In a two dimensional spherical geometry, Ding & Hu
(2008) considered the problem of the equilibrium of a flux rope,
embedded in a background wind. Their simulations show that
the emergence of new magnetic flux in the background field and
far away from the flux rope itself eventually results in its desta-
bilisation. The catastrophic behaviour of the system depends on
the location and field orientation of the emerging arcade and on

whether magnetic reconnection across the newly formed current
sheet takes place.

The aim of this research is a numerical study of the effective-
ness of different scenarios for CME initiation in the framework
of the breakout model. We focus on the shearing of the mag-
netic field lines and emergence of new magnetic flux as mech-
anisms to energise the solar corona. The work presented here
builds on the results presented by van der Holst et al. (2007) and
Zuccarello et al. (2008). In a previous paper, we showed that
the emergence of new magnetic flux of the same sign as that of
the central arcade of a breakout configuration can cause CMEs.
Van der Holst et al. (2007) studied the role of foot point shear-
ing in the context of the breakout model superimposed on a solar
wind solution. Both studies show that the nature of the CME ob-
tained is significantly affected by the presence of the background
wind. We present the results of several simulations in which foot
point shearing and/or magnetic flux emergence are used as driv-
ing mechanisms. The simulations are performed in the physical
framework of ideal magnetohydrodynamics (MHD). A steady
state solution for the background wind as in van der Holst et al.
(2007) and Zuccarello et al. (2008) is reconstructed in a spheri-
cal, axial symmetric domain. We then objectively investigate the
topological and dynamical evolution of the system when it is
subjected to the two driving mechanisms. Since the only differ-
ence between the simulations is the CME initiation mechanism,
this allows a direct comparison of similarities and differences,
possibly observable, when the same system is subjected to dif-
ferent drivers.

The structure of the paper is as follows. A detailed descrip-
tion of the model, the numerical method, and the boundary con-
ditions are given in the next section. In Sect. 3, the morpholog-
ical and dynamical evolution of the system when it is driven by
foot point shearing and/or flux emergence is presented. In Sect. 4
we discuss the results, while conclusions are drawn in Sect. 5.

2. Description of the numerical model

The ideal MHD equations are solved in spherical, axisymmetric
(2.5D) geometry. The simulation domain covers the region from
the lower corona up to 30 R� and from the solar north to the so-
lar south pole, i.e. (r, θ) ∈ [1, 30] × [0, π]. The computational
mesh contains 484 × 205 cells for (r, θ), respectively, including
two ghost cells at each end. The grid points are non-uniformly
distributed with a finer mesh size around the equator and toward
the solar surface. The last-to-first grid cell ratio is 135 for the
radial direction, and this ratio is 0.3 for the equatorial to polar
cell size. The radial resolution on the solar surface is 1.5 Mm,
while the angular resolution at the equator is about 0.45◦. All
the simulations discussed in this paper were performed on ex-
actly the same grid, with the same numerical technique and using
the same initial conditions. A modified version of the versatile
advection code (VAC) (Tóth 1996) is employed to advance the
ideal MHD equations in time. The robust total variation dimin-
ishing (TVD) Lax-Friedrichs scheme is used with diffusive but
stable minmod slope limiter for second-order reconstructions.
Instead of storing the magnetic field components Br and Bθ on
a staggered mesh, we use the vector potential component Aφ in
the nodes. This approach guarantees a divergence-free solution
in the ghost cells as well.

2.1. Solar wind model

The ideal MHD equations were solved in a frame corotating with
the Sun, resulting in the inclusion of the centrifugal and Coriolis
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Table 1. Wind model parameters.

Parameter | π/2 − θ |< θ0 | π/2 − θ |> θ0
q0 106 erg g−1 s−1 K−1 106 erg g−1 s−1 K−1

T0 1.5 × 106 K 2.63 × 106 K

σ0 4.5 R� 4.5[2 − sin2(θ)/ sin2(θ0)] R�
γ 5/3 5/3

forces. The other source terms in our model are the gravitational
force and an additional heating/cooling term that mimics the ef-
fect of heat conduction and dissipation above the transition re-
gion to reproduce a realistic solar wind. For the latter, we used
a functional form closely resembling that of Groth et al. (2000)
and later described in more detail by Manchester et al. (2004),
namely

Q = ρq0(T0 − T ) exp

⎡⎢⎢⎢⎢⎣−(r − 1)2

σ2
0

⎤⎥⎥⎥⎥⎦ , (1)

where ρ is the density, T the temperature, q0 the volumetric heat-
ing amplitude, T0 the target temperature, and σ0 the heating
scale height. The values of these parameters as a function of a
critical angle are displayed in Table 1. For r < 7, this critical an-
gle is defined by sin2 θ0 = sin2(17.5◦)+ cos2(17.5◦)(r−1)/8. For
7 < r < 30, this becomes sin2 θ0 = sin2(61.5◦) + cos2(61.5◦)(r −
7)/40. Including an artificial heating/cooling term can, and most
likely will, quantitatively change the dynamics of the coronal
plasma in comparison with the real plasma evolution. The shape
and field line topology of the helmet streamer in particular de-
pends on the heating/cooling term. As discussed in van der Holst
et al. (2007), the reconnection sites depend on the heating mech-
anism, but the results do not qualitatively change by changing
the heating formulation.

