B. J. THOMPSON¹ AND D. C. MYERS² ¹ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ² Adnet Systems, Rockville, MD, USA *Received 2004 June 15; accepted 2005 April 6; published 2009 July 23*

ABSTRACT

Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than 1 image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s⁻¹ with "typical" speeds of 200–400 km s⁻¹.

Key words: Sun: corona – Sun: UV radiation – waves

1. INTRODUCTION

Coronal "Extreme ultraviolet Imaging Telescope (EIT) wave" transients are typically observed as moving fronts of increased coronal EUV emission, traveling at the speeds of a few hundred km s⁻¹ (Dere et al. 1997; Thompson et al. 1998, 1999). They are usually faint (<20% increase in emission), are fairly large in scale (a few arcminutes in thickness, with angular spans ranging from a few arcminutes to over a solar radius), and can propagate across the entire observable disk of the Sun. These disturbances can be weak, down to the limit of observability (<10% of pre-event emission), or they can be extremely bright, reaching a threefold increase in emission (e.g., Thompson et al. 2000).

EIT waves have been observed to have a wide range of speeds, from less than 200 km s⁻¹ to inferred speeds near 1000 km s⁻¹. Because the typical EIT image cadence is 9 to 17 minutes, extremely fast or short-lived waves are difficult to detect with the EIT alone. Higher-cadence imagers such as Transition Region and Coronal Explorer (TRACE; Handy et al. 1999) are able to view the evolution much more clearly. Wills-Davey & Thompson (1999) describe an EIT wave with 1 minute TRACE observations revealing the EIT wave's magnetohydrodynamics (MHD)-wave-like propagation and refraction in relation to the magnetic structures (see also Wang 2000). Multiple views from STEREO SECCHI (Howard et al. 2008) have dramatically improved our ability to observe the phenomenon in a threedimensional context (Long et al. 2008; Ma et al. 2009). Wu et al. (2001) and Ofman & Thompson (2002), following the seminal work of Uchida (1968, 1970, 1974), have demonstrated that computational MHD simulations are capable of reproducing many of the physical properties of these phenomena.

It has been demonstrated (Thompson et al. 2000; Warmuth et al. 2001; Pohjolainen et al. 2001; Eto et al. 2002) that some (a small fraction) of the EIT waves can display accompanying H α transients, known as Moreton waves (Moreton 1960; Moreton & Ramsey 1960) or flare-associated waves (Smith & Harvey 1971). H α Moreton wave comparisons with EIT wave observations (Thompson et al. 2000; Warmuth et al. 2001, 2004a, 2004b; Pohjolainen et al. 2001; Vršnak et al. 2002) have led to a greater understanding of the development of large-scale waves on the

Sun. However, there is continued debate regarding the relationship between EIT waves and H α waves (Eto et al. 2002; Chen et al. 2002; Warmuth et al. 2004a, 2004b). Zhukov & Auchere (2004) investigated the relationship between EIT waves, EUV dimmings and coronal mass ejections (CMEs) using EIT data from multiple wavebands, in particular the 284 Å bandpass. Their close examination of two EIT wave events reveals that the waves may exhibit separate "eruptive" and "wave" modes, corresponding to different origins of the EUV brightening. The events listed in this catalog were all derived from the EIT 195 Å observations, and we only demarcate moving bright fronts and do not distinguish between the different proposed sources of increased emission.

This catalog consists of events determined by visual inspection of data, and not by an automated technique. Recent efforts at developing automated computational algorithms to detect EIT waves show promise. In particular, the Novel EIT Wave Machine Observing algorithm (Podladchikova & Berghmans 2005) is providing automated updates for the STEREO mission, and Wills-Davey (2006) has implemented a tracking technique that provides more comprehensive statistics for wave propagation studies. These algorithms offer three advantages: the results are consistent and reproducible, the search algorithm requires less labor than a manual search, and an automated search can produce results in near-real time. A direct comparison between this catalog and the results of automated search algorithms is not within the scope of this paper. However, this comparison would be necessary to truly determine the relative strengths and limitations of the different approaches. A recent review by Banerjee et al. (2007) discusses a number of detection approaches used in the study of "Atmospheric Magnetoseismology."

The EIT (Delaboudinière et al. 1995) is a normal-incidence, multilayer EUV telescope aboard the *SOHO* spacecraft. In its nominal observing mode, EIT obtains a series of full-frame (44.2 by 44.2 arcmin) images in a bandpass dominated by the emission lines of Fe XII at 192.3, 193.5, and 195.1 Å. The Fe XII emission lines exhibit a peak emission near 1.5 MK at coronal densities. (Note: other emission lines are capable of contributing to this bandpass. We are unable to separate these lines using the EIT data alone, but the majority of the typical coronal emission comes from the Fe XII lines. However, the

Figure 1. Two EIT 195 Å images taken on 1997 May 12 at 01:12 (left image) and 06:49 UT (right), before and after the EIT wave event.

wave fronts described in this catalog may not necessarily consist exclusively of changes in Fe XII emission; this may influence the interpretation of the wave properties but not the measurements in this catalog.) In this paper, we refer to the logarithmically scaled data from this bandpass as "195 Å images," and for most of 1997 and 1998 EIT was obtaining 195 Å half- or fullresolution images at cadences of 9–17 minutes. The pixel scale of full-resolution images is 2.59 arcsec, while half-resolution " 2×2 " binned images have a pixel scale of 5.18 arcsec. Both the full- and half-resolution images were examined in compiling this catalog.

The waves are most easily observed when the images have been enhanced digitally, or processed in a way that highlights the changing aspects of the corona. The three ways we viewed the wave events are: (1) logarithmically scaled images, (2) images with a pre-event "base" image subtracted from them, and (3) "running-difference" images. In general, it is difficult to distinguish EIT waves in movies of logarithmically scaled, raw (unsubtracted) images; the changes in the corona are generally too faint to detect without an enhancement technique. Base differencing, where the same pre-event image is subtracted from a series of images, is generally sufficient to detect well-defined events. However, the base-differencing technique has less utility when the time between the two images is greater than half an hour; other emission and structural changes in the corona can dominate. The faintest waves can only be detected via runningdifference images, where a movie is made of images from which the immediately preceding "raw" image has been subtracted. This technique emphasizes frame-to-frame images, making it easier to detect weak events.

A running-difference image can be viewed, in essence, as an approximation of the "time derivative" of the changing emission in the corona. An image pixel that has no or little change in emission between the two images will appear as a gray pixel after the difference has been scaled and represented in a black–gray–white color table, where the white end of the spectrum represents an increase in emission since the previous image, and the black end of the spectrum denotes a decrease. It is important to note the following caveat: running-difference images only represent the net change in emission. For example, if Region "A" is 10 times brighter than region "B", then region "A" only needs to show a 10% change in emission to register the same change as a doubling of the emission in region "B." Additionally, if region "C" shows an increase in emission, which later returns to its original value, the difference images will show a brightened area, followed by a darkened area in the next difference. Running-difference images can be deceptive, in that a darkened area merely indicate an area that has decreased in emission *since the previous image*. Therefore, darkened areas in running-difference images can be due to regions, which are "newly darkened" or which were "previously brightened."

Thompson et al. (1998) describe a propagating increase in EUV emission on 1997 May 12 that encircles a flaring active region. The speed of the transient was in excess of 200 km s⁻¹, and in less than an hour the wave was no longer visible, and had either faded or propagated beyond observability. Figure 1 compares EIT 195 Å images from 01:12 to 06:49 UT, before and after the observation of the 1997 May 12 wave transient. The active region, in the northern hemisphere, shows bright flare loops and the development of "dimming" areas (regions of coronal depletion associated with a coronal mass ejection) to the north and south of the region. The primary contribution of flux near 195 Å is from Fe XII, which represents a temperature near 1.5 MK at coronal densities. While the flare and the dimming regions are visible in these images, the wave's transit leaves no clear aftereffects in the surrounding corona.

