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Abstract The origin of relativistic solar protons during large flare/CME events has not been
uniquely identified so far. We perform a detailed comparative analysis of the time profiles
of relativistic protons detected by the worldwide network of neutron monitors at Earth with
electromagnetic signatures of particle acceleration in the solar corona during the large par-
ticle event of 20 January 2005. The intensity – time profile of the relativistic protons derived
from the neutron monitor data indicates two successive peaks. We show that microwave,
hard X-ray, and γ -ray emissions display several episodes of particle acceleration within the
impulsive flare phase. The first relativistic protons detected at Earth are accelerated together
with relativistic electrons and with protons that produce pion-decay γ rays during the sec-
ond episode. The second peak in the relativistic proton profile at Earth is accompanied by
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new signatures of particle acceleration in the corona within ≈1R� above the photosphere,
revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio
emission of electron beams and of a coronal shock wave. We discuss the observations in
terms of different scenarios of particle acceleration in the corona.

Keywords Coronal mass ejections · Cosmic rays, solar · Energetic particles, acceleration ·
Energetic particles, propagation · Flares

1. Introduction

Energy conversion in the solar corona is often accompanied by particle acceleration, which
on occasion extends to relativistic energies. When relativistic ions or nucleons impinge on
the Earth’s atmosphere, they produce air showers of, among others, neutrons, protons, and
muons. The nucleons can be detected by ground-based neutron monitors, provided the pri-
mary particle at the top of the atmosphere has an energy above some threshold, typically
450 MeV. Transient flux enhancements of relativistic solar particles are called ground-level
enhancements (GLEs). They are the relativistic extension of solar energetic particle (SEP)
events. An overview of neutron monitor studies of GLEs is given by Lopate (2006).

It is still an open question how the Sun accelerates particles and, more specifically, how it
can accelerate particles to the relativistic energies observed during the GLE. With flares and
coronal shock waves, both of which accompany large SEP events (Gopalswamy et al., 2004),
solar activity provides candidate environments for particle acceleration. But observations
have so far not been able to show unambiguously which of them is the key element for
particle acceleration to relativistic energies.

The links of particles detected near 1 AU with their solar origin are blurred by their propa-
gation in interplanetary space, through scattering by the turbulent magnetic field and reflec-
tion at large-scale magnetic structures (Meyer, Parker, and Simpson, 1956; Dröge, 2000;
Bieber et al., 2002; Sáiz et al., 2008). Thus, comparing signatures of accelerated so-
lar particles at the Sun with the measurements of the relativistic particles at the Earth
is often difficult, unless particularly favorable conditions of interplanetary propagation
are met. This is why detailed timing analyses of individual events observed under such
favorable conditions are a valuable means to search for common signatures of particle
acceleration in GLE time profiles and in electromagnetic signatures at the Sun, espe-
cially at γ -ray, hard X-ray, and radio wavelengths. Such studies have been carried out
in the past, and they have suggested that the neutron monitor time profiles give infor-
mation on coronal acceleration processes (Akimov et al., 1996; Debrunner et al., 1997;
Klein et al., 1999, 2001; Miroshnichenko et al., 2005). However, the timing uncertainty
from interplanetary propagation makes a clear association of a GLE feature with a specific
phase of the flare/CME event in the corona difficult.

The GLE on 20 January 2005 displays a conspicuous and rapid increase of the relativis-
tic particle flux above the cosmic ray background detected by neutron monitors. The prompt
increase and the high anisotropy suggest that the time profiles suffered little distortion by
interplanetary scattering. In this paper we report on a detailed timing analysis of relativis-
tic protons at 1 AU and interacting particles. Section 2.1 describes how the time profiles
and distribution functions of protons detected at the Earth are derived from a set of neutron
monitor measurements. The timing of accelerated particles in the chromosphere and the low
corona is inferred from their microwave, hard X-ray, and γ -ray emissions (Section 2.2).
Metric-to-kilometric radio emission from electron beams is used to trace the injection and
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propagation of accelerated particles in the corona and interplanetary space (Section 2.3).
The combination of these analyses allows us to infer the interplanetary path length traveled
by the protons and their initial solar release time (Section 3.1) and the relationship of escap-
ing protons with coronal acceleration processes throughout the event (Section 3.2). Finally,
we present in Section 4 a consistent scenario of coronal acceleration in different episodes
with different radiative signatures of energetic particles and different conditions of access to
interplanetary space. We discuss our findings with respect to other work on this event and to
particle acceleration scenarios of GLEs.