The initial condition corresponds to the 1D hydrodynamic
solar wind solution of Parker (1958), combined with a dipole
field that has a strength of 2.2 G at the poles. An extra term is
added to the vector potential dipole field to obtain the multiflux
distribution, suitable for the breakout model to work. The addi-
tional term takes the form

Aφex = A0

cos2
(
πλ
2Λ

)
r4 sin θ

, (2)

where λ = π/2 − θ is the solar latitude, A0 = −0.72 G R5�, and
Λ = 0.5. This field is only added to the dipole field when |λ| < Λ.
At the solar base, the density is fixed to ρ = 1.67×10−16 g cm−3,
the temperature is T = 1.5×106 K, the Aφ component is set to the
previously stated total vector potential, and the boundary angular
velocity is set to zero in the corotating frame. All other values at
the solar base, and the outer boundary located at 30 R�, are ex-
trapolated. We let the system evolve to a steady state solution us-
ing these boundary conditions. The obtained solar wind consists
of the typical two types of solar wind. A region of slow wind is
located around the equator with radial outflow between 350 and
400 km s−1. The fast wind originates from the polar regions and
has a radial outflow of about 710 km s−1 (Fig. 1a). The three ar-
cades, which are formed inside the helmet streamer due to the
addition of the extra flux in the equatorial region, are shown
in Fig. 1b. The field orientation of the central arcade is oppo-
site to that of the overlying streamer and extends approximately
0.155 radians from the equator north- and southward.

(a) (b)

Fig. 1. Initial steady state configuration. a) The radial component of the
velocity field is plotted in colour scale. b) Magnetic field lines show-
ing the helmet streamer and the triple arcade structure suitable for the
breakout model.

2.2. Driving mechanisms

2.2.1. Foot point shearing

As a first driving mechanism of the system we impose a lo-
calised shear velocity at the solar base. The shear flow follows
the profile:

vφ = v0
(
λ2 − Δθ2

)2
sin λ sin[π(t − t0)/Δt], (3)

when the latitude λ = π/2− θ is in the range |λ| < Δθ, and vφ = 0
otherwise. The shear flow start time is t0 = 0, and the total shear
time, Δt, is approximately 24 h. After time Δt, we switch off
the shear velocity, leaving the central arcade in a sheared state.
The shear region is fixed to Δθ = 0.15 radians, so that we ap-
ply our shear profile just inside the central arcade. The maxi-
mum shear flow is defined by the value of the amplitude, v0,
and is 7.6 km s−1. We want to stress that this is the value of the
shear velocity at time Δt/2 and at a latitude of ±4◦, so the av-
erage shear velocity is much less than this value. This value is
still higher than what is observed at the photosphere. However,
the inner boundary of our simulation corresponds to the lower
corona. This choice for the shearing velocity is a compromise
between observational constraints and computational require-
ments. The maximum shear profile as function of the latitude
is plotted in Fig. 2. The effect of the shear flow is an increase
in the azimuthal component of the magnetic field. The shear-
ing motions are applied around the solar equator, such that they
are localised around the polarity inversion line of the central ar-
cade. The boundary conditions for all the other variables are left
unchanged.

2.2.2. Flux emergence

The second driving mechanism, flux emergence, is simulated by
applying a time-dependent boundary condition on the azimuthal
component of the vector potential, taking the form:

Aϕ(t, θ) |r=1= Aϕ(t = 0, θ) |r=1 +ce
(t − t0)
Δt

cos2
(
πλ

2Δθ

) 1
sin θ
, (4)

where Δθ delimits the flux emergence region, Δt = te− t0 = 24 h
is the time interval of flux emergence, and ce = −0.9 is chosen in
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Fig. 2. Shear velocity as a function of the latitude λ = π/2−θ. The shear
profile is shown at its maximum, viz. when t = Δt/2.

Fig. 3. Azimuthal component of the vector potential at the solar surface
(r = 1) as a function of θ at different instants in time. Solid line: the
initial state (t = 0); dotted line: t = 6 h; dashed line: t = 12 h; dotted-
dashed line: t = 24 h, this is when all the flux has emerged (Zuccarello
et al. 2008).

such a way that, after the time Δt, the flux of the active region is
doubled. All the other boundary conditions remain unchanged;
i.e., in this case we keep the azimuthal component of the veloc-
ity fixed to zero. Figure 3 shows the azimuthal component of
the vector potential at the solar surface as a function of the co-
latitude θ and of the time. The solid line represents the initial
steady-state magnetic field configuration. The multiflux distri-
bution is evident. The two maxima correspond to the polarity in-
version line of the side arcades, while the minimum corresponds
to the magnetic neutral line of the central arcade, whose field
goes in the opposite direction of both the lateral arcades and the
overlying field. The new emerging flux has the same polarity as
the pre-existing central arcade flux. The total amount of emerged
flux isΦE = 2π | ce | = 1.97×1022 Mx, while the flux emergence
rate is 4.58×1018 Mx s−1. The applied boundary condition on the
vector potential only modifies the radial magnetic field, Br, at the
inner boundary. After time te = 24 h, no more flux emerges and
the azimuthal component of the vector potential is kept constant
at the inner boundary to the value Aϕ(te, θ)|r=1.

After time Δt, in both cases, the system is left to evolve
until about 80–90 h of physical time. We would like to stress

that the angular extend over which the shearing motions or the
flux emergence are applied is the same in both simulations, viz.
2Δθ = 0.3 radians, and is embedded completely inside the inner
arcade.

3. Results

3.1. Topological evolution

After the steady state is reached, we impose the time-dependent
boundary conditions discussed in the previous section. The evo-
lution of the relative density for shearing and flux emergence
cases are shown in Figs. 4 and 5, respectively. Although the ini-
tial configuration and the time interval over which the time de-
pendent boundary conditions are applied are identical, the time
scales over which the system evolves differ. For this reason, we
do not compare the two driving mechanisms at equal time steps,
but at the moments where the morphological structure of the sys-
tem is similar.