Figure 2 shows a series of images from the 1997 May 12 event, as a series of running differences, where each image has the previous image digitally subtracted from it. The first (second) panel shows the difference between the first (second) two images in Figure 2, with white (black) areas representing an increase (decrease) in emission relative to the previous image. In this case, the wave front is easily observable as a disturbance propagating over nearly the whole solar disk. However, other forms of dynamic activity are visible in the same data. Based solely on the running-difference images, it is difficult to distinguish a propagating transient impulse from other evolving features, such as flares, dimming regions, and CMEs.

Because the EIT wave transients are frequently accompanied by other phenomena, it is important to examine both the unsubtracted 195 Å data and the running-difference images to determine the true locations of wave transients. In particular, the second panel in Figure 2 (05:05 UT) shows a bright circular front encircling a dark area. Examining the third panel (05:22 UT), it is clear that the location of the bright front at 05:05 UT appears

Figure 2. Series of running-difference images for an EIT wave on 1997 May 12. The first frame shows an image at 04:33 UT subtracted from an image at 04:48 UT. The other three image times are 05:05, 05:22 and 05:39 UT. Reprinted from Thompson et al. (1998) with permission from Geophysical Research Letters.

dark at 05:22 UT. However, this does not indicate that the region was bright at 05:05 and then was dark at 05:22; the region has simply returned to a value closer to its initial brightness. We use the running differences to make the location of the wave fronts more visible, but simultaneous examination of the undifferenced 195 Å images is required to determine whether we are tracking a transient bright front.

After viewing a series of undifferenced 195 Å images side-byside with the running-difference images, the authors derived the location of the wave front by visually identifying the leading edges of the transients. For example, in the second frame of Figure 2, the leading edge of the brightened disturbance is fairly easy to distinguish. However, by the third frame, the leading edge is less clear, and there is great ambiguity in the final frame. Because the wave fronts were determined in such an "organic" matter, we developed a catalog that reflects our certainty that the emission disturbances we describe are truly propagating wave transients.

2. CATALOG CONTENTS

The catalog consists of all of the observations in the EIT 195 Å images, from January 1996 through June 1998, in which we were able to find evidence of EIT wave-like phenomena. Because the observations are not sufficient to determine whether a transient meets certain physical criteria (such as clear evidence

of MHD wave propagation), we include all events that show some evidence, however small, of a propagating transient bright front.

Because EIT waves typically have low amplitudes (less than 20% increase in brightness), and because the background coronal emission can vary greatly in 20 minutes, it is difficult to detect EIT waves in images whose observation times are separated by more than 20 minutes. Therefore, EIT wave events in this catalog were observed in EIT 195 Å images with cadences typically between 9 and 17 minutes.

It is important to note that for every well-observed, highamplitude wave front generated in the corona, it is very likely that there were many more wave fronts with much smaller amplitudes. Taking this into consideration, it is unreasonable to assume that the EIT waves listed in this catalog, i.e., those that have sufficient amplitude to be observed in the EIT images, represent the entire population of these phenomena. It is more likely that the event amplitudes, if it were possible to perform accurate measurements, would obey a power law, and that for every clearly resolved observation there are an order of magnitude more observations that are much weaker.

Therefore, a lack of an entry in this catalog should not be construed as an absence of wave activity. In many cases, there was not a sufficient number EIT images to identify the presence of a wave. Additionally, there are undoubtedly many cases of

 Table 1

 Table Entries for the First Two Entries in the Wave Catalog, Corresponding to the Figures Shown in Figure 3

	Date	Quality	Source	Location	Previous Image	Image Time	Spee	ed	Direction of	
		Rating	N/S	E/W	Time		Plane of Sky	Projected	Meas.	
1	1997 Mar 25	Q0	2	-58	1:42:33	1:59:35			NW	
						2:17:28	63	88		
2	1997 Apr 1	Q1	-25	-16	5:02:43	5:21:13			NW	
	-					5:33:56	280	291		
						5:43:08	290	301		

Figure 3. First two entries in the wave catalog, corresponding to the entries shown in Table 1.

waves that are either too faint or too short-lived to have been identified in the data by the authors. As mentioned previously, EIT waves are most easily viewed in images obtained at a relatively fast cadence (around 10 minutes) against the "quiet Sun" (devoid of active regions, coronal holes, filament channels and other magnetic features).

During periods with high-cadence EIT images, and a background corona that is relatively quiet, it is highly unlikely that a clear "Q4- or Q5-quality" event would be missing from the catalog. However, there were many times when the observations were less than optimal, particularly when the image cadence was insufficient. There is only one entry in the catalog (1998 April 21) that spans more than an hour. Therefore, the detection of an EIT wave depends on the availability of multiple images over timescales of less than one hour.

Again, we stress that this catalog is not meant to be viewed as a complete listing on wave disturbances, but we aimed to make the listing as comprehensive as possible. Depending on the research performed with this catalog, a wave transient that is missing from the catalog may have no significance, or it may skew the conclusions of a study. We encourage the reader to take into consideration the wave observability factors when using the catalog for their own scientific studies.

The first two catalog entries are shown in Figure 3 and Table 1. A detailed description of each of the sections of the catalog follows.

2.1. Wave Diagrams

A summary image, or diagram, is included for each entry in the catalog. The summary images consist of a gray region identifying the source or associated active region (if any), and lines indicating the locations of the leading edge of the wave front at each of the image times. When the location of the leading edge of the wave front is relatively clear, we use a solid black line. When the location is difficult to resolve, or when it is not clear whether the change in emission is a continuation of a previous wave location, we indicate the uncertainty with a

Figure 4. Wave diagram for 1997 May 12 EIT wave catalog entry.

dashed line. Frequently, the wave diagrams will consist of solid lines early in the event, fading to a dashed line at later times. This distinction has been drawn to provide greater information about the events, and users of the catalog are encouraged to make note of the difference between the solid-lined "good" wave fronts, and the dashed-lined "sketchy" locations.

Figure 4 shows the catalog wave diagram for the 1997 May 12 EIT wave. The limb of the Sun is outlined in the figure, and the associated active region is shown by the outlined gray area in the center. The wave fronts that were visible in Figure 2 are drawn on the diagram, along with the image times at which each of the fronts were observed. A solid line indicates that the wave front had a clear boundary in brightness in the 4:48 and 5:05 UT images (panels 1 and 2 in Figure 2), while the dashed lines show the wave fronts which are not as clear (panels 3 and 4 in Figure 2).

2.2. Date

The "Date" column in the catalog gives the date of the first image showing the wave front. Please note that in cases where the pre-event image listed in the catalog occurs prior to 00:00 UT and the first image occurs after 00:00 UT, the date of the pre-event image is 1 day before the listed date.

2.3. Quality Rating

For the purpose of research that aims to study the association of other phenomena with EIT waves, the catalog must include all of the observed EIT wave events that are detectable in the available EIT data using our identification technique, even those which are so weak or so poorly observed that there is a low probability that the event is an actual wave. Still, many studies looking for direct links between EIT waves and associated phenomena would benefit from relying only on those events which are almost "definitely" waves. To resolve this issue, we have introduced a "Quality Rating," which we assign to each

Figure 5. Running-difference images of 1997 April 1 event. The first image is the difference between the images at 05:21 and 05:03 UT, while the second and third images were taken at 05:33 and 05:43 UT. Arrows indicate the locations of the brightenings. This is an example of a catalog entry with a quality rating of "Q1."