2. Observations

The relativistic proton event that started on 20 January 2005 at 06:50 UT was part of a
large SEP event detected by a fleet of spacecraft and by the worldwide network of neutron
monitors. Exceptionally energetic particles were detected by muon telescopes on the Earth
(Ryan, 2005; D’Andrea and Poirier, 2005), which are sensitive to energies above several
GeV. The event accompanied intense activity at the Sun comprising a strong flare in soft X
rays (GOES class X7.1, 06:37 – 07:26 UT, peak at 07:01 UT) and Hα (2B, N12◦ W58◦, ac-
tive region NOAA 10720), as reported in Solar Geophysical Data Comprehensive Reports
for January 2005,1 along with intense hard X-ray and γ -ray emissions from high-energy
particles (Kuznetsov et al., 2008; Saldanha, Krucker, and Lin, 2008; Krucker et al., 2008).
SOHO observed a broad and fast CME and large-scale disturbances in EUV. Detailed pre-
sentations of this activity can be found, for example, in Simnett (2006) and Grechnev et al.
(2008). The 20 January 2005 event was one of a series of large flares and CMEs involv-
ing the same active region between 13 January 2005 and its passage across the west limb.
These events left the interplanetary medium in a highly perturbed state (Plainaki et al., 2007;
McCracken, Moraal, and Stoker, 2008). Neutron monitors detected a Forbush decrease start-
ing on 17 January (Flückiger et al., 2005).

2.1. Relativistic Protons at 1 AU

Neutron monitor time profiles of the GLE are shown in Figure 1(a) and in several other
papers (Bieber et al., 2005; Simnett, 2006; Flückiger et al., 2005; Plainaki et al., 2007;
Bombardieri et al., 2008; McCracken, Moraal, and Stoker, 2008). Here we are interested in
the profile of the primary particles outside the Earth’s magnetosphere. The primary particles
producing the GLE from the Sun are protons or occasionally also neutrons, but neutrons
can be excluded in the present GLE. As seen in Figure 1(a), the neutron monitors located
in Antarctica (Sanae, McMurdo, South Pole, and Terre Adélie) start first and rise faster
than the others. At these locations the zenith angle of the Sun is usually too large to detect
solar neutrons by ground-based cosmic ray detectors as neutron monitors or solar neutron
telescopes, and there was virtually no difference of time profiles at high-altitude (e.g., South
Pole) and sea-level (e.g., Terre Adélie) stations. Zhu et al. (2005) come to the conclusion
that the solar neutron telescope at Yangbajing (Tibet), at 4300 m above sea level, which
observed the Sun at zenith angle 52◦, also did not detect any signature of solar neutrons.

The terrestrial magnetic field determines the viewing direction and the low-rigidity cutoff
of a neutron monitor with respect to primary protons. A set of instruments distributed on

1NOAA Solar-Terrestrial Physics Division, http://sgd.ngdc.noaa.gov/sgd/jsp/solarfront.jsp.

http://sgd.ngdc.noaa.gov/sgd/jsp/solarfront.jsp
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Figure 1 Time histories of observed and derived parameters of the relativistic particle event on 20 January
2005: (a) count rate time histories of several neutron monitors, with count rates normalized by the individual
maximum; (b) spectral index γ (t) of the differential directional proton intensity spectrum (cf. Equation (2));
(c) amplitude A(t) (differential directional proton intensity at 1 GV rigidity) of the protons, with the inset
showing pitch angle distributions; (d) differential directional proton intensity at 5 GV rigidity. Note that the
time scale in (a) is different from that from (b) to (d).
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Earth can therefore be used to determine the rigidity spectrum in a range between roughly
1 and 15 GV and the angular distribution of the primary relativistic particles arriving at the
top of the Earth’s magnetosphere. The excess count rate of a neutron monitor is given by