Figure 4a shows a snapshot of the system at time 17h12min
where, as a consequence of the shearing motions, the balance
between magnetic pressure and magnetic tension is broken. As
a result, the central arcade starts to rise up. Figure 5a shows the
early stages of the evolution when the system is driven by the
emergence of new magnetic flux. In this case, the emerging ra-
dial component of the field (Zuccarello et al. 2008) will cause
the increase in the magnetic pressure, so that the central arcade
will expand in a similar way, but only after about 21 h. Although
we apply both shearing and flux emergence over the same region
inside the central arcade, the shape of the expanding arcade dif-
fers. The sheared arcade looks more rounded.

The shear velocity is a function of the latitude, so that field
lines with foot points at different latitudes will be sheared at
different velocities. This results in a non uniform stressing of
the field lines. The imbalance between the magnetic tension and
the magnetic pressure forces causes the flanks of the inner field
lines to be pinched together. On the other hand, in the case of
flux emergence, no additional azimuthal field is introduced in the
system. The magnetic pressure/tension balance will involve just
the poloidal component of the field, resulting in a more squared
shape of the expanding arcade.

Figures 6 and 7 show the evolution of the azimuthal compo-
nent of the current density, which is used as an indicator of the
reconnection processes in the system. As consequence of the ap-
plied boundary conditions, the central arcade starts rising in both
cases. As a result, the X-point is flattened and numerical recon-
nection sets in (Figs. 6a and 7a). This reconnection at the top of
the expanding central arcade, known in the literature as break-
out reconnection, removes the overlying field towards the side
arcades. This will facilitate the upward motion of the central ar-
cade. At a certain point in time, t � 19 h 50 min for the shearing
case and t � 22 h for the flux emergence case, the single break-
out reconnection site splits into two new sites at the flanks of the
central arcade, causing the complete detatchment of the helmet
streamer, resulting in the formation of a closed plasmoid, which
will become the erupted structure. This process is described in
detail by van der Holst et al. (2007). Figures 4b and 5b show the
density configuration of the system after t = 20 h 54 min for
the shearing case and after t = 24 h 35 min for the flux emer-
gence case. For both cases, this is the point at which the relative
density within the detatched helmet streamer shows a significant
increase.

For the shearing case, as the simulation is going on, the
flanks of the erupting arcade are pushed closer together, allowing
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(a) (b) (c) (d)

Fig. 4. Snapshots of the relative density and of the magnetic field lines for the foot point shearing case. Panel a) shows the expanding central arcade
(17h12min). Panel b) shows the increase of the density inside the helmet streamer and the further expansion of the central arcade (20h54min).
Panel c) shows the presence of the two flux ropes (22h7min), and panel d) shows the actual CME leaving the computational domain (39h20min).

(a) (b) (c) (d)

Fig. 5. Snapshots of the relative density and of the magnetic field lines for the flux emergence case. Panel a) shows the expanding central arcade
(19h40min). Panel b) shows the increase of the density inside the helmet streamer and the further expansion of the central arcade when all
the flux has emerged (24h35min). The panels c) and d) show the actual CME propagating (29h29min) and leaving the computational domain
(41h47min)(Zuccarello et al. 2008).

reconnection to set in and eventually disconnecting the sheared
arcade from the solar surface. This reconnection is visible in
Figs. 6b,c and is referred to in the literature as flare reconnection.
This dynamical process is the same as the breakout CME sce-
nario. However, the inclusion of a background wind and helmet
streamer makes the further evolution of the breakout CME dif-
ferent from the more idealised simulations of Antiochos et al.
(1999); MacNeice et al. (2005). Figure 4c shows a more com-
plex topology including two flux ropes. The leading flux rope,
i.e. the detatched helmet streamer, has a magnetic field vector
rotating in a clockwise direction. The magnetic field of the sec-
ond flux rope, i.e. the detatched expanding central arcade, has

a counter-clockwise orientation. At some point, the second flux
rope will start reconnecting with the sides of the elongated hel-
met streamer. From now on, the flux of the breakout CME is
partially transferred to the top of the helmet streamer and partly
to the overlying field. The flare reconnection responsible for the
formation of the second flux rope in the shearing case, is not ob-
served in the flux emergence case. The central arcade, as more
flux is added through the boundary, just continues to expand
transferring flux into the helmet streamer. When the CMEs leave
the computational domain, they look identical for both initiation
mechanisms (see Figs. 4d and 5d).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912541&pdf_id=4
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(a) (b) (c) (d)

Fig. 6. Snapshots of the azimuthal component of the current density and of the magnetic field lines for the foot point shearing case. Panels a) and
b) show the reconnection at the top of the expanding central arcade (12h17min and 17h12min, respectively) Panel c) shows the displacement of
the reconnection site from the top of the central arcade to its flanks (22h7min). Panel d) shows how the system again reaches the initial equilibrium
(46h42min).

(a) (b) (c) (d)

Fig. 7. Snapshots of the azimuthal component of the current density and of the magnetic field lines for the flux emergence case. Panels a) and b)
show the reconnection at the top of the expanding central arcade (7h22min and 19h40min, respectively). Panel c) shows the displacement of the
reconnection site from the top of the central arcade to its flanks (24h35min). Panel d) shows how the system reaches a new equilibrium (46h42min)
(Zuccarello et al. 2008).

The configuration of the system at the end of the simula-
tions is shown in Figs. 6d and 7d. After the time Δt = 24 h
both shearing motions and flux emergence are stopped. In the
shearing case, flare reconnection will enable the system to relax
towards a more potential state. Because of the axial symmetry,
this will result in minimising the azimuthal component of the
field. Finally, the initial configuration is restored. For the flux
emergence case, after the time interval Δt, the flux is kept con-
stant at a different value than it was initially. No flare reconnec-
tion is observed so that the system can only relax to a new MHD

equilibrium, in which the emerged additional flux in the central
lobe raises its field volume so far out, eventually forming its own
helmet streamer. The final configuration consists of three helmet
streamers symmetrical around the equator.