Figure 6. First panel shows an EIT image with a sharp bright front on 1997 September 24 at 02:49 UT. The three following panels show EIT images taken at 02:49, 03:03 and 03:23 UT with a pre-event image at 02:32 UT digitally subtracted from them. White arrows indicate the progression of the EIT wavefronts. Adapted from Thompson et al. (2000) with permission from Solar Physics.

event. The Quality Rating is an indicator of the observability of the wave in the data.

The Quality Rating is a subjective parameter, and it does not depend solely on wave amplitude or brightness. A wave may be difficult to distinguish for several reasons: (1) the wave is extremely faint (less than the typical 5%–10% change in emission), (2) the time between the images is larger than average, and the change in emission in the background corona has begun to "wash out" the change in emission due to the wave, (3) there are few (one or two) images showing the wave, and/or (4) the wave is propagating through a region of highly structured corona, where a faint change in emission is difficult to observe against the background features. Although high-amplitude, long-range waves propagating against a "quiet" background tend to be assigned a higher Quality Rating, the authors ultimately based the Quality Rating on the ease with which they were able to identify and outline a propagating wave front.

The Quality Rating Scale, described in Table 2, ranges from "Q0" to "Q5". These ratings can be used an indicator of our confidence that the transient event observed is "really" an EIT wave. As a rough guide, we have assigned a value to our degree of confidence for each Quality Rating, shown in the column labeled "Confidence Level." This value is *highly subjective*, indicating to the reader that we suspect, based on our experience in viewing EIT waves, that many of the "Q0" and "Q1" catalog entries are "false positives."

For example, cases with a rating of "Q0" typically were events that were extremely weak or had poor data coverage. It may be possible that a large number of the events that received lowquality ratings do not have the physical properties of an EIT wave at all and are transient brightenings due to an entirely different process. A "Q5" rating refers to those transients that

24-Sep-1997 Q5s

Figure 7. Wave diagram for the catalog entry for the 1997 September 24 event shown in Figure 6.

were well defined and clearly visible in the data. Again, it is important to note that this classification scheme is not a unique indicator of the intensity or speed of a wave. However, the visibility of a wave, and thus its quality rating, is likely to depend on these to at least some extent.

The 1997 May 12 wave event shown in Figures 1, 2, and 4 is an example of a catalog entry receiving a "Q5" rating. However, the majority of the entries receive a rating of Q3 or lower. Figure 5 shows the running-difference images corresponding to the wave diagram of the 1997 April 1 event shown in Figure 4. Arrows show the location of the alleged wave fronts, which are not nearly as clear as the wave fronts in Figure 2. This is an example of a "Q1" event. This event has been included in the catalog only because some studies may derive value from

THOMPSON & MYERS

Table 2

Wave Quality Ratings, Defined With Respect to The Wave's Observability in The EIT Data

Description/Criteria	Confidence	No. of	
	Level (%)	Events	
Very low reliability; either a bright front with no clear evidence of propagation, an	<10%	37	
extremely faint disturbance, or unusual structure. We suspect that this category			
includes a number of weak waves as well as non-related phenomena			
Low reliability; either a faint bright front with structure which may resemble those in	10%-25%	54	
the class 5 events, or some evidence of a propagating brightening			
Low reliability; faint to strong bright front or a brightening which is moving	25%-50%	39	
Intermediate reliability; Either multiple images of a propagating brightening, or a clear	50%-75%	25	
observation of a bright front which is very similar in structure to the class 5 waves			
High reliability; Multiple images of a propagating brightening, spatial correspondence	>75%	16	
from one image to the next, fairly high reliability			
Nearly definite reliability; Clear evidence of a propagating bright front in multiple	100%	5	
images, extent of the wave is far from other activity such that the transient increase in			
emission is able to be distinguished from other evolving features			
	Very low reliability; either a bright front with no clear evidence of propagation, an extremely faint disturbance, or unusual structure. We suspect that this category includes a number of weak waves as well as non-related phenomena Low reliability; either a faint bright front with structure which may resemble those in the class 5 events, or some evidence of a propagating brightening Low reliability; faint to strong bright front or a brightening which is moving Intermediate reliability; Either multiple images of a propagating brightening, or a clear observation of a bright front which is very similar in structure to the class 5 waves High reliability; Multiple images of a propagating brightening, spatial correspondence from one image to the next, fairly high reliability Nearly definite reliability; Clear evidence of a propagating bright front in multiple images, extent of the wave is far from other activity such that the transient increase in emission is able to be distinguished from other evolving features	Very low reliability; either a bright front with no clear evidence of propagation, an <10%	

Notes. The confidence level should be treated as a *rough* probability that the observation is a propagating MHD wave. The number of events listed in the last column indicate how many of the entries in the catalog (out of 176) are in each category.

knowing all possible events. However, it is clear that the events with higher Quality Ratings are much more suitable for detailed studies of wave propagation.

Most of the events in the catalog consist of diffuse brightenings of relatively low amplitude. However, a small fraction of the EIT waves (7%) had sharp, bright components associated with them. The majority of the observations of sharp waves, which are designated with an "S" in their rating (e.g., Q4 S), also exhibit the more typical diffuse brightenings in later images. An example of an EIT wave from 1997 September 24 that exhibits both diffuse and sharp features is shown in Figure 6and diagrammed in Figure 7, which are adapted from Thompson et al. (2000). The first panel shows an undifferenced image taken at 02:49 UT, showing a bright front or arch forming to the north of a flaring active region. The next three panels show EIT images from 02:49, 03:03, and 03:23 UT with a pre-event image from 02:32 UT digitally differenced from them. Arrows indicate the progress of the EIT wave front(s), though the wave front is faint by the third image and only an approximate location is indicated. There is no evidence of a sharp brightening in the 03:03 and 03:23 UT images, though the diffuse wave fronts continue to be visible.

We stress that these ratings are qualitative; although both authors independently reviewed the rating for each event, the quality number assigned to many events could vary by 1 or 2 between the authors. Researchers looking to perform correlative studies which rely on highly reliable or nearly unambiguous evidence of an EIT wave should restrict their studies to events in the catalog with a high-quality rating. We also encourage researchers who include all waves in the catalog in a study to examine their results relative to the quality rating. For example, Biesecker et al. (2002) compared the occurrence of flares and CMEs with many of the events in this catalog, and found that the correlation with both flares and CMEs increased when the sample was restricted only to the waves with a quality rating of 3 and above.

The authors did attempt to derive a less subjective means of classifying the wave observations. Clearly, the wave amplitude would be an optimal measure, but the increase in emission throughout the wave fronts is not at all homogeneous, and the amplitude decreases drastically with time. The attempts to evaluate a wave amplitude were strongly influenced by the timing of the EIT image and by the size of the area used to assess the wave amplitude. Additionally, this means of classifying the waves did not take into account the events of low-quality rating which we suspect may not be EIT waves, but merely show evidence of a transient brightening of some sort. Some brightenings at coronal hole boundaries or during filament eruptions can resemble a bright arc, and these events frequently display a significant increase in emission. Meanwhile, some of the "good" events have a low amplitude but are easily observable because the transient brightening occurs over a broad coherent scale. Therefore, we arrived at the qualitative means of rating the waves, which is influenced by any bias of the authors but also their experience, to allow the user of the catalog to have an assessment of the certainty that the event is truly a propagating wave. An example of a catalog entry with quality rating is given in Table 1, and the distribution of the ratings for the catalog is given in Table 2.

2.4. Source Location

The next column in the catalog gives the apparent source location of the EIT wave. Typically, the location listed is the heliographic latitude and longitude of an associated flaring/ erupting active region, as most of the wave events are observed propagating away from an active region. In the cases where the active region was part of an extended complex, the source location was identified as the location within the complex, which appeared to be exhibiting evolution associated with the flare. For the cases when the wave did not appear to originate at an active region, the source location listed is either an evolving solar feature or an apparently central origination point. A source longitude of 90 or -90 indicates that the apparent source of the wave was either at, above, or possibly behind the solar limb.