�N(t) =
∫ ∞

Pc

S(P ) · J‖(P, t) · F (
δ(P ), t

) · dP , (1)

where P is the particle’s magnetic rigidity, related to the total energy E by eP =√
E2 − m2c4, e is the elementary charge, Pc is the low-rigidity cutoff imposed by the ter-

restrial magnetic field, S(P ) is the rigidity response of the neutron monitor, called the yield
function, and F(δ(P ), t) describes the angular distribution of the particle flux, where δ(P )

is the angle between the direction of maximal solar particle flux and the asymptotic viewing
direction of the neutron monitor at rigidity P . It describes the pitch angle distribution if the
axis of symmetry is along the local magnetic field direction outside the geomagnetosphere.
Based on the analysis of Bütikofer et al. (2006), we assume in the following that this is
indeed the case. J‖(P, t) is the rigidity-dependent differential directional particle intensity
(hereafter called the “proton intensity”),

J‖(P, t) = A(t)

(
P

1 GV

)−γ (t)

. (2)

For the present study we employed the data of 40 neutron monitors of the worldwide
network. The MAGNETOCOSMICS code developed by L. Desorgher2 has been used to
simulate the propagation of energetic protons through the Earth’s magnetic field and to de-
termine for each neutron monitor the cutoff rigidity and the asymptotic directions from
which the primary energetic particles impinged upon the magnetosphere. We computed for
each neutron monitor the response to an anisotropic flux of charged particles at the top of the
magnetosphere. Through a trial-and-error procedure that minimizes the difference between
the modeled and the observed count rates for each monitor, we determined the amplitude
A(t), the spectral index γ (t), and the anisotropy of incident particles at the boundary of the
magnetosphere. We use in this method a variable time interval. At the beginning of a GLE
the count rates and the spectrum change quickly. Later during the event the changes in the
different parameters in time are less pronounced. In addition, the count rates of some neutron
monitors showed a short pre-increase. Thus, we have chosen a time interval of 2 minutes
during the initial and the main phases of the GLE and 10 and 15 minutes during the recovery
phase. More details can be found in Bütikofer et al. (2006).

Figure 1(b) displays the spectral index. The initial phase, where γ = 3, is plotted by a
dashed line, since we expect a hard spectrum of the solar cosmic ray flux near Earth in the
first phase of the GLE just because the high-energy particles will arrive at the Earth earlier
than the protons with lower energies.

Figures 1(c) and 1(d) display the time profiles of the proton intensities calculated by
Equation (2) with P = 1 GV [i.e., the amplitude A(t)] and P = 5 GV. At the first peak
of the impulsive proton profile intensity at 1 GV obtained from our analysis is A =
3.3×108 protons (m2 sr s GV)−1, and the spectral index is γ = 8.0. Using a similar method
of analysis, Bombardieri et al. (2008) found A = 2.0 × 108 protons (m2 sr s GV)−1 and
γ = 9.2. Plainaki et al. (2007) used a different description of the pitch angle distribution,

2http://reat.space.qinetiq.com/septimess/magcos/.

http://reat.space.qinetiq.com/septimess/magcos/
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but the index (7.6) and amplitude of the rigidity spectrum, when corrected for the different
integration times, are similar to our values.

Several different approaches providing flatter spectra were reported in the literature.
Bieber et al. (2005) and McCracken, Moraal, and Stoker (2008) compared the signals ob-
served with a traditional neutron monitor and with a monitor without a lead shield, which is
sensitive to lower energies than the shielded one. Their independent studies found spectral
indices between 4 and 5 during the first peak of the GLE as observed, respectively, at the
South Pole and Sanae stations. Ryan (2005) derived γ = 6.2 from the Durham and Mount
Washington monitors, which have different yield functions because they are located at differ-
ent altitudes. Since the Antarctic neutron monitors give information on the lower rigidities,
and the North American monitors on medium rigidities, we suggest that the different in-
dices reflect a spectrum that is not a power law in rigidity but gradually curves downward to
some high-rigidity cutoff, as has been shown by Heristchi, Trottet, and Perez-Peraza (1976),
Lovell, Duldig, and Humble (1998), and Vashenyuk et al. (2005).

Hereafter we will use the proton intensity at rigidity 5 GV, which corresponds to a ki-
netic energy of 4.15 GeV, for the comparison with the electromagnetic emissions. Indeed,
although the response function of neutron monitors depends on atmospheric depth, for most
stations its maximum is close to 5 GV (Figure 3 of Clem and Dorman (2000)). The time
profiles of the relativistic protons display two well-identified peaks, which is a feature
found in several other GLEs from the western solar hemisphere (Shea and Smart, 1996;
McCracken, Moraal, and Stoker, 2008). The short rise to maximum during the first peak
requires an acceleration of particles to relativistic energies or their release within a few
minutes at most.