3.2. Dynamical evolution

It has been generally accepted that the main energy source
for CMEs is free magnetic energy. Regardless of the model or

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912541&pdf_id=6
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Fig. 8. Evolution in time of the free magnetic energy (solid line), the kinetic energy (dotted line), and the internal energy (dashed line) with respect
to the energy of the background wind. Panel a): shearing case. Panel b): flux emergence case.

triggering mechanism used, one should therefore be able to con-
vert free magnetic energy into the kinetic energy of the CME.
The evolution of the kinetic energy and the internal energy with
respect to the energy of the background wind, together with the
evolution of the free magnetic energy, are shown in Fig. 8.

As can be deduced from Fig. 8, the initial configuration is
non-potential, as in fact there is already a certain amount of free
magnetic energy stored in the system. In both cases, as a con-
sequence of the applied boundary conditions, an increase in the
free magnetic energy is seen. Although we applied the bound-
ary conditions over the same time interval, the maximum of free
magnetic energy is obtained at t = 18 h for the shearing case
and at t = 28 h for the flux emergence case. This difference oc-
curs mainly because the maximum in the shear profile is reached
at t = 12 h, so that most of the energy storage occurs within
the initial 2/3 of the total shearing time. For flux emergence,
the flux increases linearly with time over the time interval Δt.
In both cases, when a decrease in free magnetic energy is seen,
an increase in kinetic energy is observed. The maximum in ki-
netic energy corresponds to the time at which the CME starts to
leave the computational domain. The time interval between the
maximum in free magnetic energy and the maximum in kinetic
energy is 12 h in both cases. This means that the time it takes for
the CME to travel to the outer boundary of the computational
domain is the same for both initiation mechanisms.

Figure 8 also shows the evolution of the internal energy for
both cases. The evolution of this energy significantly differs de-
pending on the driving mechanism applied. The maximum in the
internal energy for the flux emergence case is six times higher
than the shearing case. The emergence of new magnetic flux,
more specifically the emergence of a radial field component, will
lift material from the solar surface upward and fills up the inner
arcade. This will increase the density in the central lobe with
the consequent increase in the plasma pressure and in the inter-
nal energy. However, the relative position of the maxima in the
internal energy with respect to the maxima in free magnetic en-
ergy and in kinetic energy is similar in both cases. After the free
magnetic energy is efficiently released in the system, and be-
fore the CME leaves the numerical domain (maximum in kinetic
energy), the conversion from internal energy into kinetic energy
continues. The energy in the system at the end of the simula-
tion is different for the two cases. After the shearing motions are
stopped, the system will eventually return to its initial state and
the energies return to their original values. In the flux emergence
case, however, the system will relax to a new equilibrium having

Fig. 9. Height-time (top panel) and velocity-height (bottom panel) plots
of the ejected helmet streamer for both the shearing case (∗-symbols)
and the flux emergence case (+-symbols).

higher energy than the initial configuration due to the modified
magnetic field at the boundary. The emerged poloidal flux re-
mains rooted to the base of the corona.

Figure 9 shows the height-time plot (top panel) and the
velocity-height plot (bottom panel) for both the shearing and
the flux emergence case. The two curves are very similar. In the
shearing case, the CME is launched, as already discussed, ear-
lier than in the flux emergence case. However, the propagation
of the CMEs through the numerical domain is identical from the
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http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912541&pdf_id=9


448 F. P. Zuccarello et al.: Modelling CME initiation: magnetic flux emergence vs. shearing motions

Fig. 10. Relative helicity evolution for the shearing case (panel (a)) and flux emergence case (panel (b)). For the flux emergence case, the fluctua-
tions are purely numerical, so the helicity remains physically zero at all time.

kinematic point of view. These simulations show that the evolu-
tion of the actual CME is not dependent on which mechanism
drives the eruption. In both simulations the terminal velocity of
the CME is about 380 km s−1. This value agrees with the median
speed of CMEs inferred from the observations (Zhang & Low
2005). These simulations also suggest that neither the breakout
model nor the flux emergence model could explain the minority
of fast (>1000 km s−1) CMEs, at least in the parametric regimes
explored.

3.3. Relative magnetic helicity

Berger & Field (1984) showed that the magnetic helicity of the
corona should be conserved during either an ideal or a resistive
evolution of the coronal magnetic field. Consequently, photo-
spheric motions will continuously inject helicity into the corona.
The only way this helicity can be released is by erupting helical
structures (Phillips et al. 2005). In their numerical simulations
Kusano et al. (2004) find that eruptions are triggered when re-
versed magnetic helicity is injected into the system. Jacobs et al.
(2006) used 2.5D ideal MHD simulations to investigate the ef-
fect of the background wind and the shear velocity on the initi-
ation and evolution of a CME. They conclude that the amount
of relative helicity present in the coronal volume plays an im-
portant role in the onset of the instability. Shiota et al. (2008)
investigated the quantitative relationship between the magnetic
flux of solar coronal arcades and the magnetic helicity injec-
tion, which is caused by shearing motions, in a spherical axi-
symmetrical domain. The authors find that the tearing mode pro-
duces plasmoids, whose elevation is almost proportional to the
total amount of magnetic helicity contained in the arcade, and it
is too slow to explain the CMEs’ triggering process. They con-
clude that it may be difficult to trigger a CME just by the axi-
symmetric shearing motions and that some other mechanisms
should be involved in the triggering process of a CME. Phillips
et al. (2005) investigated the role of magnetic helicity in the
framework of the breakout model. The authors compare the re-
sults of two simulations with slightly different shearing profiles,
such that there is injection of magnetic helicity in one case while
there is not in the other case. They demonstrate that, in their
simulations, a key role is played by the free magnetic energy
pumped in the system.