Note: the Source Location is only meant to be a rough indicator of the centroid of the wave disturbance, so that users of this catalog are able to determine which active region (if any) is associated with the EIT wave. None of the measurements listed in the catalog are based on the given Source Location field; the speed measurements lists in the catalog are based on locations of the wave fronts, and are not at all influenced by the Source Location.

2.5. Previous Image Time

Of course, a 10 minute average image cadence is not sufficient to determine the time at which the wave was first produced. We are only capable of determining the times during which the wave

22	1
23)]

 Table 3

 Full EIT Wave Catalog. The Wave Diagrams Corresponding to these Entries are Shown in Figures 8(a)–(o)

	Date	Quality Rating	Source Location		Previous Image Time	Image Time	Spee	ed	Direction of Measurement
			N/S	E/W			Plane-of-Sky	Projected	
1	1997 Mar 25	Q0	2	-58	1:42:33	1:59:35			NW
						2:17:28	63	88	
2	1997 Apr 1	Q1	-25	-16	5:02:43	5:21:13			NW
						5:33:56	280	291	
2	1007 Apr 1	01	25	16	8.01.51	5:43:08	290	301	NINI
3	1997 Apr 1	QI	-23	-10	8:01:51	8:14:29 8:23:40	271	272	IN VV
						8.36.51	271	272	
						8:55:21	128	154	
4	1997 Apr 1	00	-25	-15	10:23:51	10:42:24	120	101	NW
5	1997 Apr 1	Q4	-25	-11	13:45:17	13:58:25			NW
						14:16:51	231	236	
						14:29:30	138	157	
						14:38:44	262	359	
6	1997 Apr 2	Q0	-24	-6	0:44:13	0:53:31			NW
-	1007 4 0	00	01	,	5 22 00	1:06:45	209	216	CI I
7	1997 Apr 2	Q0	-21	6	5:22:09	5:35:21			SW
0	1997 Apr 2	QU ata Wavefront is w	-21	0 and uneven s	8:30:23	9:09:57	See note		5 W
	1	possible start	time is at	fter 09.09 UT	u 09.09,	9.28.08	See note		
9	1997 Apr 6	03	-29	-21	23:36:06	23:48:37			NW
		<u> </u>				23:57:47	184	188	
						0:10:55	122	123	
10	1997 Apr 7	Q5	-29	-20	13:52:49	14:05:23			NW
						14:14:34	339	344	
						14:27:45	203	223	
						14:46:12	152	203	
11	1997 Apr 9	Q2	-24	90	11:34:45	11:53:18	205	201	Ν
10	1007 Apr 12	01	20	50	22.05.52	12:05:48	295	396	N
12	1997 Apr 13	QI	-30	55	23:05:52	23:14:58	227	228	IN
						23:28:00	145	238 off limb	
13	1997 Apr 15	02	-23	-15	6:33:06	6:47:25	145	on mil	NW
15	1997 110	22	20	10	0.55.00	7:11:00	134	136	100
14	1997 Apr 15	Q3	-23	-13	10:11:28	10:34:21			Ν
	Ĩ					10:48:28	256	268	
15	1997 Apr 15	Q4	-23	-9	13:58:28	14:16:21			Ν
						14:34:45	261	264	
						14:49:28	289	334	
		0.1	10			15:16:06	76	127	
16	1997 Apr 16	QI	-19	-3	14:16:20	14:34:42			NE
17	1997 May 9	QI	20	-29	0:33:25	0:4/:41	50	61	3
						7.11.10	110	110	
18	1997 May 10	01	20	-13	13.42.22	13:59:01	110	110	SW
10	1997 11149 10	×-	20	10	10112122	14:17:57	183	184	5
19	1997 May 12	Q5	22	8	4:33:30	4:48:49			S
	·					5:05:49	244	247	
						5:22:49	235	262	
						5:39:47	157	225	
20	1997 May 15	Q1	22	55	18:26:49	18:43:39			S
~ .	100735 05	<u>.</u>				19:11:14	56	56	
21	1997 May 25	Q4	-26	-57	14:16:24	14:33:25	176	104	NW
		Note. Some initi	al activity	/ in 14:16 im	age	14:51:05	1/6	194	
22	1997 May 26	02	_27	-35	18:40:35	19:11.14	230	233	NW
تك تك	1777 Iviay 20	<u>2</u> 2	-21	55	10.70.33	19:24:41	185	190	14.44
23	1997 May 28	O 0	-28	-11	12:18:50	12:39:49	100		S
		Note. Some initi	al activity	y in 12:18 im	age	13:11:27	141	207	-
24	1997 Jun 9	Q1	-32	90	22:28:44	22:44:00			Ν
						23:05:59	205	off limb	
25	1997 Jun 14	Q0	19	-14	23:41:11	23:57:27			Ν
						0:14:25	48	52	
						0:34:04	29	32	

(Continued)

Date **Quality Rating** Source Previous Image Time Image Time Speed Direction of Measurement Location N/S E/W Plane-of-Sky Projected 26 1997 Jun 15 Q0 19 -143:59:27 4:15:29 NW 27 1997 Jun 18 Q1 29 -901:59:25 2:16:25 SW 2:33:58 116 183 28 1997 Jun 23 Q0 6:30:24 Ν -29-906:46:50 55 off limb 7:10:11 7:23:54 19 off limb 29 1997 Jun 25 Q2 18 23:47:41 0:07:55 SE 6 129 131 0:32:42 30 1997 Jun 25 00 18 14 14:02:41 14:22:42 SE 14:48:04 62 61 S 31 1997 Jun 29 Q2 18 85 23:38:13 23:55:13 229 0:12:14 off limb off limb 0:31:46 214 1997 Jul 4 2:51:20 3:08:55 32 **O**1 -30-13SE 3:24:18 100 209 11:54:39 NW 33 1997 Jul 8 Q0 -31 90 12:11:40 101 193 12:31:13 -3434 1997 Jul 30 **O**1 -36 17:03:38 17:45:06 SE 35 1997 Aug 1 Q1 26 20 23:40:39 23:57:39 Ν 36 1997 Aug 3 Q2 7 -62 15:57:29 16:16:33 SW 76 76 16:36:15 16:49:28 74 81 37 1997 Aug 5 Q1 -19 -59 20:50:55 21:08:16 Ν 21:29:11 86 off limb 21:50:12 67 off limb 38 1997 Aug 9 Q2 -3415:55:59 16:10:03 S -21193 16:27:00 53 16:45:00 72 off limb 39 1997 Aug 16 Q0 30 -45 18:25:22 18:38:51 W 276 386 18:53:52 22 19:11:22 26 40 1997 Aug 21 Q0 -38 90 0:46:18 1:09:13 Ν 1:22:57 321 off limb 0:46:01 41 1997 Aug 25 Q1 20 1:09:24 Ν -371:23:06 33 35 42 1997 Aug 25 01 20 30 11:55:23 12:11:53 SE 12:28:54 71 74 43 1997 Aug 26 Q0 17 -179:56:11 10:13:10 S 10:30:10 46 46 44 1997 Aug 29 Q2 20 6 4:33:03 4:57:57 NW 5:19:51 82 104 45 1997 Aug 29 Q0 -23-165:58:03 6:16:08 W 264 308 6:34:14 23:40:45 NE 46 1997 Aug 29 Q1 31 -1723:24:10 23:57:56 61 111 0:15:10 58 37 47 1997 Sep 8 Q0 -286 19:39:11 19:51:04 NW 69 78 20:05:59 20:27:45 132 160 48 1997 Sep 9 Q2 40 90 19:13:21 19:26:22 S 19:44:34 151 off limb 20:00:04 152 off limb 20:18:16 153 off limb 49 Q3 22 38 19:42:34 19:59:12 S 1997 Sep 13 20:16:29 47 48 39 43 20:35:58 50 Q2 21 85 11:24:10 11:41:10 S 1997 Sep 17 11:58:10 246 off limb 51 1997 Sep 19 Q1 -2190 9:24:51 9:41:51 Ν off limb 9:58:51 156 9:58:47 52 1997 Sep 20 90 9:41:46 Ν Q4 -1610:15:46 144 off limb 10:32:47 214 off limb 53 1997 Sep 22 Q0 -25-87 0:48:58 1:12:20 Ν