The inset plot in Figure 1(c) shows the pitch angle distribution for three time intervals
between 06:49 and 07:30 UT. Between 06:49 and 07:01 UT, the first peak of the proton
intensity time profile displays a narrow angular distribution. These protons suffer little scat-
tering during interplanetary propagation. The maximum of the pitch angle distribution con-
tinues to be field-aligned during the second peak, but an increasingly broad range of pitch
angles contributes. This suggests that particles came from the Sun throughout the first and
the second peak of the proton time profile but that interplanetary scattering (Sáiz et al., 2005;
McCracken, Moraal, and Stoker, 2008) or a reflecting barrier outside 1 AU (Bieber et al.,
2002; Sáiz et al., 2008) affected the second peak.

The interplay between variations of the amplitude and the spectral index make the second
peak appear much longer at 5 GV than at lower rigidities. We consider this difference,
which results from minor changes in the amplitude and spectral index, as questionable. In
any case, the well-defined temporal structure of the proton intensity enables a more detailed
comparison with coronal events than other GLEs.

2.2. High-Energy Particles in the Low Corona and Chromosphere: γ -Ray, Hard X-Ray,
and Microwave Signatures

High-energy electrons and protons in the low corona and chromosphere are revealed by their
hard X-ray and γ -ray bremsstrahlung, gyrosynchrotron microwave emission, and different
types of nuclear γ radiation. Figure 2 displays the time profiles observed by the Reuven Ra-
maty High Energy Spectroscopic Imager (RHESSI) (Lin et al., 2002) in the photon energy
ranges 50 – 100 keV (green line) and 550 – 800 keV (blue line), emitted by electrons with en-
ergies of order 100 keV and 1 MeV, respectively. The red curve shows CORONAS-F/SONG
measurements (Kuznetsov et al., 2008) of γ rays from 62 to 310 MeV.

At higher altitudes in the solar atmosphere, the relativistic electrons produced syn-
chrotron emission in coronal loops. The Nobeyama Radio Polarimeter (Nakajima et al.,
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Figure 2 Time profiles of the
normalized flux density at
35 GHz (top) and normalized
count rates of hard X rays and γ

rays (RHESSI,
CORONAS-F/SONG) at
different energies. Each count
rate is normalized by the
individual maximum and a term
is added to properly separate the
curves from each other. The
35-GHz emission (Nobeyama
Radio Polarimeter, courtesy
K. Shibasaki) is synchrotron
radiation, emissions at 50 – 100
and 550 – 800 keV are
bremsstrahlung. The high-energy
γ rays are pion-decay photons
from primary protons at energies
above 300 MeV. Different
episodes of particle acceleration
are distinguished by vertical
stripes numbered 1 to 4.

1985) measures whole-Sun integrated flux densities at selected frequencies in the band 1
to 80 GHz. In Figure 2, we plot only the time profile at 35 GHz (black curve), since the
emission is self-absorbed at the lower frequencies. A synchrotron spectrum is cut off at the
characteristic frequency ν = 3/2γ 2νce, where νce is the electron cyclotron frequency and γ

is the Lorentz factor. If the magnetic field is 500 G, 35-GHz emission is hence emitted by
electrons with kinetic energy of 1.5 MeV.

These four time profiles have common structures that reveal distinct episodes of particle
acceleration during the flare. We defined four main episodes of particle acceleration cor-
responding to time intervals with a distinct peak in one or several of these spectral ranges.
These episodes are highlighted in Figure 2 by different tones of gray shading and are labeled
from 1 to 4. Other distinct rises of emission produced by energetic electrons occur later (e.g.,
near 06:53 UT).

The hard X-ray and microwave emissions start to rise before 06:44 UT (between 06:42
and 06:43 UT at 35 GHz) and display several peaks. The time profiles of hard X rays present
one peak in each of the acceleration phases 1 and 2. The rise to the second peak hides the
decrease from the first and vice versa. Both peaks are also seen in the 35-GHz time profile.
The initial rise of the hard X rays is faster, and the first peak is more pronounced, in the 50 –
100 keV range than in the 550 – 800 keV range. Hence relatively more high-energy electrons
are accelerated during the second acceleration episode than during the first. This reflects the
continued spectral hardening throughout most of the event reported by Saldanha, Krucker,
and Lin (2008).