In this section, we discuss the role of relative helicity in our
simulations. The relative magnetic helicity, expressed in a gauge
invariant form, is defined as

Hrel =

∫
(A + Ap) · (B − Bp)dV, (5)

where B is the magnetic field, A the magnetic vector poten-
tial, Bp the potential magnetic field that, at the boundary, has
the same distribution as B, and finally, Ap is its corresponding
vector potential. Because of the chosen symmetry, according to
Antiochos et al. (2002) the previous expression simplifies to

Hrel = 2
∫

AφBφdV, (6)

where Aφ and Bφ are the azimuthal components of the magnetic
vector potential and of the magnetic field, respectively. This
quantity is computed in all the simulations performed. Figure 10
shows the evolution of the relative helicity for both shearing and
flux emergence case. As is evident in the latter case, the fluctua-
tions in the helicity are purely numerical, so the helicity during
the flux emergence experiment remains zero. On the other hand,
the applied shearing motions inject magnetic helicity through
the inner boundary during the time interval Δt. When the shear-
ing motions are switched off and while the CME is propagat-
ing through the numerical domain, the helicity shows a plateau.
Finally, when the eruption passes through the outer boundary, it
carries with it a significant amount of magnetic helicity. These
results show that (1) CMEs can carry away the magnetic helicity
built up as a consequence of photospheric motions; (2) the injec-
tion of helicity is not a necessary constraint in the initiation of
CMEs.

3.4. Emerging dipole

To further investigate the role of flux emergence and shearing
motions in the initiation of CMEs, we performed one more sim-
ulation that combines the two mechanisms. Both the shearing
motions and the emergence of new magnetic flux are still ap-
plied within the same region and time interval. By mixing the
two initiation mechanisms, we intended to simulate, within the
dimensionality limitations, the emergence of a new dipole within
the existing active region, causing the original magnetic field to
be stressed. During the emergence process, the shearing angle
is dynamically changing. The effect of the combination of both
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Fig. 11. Ratio of the azimuthal over the poloidal component of the field
as function of colatitude and time.

mechanisms on the azimuthal component of the magnetic field
at the inner boundary is plotted in Fig. 11. The ratio between the
azimuthal and poloidal components of the magnetic field over
the solar surface is plotted as a function of time. In the first half
of the emergence time, the ratio is increasing almost uniformly
within the central arcade. This ratio between the azimuthal and
the poloidal component of the magnetic field is a measure of the
obliqueness of the newly emerging field with respect to the orig-
inal unsheared central arcade. The inclination of the emerging
field varies with time, reaching a maximum angle of about 24◦
after 10 h. The decrease in the angle is then caused by both
the increase in the poloidal component and by the reconnection
process that essentially reduces the azimuthal component of the
field.

For this particular simulation, a maximum shearing veloc-
ity of vmax = 4.5 km s−1 was chosen and the total amount of
emerged flux (ce = −0.5) is ΦE = 1.1 × 1022 Mx. With those
values for the shear speed and emergence rate, no CME is ob-
tained when applying the initiation mechanisms separately. On
the other hand, their combination efficiently energises the mag-
netic field enabling the build-up of both magnetic energy and
helicity, eventually leading to an eruption.

Figure 12 shows the evolution of the system when both
mechanisms are at work. When the flux emergence and the
shearing motions are applied, the central arcade starts to expand.
Throughout this phase, the morphology of the central expanding
arcade is different from both the shearing and flux emergence
cases. It is squared at the top, similar to the flux emergence case,
but also introduces a significant pinching at the flanks. This re-
sults in a narrower and elongated shape of the central arcade.
As in the other simulations presented here, the expansion of the
central arcade leads to the detatchment of the helmet streamer
resulting in the CME. After about 30 h, the central arcade, as a
consequence of the pinching of the field lines due to the shearing
motions, detatches as well (see Fig. 12b). The height-time plot
for this simulation shows the same general behaviour as that of
the single cases, and the terminal velocity of the CME is still
about 380 km s−1. The evolution of the reconnection sites is very
similar to the one discussed for the shearing case, so we will
not repeat that discussion here. Figure 13 shows the evolution of
the energy with respect to the wind value. It is evident that the
general dynamics are similar: the stress applied at the boundary

(a) (b)

Fig. 12. Snapshots of the system. a) relative density (colour scale) and
magnetic field lines (white). b) azimuthal component of the current den-
sity showing the location of the flare reconnection.

Fig. 13. Energy evolutions with respect to the wind values for both
shearing and flux emergence. Solid line is the free magnetic energy,
dotted line is the kinetic energy, and dashed line is the internal energy.

results in the increase in the free magnetic energy, which is
then released and converted into kinetic energy. When the CME
leaves the computational domain, the system relaxes to a new
equilibrium having a slightly higher energy than the original sys-
tem.

4. Discussion

CMEs are essentially magnetic phenomena. To understand their
nature and to forecast CMEs, it is important to investigate the
characteristics of the solar magnetic field prior to the CME oc-
currence. In Sect. 3.3 we already demonstrated that the injection
of magnetic helicity into the system is not necessary for obtain-
ing an eruption. However, from observations it is known that
CMEs are often preceded by an evolution in the magnetic field
during which the helicity budget of the source region increases.