75

1997 Nov 2

Q1

-17

1

2:49:45

3:08:51

3:25:09

174

177

A CATALOG OF CORONAL "EIT WAVE" TRANSIENTS

	Date	Quality Rating	Sc Loc	ource cation	Previous Image Time	Image Time	Spee	d	Direction of Measurement
			N/S	E/W			Plane-of-Sky	Projected	
54	1997 Sep 23	Q2	-28	-25	21:23:53	21:40:46			Ν
						21:58:33	193	off limb	
						22:18:09	262	off limb	
55	1997 Sep 24	Q5 S	-28	-22	2:32:41	2:49:21			W
						3:03:41	298	410	
	1007.0 04	010	20	10	10.46.02	3:23:41	239	264	
56	1997 Sep 24	Q4 S	-29	-19	10:46:03	11:06:40	215	225	W
						11:29:45	315	325	
57	1007 Sep 24	04.8	28	13	18.30.31	11:59:29	211	231	NW
57	1997 Sep 24	Q+ 3	-28	-15	18.50.51	19.11.05	192	216	
58	1997 Sep 25	01	-28	-3	11.39.54	11:56:54	1)2	210	Ν
50	1997 660 25	QI	20	5	11.59.54	12.13.56	184	187	1
59	1997 Sep 28	04	-26	-90	14:00:33	14:10:45	101	107	Ν
• ·		C				14:19:38	363	off limb	
						14:29:49	163	off limb	
						14:41:35	506	off limb	
60	1997 Oct 1	Q1	22	-90	7:56:39	8:13:47			S
		-				8:30:53	84	off limb	
						8:47:40	261	off limb	
61	1997 Oct 1	Q2	23	-46	14:47:39	15:21:39			S
						15:38:38	56	off limb	
						15:56:08	36	off limb	
62	1997 Oct 1	Q1	22	-82	16:12:45	16:29:39			S
						16:43:06	131	off limb	
						17:12:24	87	off limb	
63	1997 Oct 3	Q3	15	-90	4:54:06	5:12:32			S
						5:26:04	49	off limb	
						5:35:14	206	off limb	
()	1007.0 / 2	02	22	()	11 54 17	5:54:13	121	off limb	C
04	1997 Oct 3	Q2	23	-04	11:54:17	12:14:30	109	100	3
65	1007 Oct 6	00	30	85	0.42.03	12.29.29	108	109	N
05	1997 0010	Qu	-39	85	9.42.03	10:07:37	160	off limb	IN
66	1997 Oct 9	03	24	-37	11:42:05	11:56:53	109		N
00	1))/ ((1)	Q.5	24	51	11.42.05	12.19.18	149	267	1
67	1997 Oct 10	01	24	-28	3:23:22	3:43:27		207	Е
		Č,				4:00:52	85	102	
68	1997 Oct 11	Q4	26	-12	8:30:39	8:47:41			S
						9:04:40	123	123	
						9:21:47	126	128	
69	1997 Oct 12	Q4	-29	90	5:36:09	5:54:53			Ν
						6:11:39	214	off limb	
						6:28:40	275	off limb	
						6:46:21	254	off limb	
70	1997 Oct 20	Q2	13	8	6:31:59	6:44:42			S
_ .	1008 5 5	<i>c</i> -		_		7:00:06	149	150	~
71	1997 Oct 21	Q5	17	-7	16:18:36	17:34:51	~~~		S
						17:45:14	312	322	
						17:57:54	60	67	
						18:12:47	211	262	
70	1007 Oct 22	04	26	6	12,14.20	18:23:10	1/3	293	c
12	1997 Oct 23	Q4	20	-0	15:14:58	13:29:28	16	16	3
						13:40:22	40 207	40 210	
						13.33.03	120	122	
						14.07.34	210	282	
73	1997 Oct 25	01	13	0	7.45.15	7.57.53	217	202	S
, 5	1777 000 25	×1	15	U	1.73.13	8:12:43	93	96	5
74	1997 Oct 29	01	34	8	7:21:53	7:38:48	25	20	Ν
		۲.	2.	0		7:55:49	46	64	- 1
						8.12.41	63	97	

Table 3 (Continued)

NE

THOMPSON & MYERS

Direction of Measurement Date **Quality Rating** Source Previous Image Time Image Time Speed Location N/S E/W Plane-of-Sky Projected 76 1997 Nov 3 Q0 -1816 4:31:54 5:02:19 Ν Note. Only one wavefront is shown in diagram; 5:19:04 See note wavefronts are very inhomogeneous 5:31:16 9:11:29 77 1997 Nov 3 -1818 8:46:59 Ν Q3 206 208 9:33:18 78 1997 Nov 3 Q3 -1818 10:21:14 10:31:45 Ν 252 258 10:48:46 79 1997 Nov 4 29 6:13:54 Q1 -185:57:01 Ν 6:30:55 211 277 80 1997 Nov 6 O2 S -1911:39:00 11:58:53 Е 61 445 12:12:56 482 12:46:49 114 115 Q1 9:34:17 9:50:53 S 81 1997 Nov 14 20 -8133 off limb 10:08:04 10:27:49 22 off limb 82 1997 Nov 15 Q1 22 -6122:33:56 S 23:02:51 off limb 23:19:53 150 83 1997 Nov 21 **O**0 22 13 6:05:16 6:17:19 NE 6:29:26 55 73 6:41:30 120 175 6:53:47 54 88 1997 Nov 22 O3 -199 11:42:15 12:08:58 Ν 84 85 1997 Nov 27 Q1 17 -65 13:11:10 13:36:58 Note. Only one wavefront is shown in diagram; 13:51:42 See note evolution is very inhomogeneous 14:03:36 86 1997 Nov 28 -20-1411:45:03 12:18:43 NE Q1 1997 Dec 12 17:05:53 87 Q2 -2314 16:50:53 NE 17:20:53 67 70 17:36:00 115 116 1997 Dec 12 O3 25 22:05:16 SW 88 54 22:21:53 1997 Dec 18 **O**1 18 -1412:21:20 12:37:46 89 S 12:50:21 99 99 90 1997 Dec 18 Q3 18 -1413:49:41 14:06:49 S Note. Only two wavefronts are shown in diagram; 14:19:26 222 211 third wavefront is very inhomogeneous 14:35:54 See note 14:48:30 91 1997 Dec 18 Q2 18 -9 21:02:09 21:15:33 S Note. Only one wavefront is shown in diagram; other 21:32:27 See note wavefronts are very inhomogeneous 21:45:48 92 1997 Dec 28 O3 21 14 5:15:24 5:22:58 S 5:33:27 223 230 5:44:20 149 150 1997 Dec 30 93 Q1 -28-275:36:30 5:44:01 Ν 5:54:29 115 125 -29-1919:47:27 19:58:23 SW 94 1997 Dec 30 **O**1 Note. Only two wavefronts are shown in diagram; 20:08:54 129 175 third wavefront is very inhomogeneous 20:16:56 See note 95 1998 Jan 3 -31 18:37:31 18:50:00 S Q1 35 19:07:08 72 80 19:30:05 27 47 96 1998 Jan 3 Q0 S 20 17 22:12:48 22:29:21 S 92 93 22:41:50 23:12:44 51 51 97 1998 Jan 6 29 32 0:33:58 0:51:17 SW Q1 1:14:10 15 15 37 39 1:33:10 98 1998 Jan 8 Q1 6:56:03 7:18:55 S -26-607:37:43 69 off limb 7:54:53 20 off limb Q2 -242:00:30 99 1998 Jan 12 -152:13:07 Ν Note. Only two wavefronts are shown in diagram; 2:29:36 201 203 third wavefront is very inhomogeneous 2:43:40 See note 100 1998 Jan 14 16 22:41:01 23:09:37 S Q2 -37

23:29:39

23:42:00

98

269

99

272

A CATALOG O

OF CORONAL	"EIT WAVE"	TRANSIENTS	

	Table 3 (Continued)											
	Date	Quality Rating	So Loc	ource cation	Previous Image Time	Image Time	Spee	d	Direction of Measurement			
			N/S	E/W			Plane-of-Sky	Projected				
101	1998 Jan 17	Q2	-24	62	22:33:08	22:49:05 23:03:28	125	off limb	S			
102	1998 Jan 19	01	34	90	6.29.34	23:34:09 6:43:40	116	off limb				
102	1008 Jap 20	03	22	00	10:22:54	7:18:49	105	off limb	S			
105	1998 Jali 20	Q3	23	-90	17.32.34	20:01:54	180	off limb	S			
104	1998 Jan 25	Q4	27	-29	14:18:55	14:31:26	152		S			
						14:47:53 15:01:57	150	240 158				
105	1998 Jan 25	Q0	-24	32	19:12:20	15:20:08 19:34:57	116	134	NW			
						19:55:24 20:13:18	41 167	52 187				
106	1998 Jan 25	Q1	26	-53	21:24:45	21:35:05 21:54:51	242	246	S			
107	1998 Jan 26	Q3	-25	42	22:21:21	22:12:58 22:33:08	147	211	Ν			
108	1998 Jan 27	03	16	-22	22:02:54	23:03:50 22:19:59	162	163	SW			
		e.				22:34:02 23:04:45	181 94	182 101				
109	1998 Jan 29	Q0	24	90	15:51:11	16:03:09	68	off limb	S			
110	1998 Feb 1	Q2	26	-90	18:54:01	19:22:41	51	off limb	S			
111	1998 Feb 2	Q4	26	-90	17:32:36	19:57:15 17:50:31	51		S			
						18:04:30 18:18:35	226 207	261 224				
112	1998 Feb 2	Q0	-31	-13	18:15:14	18:32:42 18:29:21	78	85	Ν			
113	1998 Feb 10	Q2	28	-23	6:20:24	18:43:21 6:34:02	43	45	W			
						6:51:03 7:14:12	56 97	70 133				
114	1998 Feb 18	01	-24	25	9:33:58	7:34:20 9:51:29	33	54	NW			
115	1998 Feb 22	01	-18	_11	2:01:37	10:03:12 2:18:24	400	654	N			
116	1008 Eab 23	02	18	00	12:17:49	2:32:27	71	71	s			
117	1000 E-h 27	Q2	-13	-90	0:10:12	12:49:03	237	off limb	S			
117	1998 Feb 27	QU	17	08	9:10:13	9:51:17	165	off limb	5			
118	1998 Feb 28	QI	-1/	-21	0:15:02	0:26:31 0:40:18	237	239	NW			
119	1998 Mar 4	Q1	-25	61	17:30:28	17:35:26 17:40:24	324	334	Ν			
						17:45:22 17:50:04	310 446	313 484				
120	1998 Mar 7	Q2	-24	-65	6:07:22	17:55:00 6:24:40	433	439	Ν			
121	1998 Mar 10	03	-26	-24	9:01:56	6:50:13 9:27:29	62	62	Ν			
		x -	~	-		9:54:16 10:12:26	96 167	105 215				
122	1998 Mar 11 1998 Mar 12	Q0	-17	50 2°	14:53:15	15:11:27	107	213	N			
123	1990 Mar 13	Q2	-24	20	20.51.07	18:36:01	166	171	IN			
124	1998 Mar 13	Qs	-16	90	20:51:06	21:01:41 21:12:45	305	345	1N			
						21:23:13 21:34:56	280 108	282 121				

THOMPSON & MYERS

					Table 3 (Continued))			
	Date Quality Rating		Sc Loc	ource cation	Previous Image Time	Image Time	Spee	ed.	Direction of Measurement
			N/S	E/W			Plane-of-Sky	Projected	
125	1998 Mar 15	Q0	-14	-2	19:11:17	19:34:13			N
	1000 16 07			50	0.00.05	19:47:43	367	425	<i></i>
126	1998 Mar 27	Q3	31	-50	0:33:05	0:44:01	210	010	S
						1:06:47	210	213	
127	1998 Apr 16	00	-23	-67	20:18:54	20:35:43	210	21)	NW
127	1990 110	Q ⁰	20	07	20.10.51	20:55:57	93	107	1000
						21:05:16	230	243	
						21:18:58	157	162	
128	1998 Apr 20	Q2	-27	90	9:22:59	9:34:47			Ν
						9:57:51	333	off limb	
129	1998 Apr 21	Q1	-17	55	6:56:34	7:14:00			Ν
						7:39:39	44	46	
						8:01:51	3/	39	
						8:20:41	200	210	
130	1998 Apr 22	02	24	-7	14:23:57	14:40:40	200	210	S
150	1990 1101 22	22	21	,	11.20.07	14:53:50	72	77	5
						15:09:36	68	70	
131	1998 Apr 23	Q4	-21	-90	5:33:35	5:49:21			NW
						6:01:36	293	402	
						6:19:33	195	218	
132	1998 Apr 25	Q2	-14	-90	0:53:20	1:19:41			Ν
122	1000 1 25	01	14	00	14.05.27	1:39:53	132	159	N 1337
155	1998 Apr 25	QI	-14	-90	14:05:27	14:20:00	208	122	IN W
13/	1998 Apr 25	02	-14	_76	18:03:31	14.31.39	208	433	NW
134	1770 Api 25	Q2	-14	-70	10.05.51	18:30:24	231	240	
135	1998 Apr 27	O3	-22	-47	7:52:34	8:06:00	201	2.0	NW
155	I I	C.				8:21:01	108	110	
						8:36:00	95	96	
						8:51:00	237	260	
136	1998 Apr 27	Q4	-20	-48	8:51:00	9:05:59			NW
						9:21:04	360	367	
127	1008 4 20	02	17	24	5.00.45	9:35:52	280	289	N
137	1998 Apr 29	Qs	-1/	-24	5:09:45	5:22:09	100	215	N
						5.52.25	180	240	
138	1998 Apr 29	01	-17	-22	8:03:47	8:18:47	100	210	NW
	I I	Č,				8:34:02	176	178	
139	1998 Apr 29	Q5	-17	-15	16:02:56	16:18:48			NW
						16:34:20	194	199	
						16:51:55	235	282	
						17:03:41	160	266	
140	1008 Ame 20	01	15	o	21.26.25	17:18:48	74	182	NIC
140	1998 Apr 50	QI	-15	-8	21:30:23	21:52:55	250	307	INE
141	1998 May 1	00	-17	3	17:26:57	17:44:03	237	507	Ν
	1990 19149 1	×°	17	5	11120101	17:59:32	94	95	- •
						18:17:53	114	118	
142	1998 May 1	Q3	-19	3	22:22:53	22:39:54			Ν
						22:56:56	220	225	
						23:32:55	166	188	
143	1998 May 2	Q1	-10	12	4:04:35	4:18:55	82	0.4	Ν
144	1009 Mar 2	02	10	7	1.52.20	4:35:59	82	84	NE
144	1990 May 2	Q2	-19	-/	4.55.59	5.07.32	175	180	INE
145	1998 May 2	00	-13	12	7:56:07	8:07:53	175	100	Ν
		X [*]	10		,,	8:20:30	175	176	••
						8:34:33	101	105	
146	1998 May 2	Q3 S	-13	19	13:19:46	13:40:12			Ν
						14:10:21	296	438	
147	1998 May 2	Q1	-23	10	20:25:35	20:37:53			NE
						20:50:13	137	138	