To further investigate the role of magnetic helicity in the
onset of CMEs, we performed several simulations like the one

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912541&pdf_id=11
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Fig. 14. Evolution of the relative helicity, expressed in non-dimensional
units, over time. The results for different simulations are shown. Only
shearing: vmax = 7.6 km s−1 (dotted line); shearing and flux emergence:
vmax = 7.6 km s−1 and ΦE = 1.97 × 1022 Mx (dash-dot), vmax =
6.1 km s−1 and ΦE = 8.7× 1021 Mx (dashes), and vmax = 4.5 km s−1 and
ΦE = 1.09× 1022 Mx (solid line). The ∗-signs represent the times of the
helmet streamer detatchment, while the �-signs indicate the moments
when flare reconnection sets in.

presented in Sect. 3.4: helicity is injected into the coronal vol-
ume due to shearing motions between the opposite polarity foot
points of a new emerging dipole. Apart from the simulation al-
ready presented in Sect. 3.4, two similar simulations were ac-
complished, namely combining the two simulations discussed
in Sect. 3 (vmax = 7.6 km s−1 and ΦE = 1.97 × 1022 Mx) and
one where we took the maximum shearing amplitude equal to
6.1 km s−1, and in total 8.8× 1021 Mx of flux emerged. The time
interval and the region over which the time dependent boundary
conditions were applied is still the same as in the simulations
discussed earlier, namely Δt = 24 h and Δθ = 0.15 radians.

When computing the amount of relative helicity in the sim-
ulation volume at the moment the helmet streamer detatches, it
turns out that it is different for all the simulations. This is not
surprising since the relative helicity is dependent on the mag-
netic field strength and this is different for each simulation, due
to the difference in the flux emergence rate. However, when ex-
pressing the relative helicity in the more natural units of H/Φ2,
where Φ is the total absolute magnetic flux, a threshold in the
helicity seems to exist.

Figure 14 shows the change over time of the relative helicity
in the coronal volume, expressed in the non-dimensional units
of H/Φ2. Expressing the helicity in natural units leads to a di-
rect measure of the stress of the field (Démoulin & Pariat 2009),
while observations show that H ∝ Φ1.9±0.1 (Jeong & Chae 2007;
LaBonte et al. 2007). The figure also shows the evolution of the
helicity for the simulation discussed in Sect. 3, in which only
shearing motions are applied. The detatchment of the helmet
streamer is indicated in the figure by the ∗-signs. The thresh-
old value in relative helicity for the formation of the CME seems
to be around H/Φ2 = 0.14. This value is in good agreement
with observations (Démoulin & Pariat (2009) and references
therein) and previous simulations of shearing motion along the
polarity inversion line for both young and old active regions
(Démoulin et al. 2002). In the simulations of an emerging flux
rope, Fan & Gibson (2007) find that independently of the in-
stability the system undergoes, the normalised relative helicity,
at the moment of eruption, is between 0.16−0.18. The authors

Fig. 15. Time evolution of the free magnetic energy as function of
time. The different curves represent different simulations. Only shear-
ing: vmax = 7.6 km s−1 (dotted line); only flux emergence: ΦE = 1.97 ×
1022 Mx (dashed line); shearing and flux emergence: vmax = 7.6 km s−1

and ΦE = 1.97 × 1022 Mx (long dashes), vmax = 6.1 km s−1 and
ΦE = 8.7 × 1021 Mx (dash-dotted line), and vmax = 4.5 km s−1 and
ΦE = 1.09× 1022 Mx (solid line). The ∗-signs represent the times of the
helmet streamer detatchment, while the +-signs indicate the moments
in which flare reconnection sets in.

interpret this as the result of a possible upper boundary in the
total relative helicity as suggested by Zhang et al. (2006). In this
context our results seem to confirm this conjecture further.

The �-signs in Fig. 14 mark the moment at which the flare
reconnection occurs. No threshold in helicity seems to exist for
the latter. When applying purely shearing motions with a maxi-
mum amplitude of 4.5 km s−1, the eruption fails. The central ar-
cade rises, but the overlying helmet streamer does not detatch.
Investigating the helicity budget, it turns out that the amount
of helicity in the coronal volume always stays well below the
threshold value. On the other hand, it cannot be stated that the
helicity threshold is the condicio sine qua non for obtaining a
CME, since the helicity is zero at all times for the flux emer-
gence case of Sect. 3 and we do observe an eruption.

Both helicity and free magnetic energy are relevant quanti-
ties during the evolution of the system. In fact, the former is a
measure of the stress of magnetic field due to plasma motions,
while the latter not only takes this into account, but is also the
amount of energy that can eventually drive the eruption.

Figure 15 shows the temporal evolution of the free mag-
netic energy for all the simulations discussed. The ∗-signs in-
dicate the time at which the helmet streamer detatches, while
the +-signs mark the time of the flare reconnection, if present.
The amount of free magnetic energy built up in the system is
different for every simulation and no clear threshold seems to
exist. The differences in free magnetic energy could be related
to the different morphology of the reconnection layers and to
the different values of the Alfvén speed, which will influence
the amount of energy stored before the breakout reconnection
effectively sets in. However, in the cases where no CME was ob-
tained (i.e. shearing amplitude of 4.5 km s−1 or flux emergence
of 1.1×1022 Mx), the amount of free magnetic energy was never
more than 1.8 × 1031 erg. This indicates that a minimum of en-
ergy is needed to be able to drive an eruption.

The duality between free magnetic energy and relative mag-
netic helicity accumulated in the system prior to the eruption
has been investigated by Zhang et al. (2006) using a series of
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power-law axisymmetric force-free fields. The authors demon-
strate that, in a closed domain, the magnetic helicity is a lower
boundary for the free magnetic energy. They also argue that this
result could be extended to the open corona. Their studies sug-
gest a limiting value for the magnetic helicty beyond which a
CME expulsion becomes unavoidable. Our simulations confirm
this hypothesis for a more general magnetic field. In the simula-
tions presented in this paper, at the moment of the eruption the
system has enough free magnetic energy to drive the CME, al-
though a threshold in this quantity is not clearly observed. The
question is whether overcoming the magnetic helicity thresh-
old without enough free magnetic energy would lead to a CME
(Zhang et al. 2006). This is still an open question.