					(Continued))			
	Date	Quality Rating	Sc Loc	ource cation	Previous Image Time	Image Time	Spee	d	Direction of Measurement
			N/S	E/W			Plane-of-Sky	Projected	
148	1998 May 3	Q0	-23	33	9:47:53	9:59:50	174	200	SE
						10:11:47	176	208	
						10:23:41	188	207	
1/10	1998 May 3	03	-12	35	21.09.24	21.22.37	157	223	N
149	1776 Way 5	Q.5	-12	55	21.07.24	21:36:42	319	351	1
						21:54:16	156	327	
150	1998 May 5	Q1	-16	51	8:09:34	8:22:03			Ν
						8:36:58	68	68	
						8:54:33	34	35	
151	1998 May 5	Q2	-15	67	23:23:59	23:36:26			Ν
						23:56:10	155	183	
152	1998 May 6	Q3 S	-17	68	7:58:28	8:09:58			NE
						8:22:34	327	359	
152	1000 M 0	02	1.4	00	1.57.07	8:38:05	139	140	F
153	1998 May 8	Q2	-14	90	1:57:07	2:08:53	202	272	E
154	1008 May 8	028	16	00	5.51.14	2:21:27	203	372	NE
154	1998 Way 8	Q2 3	-10	90	5.51.14	6.18.58	228	362	NE
						6.34.02	220	258	
155	1998 May 9	O1 S	-16	90	1:44:08	2:03:32	272	230	NE
100	1990 Hay 9	X 10	10	20		2:15:16	188	230	
156	1998 May 9	Q2 S	-16	90	3:11:20	3:28:56			Е
		-				3:42:53	131	343	
						4:02:24	221	299	
157	1998 May 9	Q2 S	-16	90	19:39:13	20:10:43			E
						20:23:14	134	296	
						20:43:01	246	307	
158	1998 May 11	Q1	-16	90	0:51:43	1:17:36	• •		Ν
						1:41:09	28	37	
150	1009 May 10	02	26	47	0.22.25	1:57:35	/5	81	c
159	1998 May 19	Qs	20	47	9:32:25	9:54:47	172	100	3
						10:18:55	37	39	
160	1998 May 21	01	26	90	4.16.55	4:35:50	57	57	S
100	1990 1149 21	×-	20	20	11101000	5:05:52	75	83	5
						5:18:18	70	77	
						5:32:26	104	117	
161	1998 May 25	Q3	-16	-42	3:02:12	3:18:01			Ν
						3:32:32	121	121	
						3:52:12	219	225	
162	1998 May 27	Q2	21	61	13:06:45	13:32:29		227	E
1(2	1009 Mar. 20	00	10	00	21.07.02	13:53:08	227	227	C
103	1998 May 29	Qu	19	90	21:27:25	22:09:09	276	off limb	3
164	1998 May 30	00.5	_24	_42	0.50.54	1.16.48	270		N
101	1770 May 50	20.0	27	74	0.00.04	1:37:32	142	143	1
165	1998 Jun 3	00	15	90	11:32:58	11:55:22		1.0	S
						12:07:06	136	off limb	
166	1998 Jun 3	Q2	15	90	22:32:41	23:03:29			S
						23:18:19	165	off limb	
167	1998 Jun 4	Q2	24	-90	8:38:02	8:55:31			S
						9:09:29	159	off limb	
168	1998 Jun 4	Q0	-17	-50	11:17:21	11:31:11			NW
1.00	1000 1 4	00	10	10	14 51 50	11:53:13	205	212	
169	1998 Jun 4	Q0	-18	-49	14:51:58	15:03:49	410	427	NW
170	1009 1, 9	02	14	0	16.01.10	15:17:21	418	437	W 7
170	1998 Juli 8	Q2	-10	9	10:01:48	10:17:54	208	241	w
						16.50.08	157	241	
171	1998 Jun 10	01	22	64	14:33:27	14:48:27	101	211	NW
		ر -		- •		15:00:14	77	off limb	
172	1998 Jun 11	Q4	14	-90	9:20:04	9:35:07			S
						9:59:48	67	off limb	
						10:09:31	345		

10:20:03

10:34:57

784

380

	(Continued)											
	Date	Quality Rating	So Loc	ource cation	Previous Image Time	Image Time	Spee	d	Direction of Measurement			
			N/S	E/W			Plane-of-Sky	Projected				
173	1998 Jun 13	Q4	-23	5	15:23:33	15:40:08			NW			
						15:53:45	258	271				
						16:02:44	170	207				
174	1998 Jun 16	Q1	29	90	4:37:59	4:51:38			S			
						5:02:14	49	off limb				
						5:19:16	128					
						5:34:02	221					
175	1998 Jun 16	Q1	-27	90	18:02:18	18:18:56			Ν			
						18:34:15	342	off limb				
176	1998 Jun 17	Q0	22	-30	Possible wave during data dropout between 02:43 and 05:07							

was observed in the EIT images. For this reason, we include in the catalog the times of the EIT images that contain the EIT wave, along with the time of the EIT image immediately before the appearance of the wave. The onset time of the wave lies somewhere between the pre-event image time and the time of the first image in the observation.

In the example listing in Table 1, the start time of the wave lies somewhere between the image times of 02:32 and 02:49 UT. Note: as mentioned previously, the date listed in the catalog corresponds to the time of the first wave image, and not the pre-event image.

2.6. Image Times

Each catalog entry consists of one line for each image in which the wave is observed. In Table 1, the first listing consists

of two lines, one for each image, and the second listing consists of three. Correspondingly, there are two wave fronts shown in the summary image shown in the first frame of Figure 3, and three in the second.

The wave times in the catalog are listed fully, while the times on the images are truncated (therefore, the 1:59:35 UT image on 1997 March 25 is shown at 1:59 UT on the wave diagram in Figure 3). As described above, wave fronts which are clear and well defined are indicated with a solid line, while poorly resolved or faint fronts are indicated with a dashed line. The times in the catalog corresponding to the former case are shown in boldface.

Unfortunately, an instrumental effect adds to the uncertainty of the EIT wave times: the LASCO/EIT on board clock on SOHO runs fast, and there is an inaccuracy of at least 15 s

Figure 8. (Continued)

Figure 8. (Continued)

Figure 8. (Continued)

Figure 8. (Continued)

associated with this problem. Beginning in 1997 September, regular time corrections based on a record of the time offset became available. The image times prior to 1997 September have been provided by a time correction algorithm developed by A. Vourlidas.

It is important to mention that several papers that have been published have listed image times which are different from the entries in this catalog. This is because the time correction algorithm was not available at the time. For example, the time of the EIT images for 1997 April 7 given in Thompson et al. (1999) are 7 minutes later than the times listed in this catalog. In the paper, an extrapolation of the wave locations placed the intersection of the wave centroid with the flaring active region at 13:50 UT, while the current image times would give 13:43 UT.

2.7. Plane-of-Sky Speed

The speed of the waves is determined based on the location of the wave front and the image times. Therefore, only events with two or more images have a speed listed in the catalog. The numbers listed in the catalog represent the speed along one propagation path near the area of the maximum density increase, and if there are N images listed in the catalog entry, N - 1 speeds will be given. The Plane-of-Sky speed listed in the catalog is calculated relative to a single pair of points chosen to "represent" the motion of the wave front. As discussed in Thompson et al. (1999), wave fronts do not necessarily travel in a radial or coplanar manner, so different speeds can be derived at different points along the same wave front. Wills-Davey & Thompson (1999) demonstrate this effect more explicitly.

This portion of the catalog is called the "Plane-of-Sky" speed because the speed derived from this measurement does not take into account the curvature of the Sun, nor does it assume any propagation varying with time or height. It merely reflects the distance of a straight line between the two data points, divided by the times between the images.

2.8. Projected Speed

While the "Plane-of-Sky" speeds are relatively accurate for measurements taken near disk center, the true distance traveled by the wave is grossly underestimated for measurements approaching the limb of the Sun. Therefore, a second "Projected" speed is given in the catalog, which re-calculates the speed assuming the wave travels in a great circle along the Sun's photosphere.

This results in a more accurate estimate of the wave speed, but it still is not reliable. In addition to the inaccuracy introduced by inhomogeneous propagation in space and time, these waves are observed in the Sun's corona, not the photosphere, resulting in a chronic underestimation of the speed.

Throughout the catalog, there are entries where the words "off limb" appear in place of a number in the Projected Speed column. These wave fronts were measured above the limb of the Sun, in which case the Plane-of-Sky speed is a more accurate representation of the wave speed.

We stress that the speeds in the catalog are available only for sampling purposes, and that they only represent the speed of the wave front along a single vector, measured where the wave is most observable (low corona), projected either against the plane of the sky or along a great circle of radius = $1 R_{Sun}$. Certainly, EIT is unable to resolve speed variations with timescales less than the EIT cadence. There is evidence from other sources of data that, particularly in the early stages of propagation, the wave speed can decrease significantly (Wills-Davey & Thompson 1999; Thompson et al. 2000). Therefore, the actual speed of the wave at the time of the first image can be much larger (by whole factors!) than the speed implied by the distance between the first and second images. Additionally, if the EIT image cadence is slower than 10 minutes per image, a wave with a speed exceeding 1000 km s⁻¹ will have traveled a distance of one solar radius between images, making observations of multiple wave fronts unlikely.

2.9. Direction of Measurement

This portion of the catalog reflects the direction between two sampled points which were used to calculate the speeds. Please refer to the individual wave diagrams for a full assessment of the direction(s) of wave propagation.

3. CONCLUSION: USING THE CATALOG

Table 3 contains the full EIT wave catalog, and the diagrams corresponding to each entry are contained in Figure 8. The purpose of this wave catalog is to provide a reference for studies involving EIT wave phenomena and their association with other solar and heliospheric phenomena. Therefore, we have made efforts in the development of this catalog to provide for a wide range of research topics and interests.

As mentioned previously, there will be many "EIT wave" transients that are not listed in the catalog. These waves may have too low amplitude to be observed, or the times of the EIT observations may not have been optimal, or there may not be EIT data at all. Interruptions in the EIT image cadence of an hour or more happen on a fairly regular basis, so it's likely that a number of potentially excellent wave events are missing from the catalog.

Quality Ratings were introduced so that users of this catalog can take this into consideration when performing research based on entries in this catalog. A low-quality rating may imply that the wave had an extremely low amplitude, or it may have been a "false positive" associated with some other (non-wave) source of moving brightening. Therefore, a theorist interested in modeling wave propagation may want to focus only on entries with Quality Ratings "Q4" or "Q5." Similarly, Biesecker et al. (2002), in determining the fraction of EIT waves emanating from regions which also produced a CME, found that the correlation improved greatly when the sample was restricted to "Q4" and "Q5" events. Including "false positive" entries in the Biesecker study can mislead one into believing that there was a higher percentage of EIT waves with no associated CME observation. In contrast, Klassen et al. (2000), determined the percentage of Type II radio bursts with EIT waves. A number of the Type II bursts in this study were associated with waves that had a low Quality Rating. Excluding all low-quality waves from the Klassen study would have resulted in a number of the Type II events also being excluded from the study. Therefore, the Quality Ratings and other fields in this catalog may be utilized to assist the reader in identifying which entries are most relevant to their research.

The authors thank M. J. West, C. E. Deforest, D. A. Biesecker, H. R. Gilbert, and J. B. Gurman for valuable discussion. The authors also thank the referees of this paper for their exceptional effort.

REFERENCES

- Banerjee, D., Erdélyi, R., Oliver, R., & O'Shea, E. 2007, Sol. Phys., 246, 3
 Biesecker, D. A., Myers, D. C., Thompson, B. J., Hammer, D. M., & Vourlidas, A. 2002, ApJ, 569, 1009
- Chen, P. F., Wu, S. T., Shibata, K., & Fang, C. 2002, ApJ, 572, L99
- Delaboudinière, J.-P., et al. 1995, Sol. Phys., 162, 291

- Dere, K. P., et al. 1997, Sol. Phys., 175, 601
- Eto, S., et al. 2002, PASJ, 54, 481
- Handy, B. N., et al. 1999, Sol. Phys., 187, 229
- Howard, R. A., et al. 2008, Space Sci. Rev., 136, 67
- Klassen, A., Aurass, H., Mann, G., & Thompson, B. J. 2000, A&AS, 141, 357
- Long, D. M., Gallagher, P. T., McAteer, R. T. J., & Bloomfield, D. S. 2008, ApJ, 680, L81
- Ma, S., Lin, J., Chen, P., & Chen, H. 2009, in Proc. 10th Asian-Pacific Regional IAU Meeting, ed. I. F. Corbett et al. (Cambridge: Cambridge University Press)
- Moreton, G. E. 1960, AJ, 65, 494
- Moreton, G. E., & Ramsey, H. E. 1960, PASP, 72, 357
- Ofman, L., & Thompson, B. J. 2002, ApJ, 574, 440
- Podladchikova, O., & Berghmans, D. 2005, Sol. Phys., 228, 265
- Pohjolainen, S., et al. 2001, ApJ, 556, 421
- Smith, S. F., & Harvey, K. L. 1971, in Physics of the Solar Corona, ed. C. J. Macris (Dortrecht: Reidel), 156
- Thompson, B. J., et al. 1998, Geophys. Res. Lett., 25, 2465
- Thompson, B. J., et al. 1999, ApJ, 517, L151
- Thompson, B. J., et al. 2000, Sol. Phys., 193, 161
- Uchida, Y. 1968, Sol. Phys., 4, 30
- Uchida, Y. 1970, PASJ, 22, 341
- Uchida, Y. 1974, Sol. Phys., 39, 43
- Vršnak, B., Warmuth, A., Brajsa, R., & Hanslmeier, A. 2002, A&A, 394, 299 Wang, Y.-M. 2000, ApJ, 543, L89
- Warmuth, A., Vršnak, B., Aurass, H., & Hanslmeier, A. 2001, ApJ, 560, L105 Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., & Otruba, W.
- 2004a, A&A, 418, 1101 Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., & Otruba, W. 2004b, A&A, 418, 1117
- Wills-Davey, M. J. 2006, ApJ, 645, 757
- Wills-Davey, M. J., & Thompson, B. J. 1999, Sol. Phys., 190, 467
- Wu, S.-T., et al. 2001, J. Geophys. Res. A, 11, 25089
- Zhukov, A. N., & Auchere, F. 2004, A&A, 427, 705