The helmet streamer detatchment is essentially a conse-
quence of both the chosen magnetic topology and the expan-
sion of the central arcade. All simulations presented in this work
show the same evolution: the breakout reconnection transfers
flux from the overlying field towards the side arcades leading
to the detatchment of the helmet streamer. Up to this point, the
visual differences between energising the corona by shearing of
the magnetic foot points or by flux emergence are only related
to the shape of the magnetic structures. The main difference be-
tween the two cases is the amount of helicity injected into the
corona. The evolution of the two cases becomes different after
the helmet streamer is ejected. In the shearing case, flare recon-
nection is observed after the CME occurred, while this is not
present in the flux emergence case. These results demonstrate
that, already within the same model, CMEs may occur without
flares as observations suggest. In these simulations the flare re-
connection plays a secondary role: the nature of the CME is the
detatched helmet streamer, and it is not influenced by the flare re-
connection. The helmet streamer is evacuated by the solar wind
and becomes a slow CME, typically in observations referred to
as a blowout CME (Howard et al. 1985).

We are confident that including the background solar wind
together with the dimensionality limitation is the reason we do
not obtain a real breakout eruption. In fact, when the arcade starts
to expand, the breakout reconnection will detatch the helmet
streamer before the flare reconnection sets in. This will result
in the failure of the breakout process. Recently, van der Holst
et al. (2009) have investigated the relation between blowout and
breakout CMEs. The authors find that in a three-dimensional
corona, if the central expanding arcade rises fast enough, the
helmet streamer can swell up without detatching. The CME ob-
tained in this case has a maximum velocity of about 620 km s−1

and can be classified as breakout. The main acceleration phase
for this simulation is related to the flare reconnection. However,
when the central arcade does not expand fast enough, the break-
out reconnection detatches the helmet streamer, resulting in a
slow blowout CME.

Robbrecht et al. (2009) report on a front side, large-scale
CME of the blowout type without obvious counterparts in the
corona. This CME could be only detected thanks to the two
different viewpoints of the STEREO spacecraft. Their findings
suggest that streamer blowouts may be hard to observe face-
on and can be a possible explanation for “mystery” magnetic
storms (i.e. storms without a clear solar origin). The CME event
originated along a neutral line over the quiet Sun, and no large
filament or active region was present prior to this event. The
authors attribute the absence of any clear coronal signatures to
the unusual large height at which the CME lifted off (the overly-
ing loop system exceeds 1.4 R�). The observations of Robbrecht
et al. (2009) are consistent with our simulations and point to the
importance of blowout CMEs in space weather research.

Sheeley et al. (2007) have investigated the evolution of the
helmet streamer detatchment during the 2006 July 1–2 event.
Composite EIT/C2 (LASCO) running difference images show
the swelling of the helmet streamer that eventually detatches.
The images also show the formation of a V-shaped density lack
below the ejected material, indicative of a reconnection layer.
Moreover, during these observations, no new flux emergence
was observed. The authors propose a possible explanation for
the formation of this current layer. When the expanding loops
are carried away from the wind, their legs are stretched, pushed
together and eventually reconnect. The observations of Sheeley
et al. (2007) are consistent with our simulations when applying
shearing motions.

Sheeley & Wang (2007) studied about 160 streamer detatch-
ment events. In particular, the authors investigated those CMEs
that are related to the formation of what they call “in/out pairs”.
In the running difference images, the in/out pairs appear like an
inward and outward moving feature having leading-white and
trailing-black signatures, indicating plasma compression during,
for example, a loop expansion. This expansion will result in
the slow detatchment of the helmet streamer that will cause a
blowout CME. The authors argue that these pair formations in-
dicate reconnection occurring higher in the solar corona during
for example flux emergence events. No V-shaped density lack is
observed for these events. This behaviour is qualitatively similar
to that of our system when new flux emerges in the solar corona.
The authors conclude that in/out pairs and streamers blowout
CMEs seem to be part of the same broad class of streamer erup-
tion events. We share their point of view. In fact, as our simula-
tions suggest, depending on which is the major source of energy,
shearing motions or emergence of new magnetic flux, the same
magnetic configuration can undergo a different evolution.

5. Conclusions

In this paper we have presented the results of numerical simula-
tions, in which a reconstructed solar corona with a solar wind is
made unstable by two different driving mechanisms, viz. emer-
gence of new magnetic flux and shearing of the magnetic foot
points. A multiflux topology was reconstructed within the hel-
met streamer, suitable for the breakout model to work. Both the
shearing motions and emergence of new magnetic flux cause
the central arcade to expand and reconnection at the top to set
in. This breakout reconnection eventually detatches the helmet
streamer that is swept away along with the slow solar wind. In
the meantime, an increase in the density is observed within the
detatched helmet streamer. This helmet streamer detatchment
is the actual slow CME we obtain independently of the driv-
ing mechanism used. The role of the background wind is crucial
in our simulations. On one hand, without background wind the
emergence of new magnetic flux would not lead to any eruption.
On the other hand, we are confident that it plays a role in deter-
mining the failure of the breakout CME when shearing motions
are also considered.

After the eruption of the helmet streamer, the evolution of
the system is no longer similar for the two driver mechanisms.
For the shearing case, flare reconnection at legs of the central ex-
panding arcade will result in the formation of another flux rope
that will eventually merge with the detatched helmet streamer.
On the other hand, no flare reconnection is present for the flux
emergence case and the central arcade will expand and even-
tually relax to a new equilibrium. In fact, the emergence of
new poloidal magnetic field increases the separation between
the flanks of the central arcade, not allowing flare reconnection
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and eventually bringing the 2.5 D breakout model to rest. Also,
a simulation in which the emergence of new magnetic flux is
simultaneously subjected to shearing motions has been inves-
tigated. In this case the morphology of the central arcade was
found to show some characteristics linkable to the flux emer-
gence and some other related to the foot point shearing. From
height-time plots and energy-time plots, we demonstrated that
the general dynamical behaviour of the system is similar in all
cases. This again agrees with the fact that the actual CME is the
ejected helmet streamer and not the expanding central arcade.
Finally, we showed that helicity is not needed to obtain a solar
eruption. However, if helicity is present, a threshold seems to
exist for the onset of the CME.
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Amari, T., Luciani, J. F., Mikić, Z., & Linker, J. A. 2000, ApJ, 529, L49
Antiochos, S., DeVore, C., & Klimchuk, J. 1999, ApJ, 510, 485
Antiochos, S., Karpen, J., & DeVore, C. 2002, ApJ, 575, 578
Archontis, V., & Török, T. 2008, A&A, 492, L35
Archontis, V., Hood, A. W., & Brady, C. 2007, A&A, 466, 367
Berger, M. A., & Field, G. B. 1984, J. Fluid. Mech., 147, 133
Chen, P., & Shibata, K. 2000, ApJ, 545, 524
Démoulin, P., & Pariat, E. 2009, Adv. Space Res., 43, 1013
Démoulin, P., Mandrini, C. H., Van Driel-Gesztelyi, L., Lopez Fuentes, M. C.,

& Aulanier, G. 2002, Sol. Phys., 207, 87
DeVore, C. R., & Antiochos, S. K. 2008, ApJ, 680, 740
Ding, J. Y., & Hu, Y. Q. 2008, ApJ, 674, 554
Dubey, G., van der Holst, B., & Poedts, S. 2006, A&A, 27, 159

Falconer, D. A. 2001, J. Geophys. Res., 106, 25185
Fan, Y., & Gibson, S. E. 2004, ApJ, 609, 1123
Fan, Y., & Gibson, S. E. 2007, ApJ, 668, 1232
Forbes, T. G., Linker, J. A., Chen, J., et al. 2006, Space Sci. Rev., 123, 251
Green, L. M., Démoulin, P., Mandrini, C. H., & Van Driel-Gesztelyi, L. 2003,

Sol. Phys., 215, 307
Groth, C. P. T., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. 2000, J.

Geophys. Res, 105, 25053
Howard, R. A., Sheeley, Jr., N. R., Michels, D. J., & Koomen, M. J. 1985,

J. Geophys. Res., 90, 8173
Jacobs, C., Poedts, S., & van der Holst, B. 2006, A&A, 450, 793
Jeong, H., & Chae, J. 2007, ApJ, 671, 1022
Klimchuk, J. A. 2001, in Space Weather, ed. P. Song, H. J. Singer, & G. L. Siscoe

(AGU), Geophys. Monograph Ser., 125, 143
Kusano, K., Maeshiro, T., Yokoyama, T., & Sakurai, T. 2004, ApJ, 610, 537
LaBonte, B. J., Georgoulis, M. K., & Rust, D. M. 2007, ApJ, 671, 955
Liu, Y., & Hayashi, K. 2006, ApJ, 640, 1135
Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., & Zurbuchen,

T. H. 2008, ApJ, 683, 1192
MacNeice, P., Antiochos, S. K., Phillips, A., et al. 2005, ApJ, 614, 1028
Manchester, W., Gombosi, T., Roussev, I., et al. 2004, J. Geophys. Res., 109,

A01102
Martin, S. F., Dezso, L., Antalova, A., Kucera, A., & Harvey, K. L. 1982, Adv.

Space. Res., 2, 39
Parker, E. N. 1958, ApJ, 128, 664
Phillips, A. D., MacNeice, P. J., & Antiochos, S. K. 2005, ApJ, 624, L129
Robbrecht, E., Patsourakos, S., & Vourlidas, A. 2009, ApJ, 701, 283
Roussev, I. I., & Sokolov, I. V. 2006, in Solar Eruptions and Energetic Particles,

ed. N. Gopalswamy, R. Mewaldt, & J. Torsti (AGU), Geophys. Monograph
Series, 165, 89

Roussev, I. I., Lugaz, N., & Sokolov, I. V. 2007, ApJ, 668, L87
Sheeley, N. R., & Wang, Y.-M. 2007, ApJ, 655, 1142
Sheeley, N. R., Warren, H. P., & Wang, Y.-M. 2007, ApJ, 671, 926
Shiota, D., Kusano, K., Miyoshi, T., Nishikawa, N., & Shibata, K. 2008, J.

Geophys. Res. (Space Phys.), 113, 3
Sterling, A. C., Harra, L. K., & Moore, R. L. 2007, ApJ, 669, 1359
Tóth, G. 1996, Astrophys. Lett. & Comm., 34, 245
van Ballegooijen, A. A., & Martens, P. C. H. 1989, ApJ, 343, 971
van der Holst, B., Jacobs, C., & Poedts, S. 2007, ApJ, 671, L77
van der Holst, B., Manchester, W., Sokolov, I. V., et al. 2009, ApJ, 693, 1178
Yang, G., Xu, Y., Cao, W., et al. 2004, ApJ, 617, L151
Zhang, M., & Low, B. C. 2005, A&ARA, 43, 103
Zhang, M., Flyer, N., & Low, B. C. 2006, ApJ, 644, 575
Zhang, Y., Zhang, M., & Zhang, H. 2008, Sol. Phys., 250, 75
Zuccarello, F. P., Soenen, A., Poedts, S., Zuccarello, F., & Jacobs, C. 2008, ApJ,

689, L157


	Introduction
	Description of the numerical model
	Solar wind model
	Driving mechanisms
	Foot point shearing
	Flux emergence


	Results
	Topological evolution
	Dynamical evolution
	Relative magnetic helicity
	Emerging dipole

	Discussion
	Conclusions
	References