The appearance of increasingly high particle energies during episode 2 is clearly shown
by the γ rays above 60 MeV (Figure 2, bottom). The count rate starts to rise between 06:43
and 06:45 UT, consistent with an early start of acceleration phase 2, which is hidden in the
electron radiation profiles by episode 1. We use as the earliest time the start of the high-
energy γ -ray emission at 06:45:30 UT.

The flux of γ rays above 60 MeV can be due to bremsstrahlung emission of energetic
electrons or to the decay of neutral pions produced by protons above 300 MeV. To sep-
arate the two components, we fitted the response of the SONG detector to a combined
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bremsstrahlung and pion decay spectrum

F(ε) = wb(ε)
−γ C(ε) + wπ�(ε), (3)

where ε is the photon energy. The bremsstrahlung spectrum is the combination of a power
law with a function describing the steepening at high photon energies. The steepening is
either represented by a spectral rollover

C(ε) = exp(−ε/ε0) (4)

or by a function that describes a gradual transition between power laws with index γ at low
energies and β ≥ γ at high energies:

C(ε) = 1 if ε ≤ εcut, (5)

C(ε) =
[

1 + ε/ε0

1 + εcut/ε0

](γ−β)

if ε > εcut. (6)

Nuclear lines were neglected in the fitting procedure, because the count rate in even the
strongest one (at 2.2 MeV) does not exceed 15% of the underlying continuum.

The spectral shape of the pion-decay component was calculated by R. Murphy (private
communication, 2007) and is similar to other commonly used forms (Murphy, Dermer, and
Ramaty, 1987). The pions are considered to be produced by particles (protons and 50% α

particles) with a power-law spectrum that extends up to 1.5 GeV and an isotropic angular
distribution in the downward direction. The calculations demonstrate that the photon in-
tensity and the location of the spectral maximum in the energy range up to 300 MeV are
identical for power-law proton spectra with index 2 and 3. Because the highest energy inter-
val of SONG is 150 – 300 MeV, we use the pion-decay component calculated by R. Murphy
with the proton index 3. The detector response to a parallel beam of γ rays is computed
using GEANT3.21 routines, and the spectral parameters are derived by minimizing (χ2) the
difference between observed and modeled count rates in selected detector channels. A set
of model spectra and the resulting fit to the observed count rate spectrum during the early
phase of the high-energy photon emission are plotted in Figure 3. The count rate at photon
energies above 90 MeV, smoothed over 30 s, and the flux, which at those photon energies is
largely dominated by pion-decay photons, are also shown. We conclude that the high-energy
photon profile in Figure 4 and in Figure 2 can be attributed to high-energy protons in the
solar atmosphere, requiring 2.3 × 1031 protons above 30 MeV during a 1-minute interval at
the peak of the emission. For comparison, Vilmer et al. (2003) evaluated in their Table 3 that
five to ten times more protons were needed for the pion-decay γ -ray emission during the 24
May 1990 event.

We can make a rough comparison of the number of protons detected during the GLE and
the number of protons required for the pion-decay γ -ray emission. The pitch angle distrib-
ution (inset in Figure 1(c)) shows that all protons during the first peak stream antisunward.
If we assume that they are injected at the Sun into a flux tube of diameter 3 × 109 m at
1 AU (corresponding to an angle of 1.2◦), as derived for impulsive electron (Buttighoffer,
1998) and ion events (Mazur et al., 2000), our measured proton intensity at the peak of the
GLE implies that 6 × 1028 protons with rigidities above 1 GV are released to interplanetary
space during the 2-minute interval around the maximum of the GLE. The number increases
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Figure 3 High-energy photon emission observed by CORONAS-F/SONG. The top panel displays the model
photon spectra with an electron bremsstrahlung and a pion-decay component [Equation (3)]. Solid lines
represent total spectra; dashed lines are the electron bremsstrahlung components for power laws with indices
2.2 and 2.4 and an exponential rollover (curves numbered 1 and 4; cf. Equation (4); ε0 = 30 MeV) or a double
power law (curves 2 and 3; cf. Equation (6); εcut = 30 MeV). The middle panel shows the observed count
rate spectrum and fits with the same coding colors as for the model. The bottom panel shows the count rate
(30 s smoothed) and photon flux at photon energies above 90 MeV.
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Figure 4 Dynamic spectrum of
the metric-to-decametric radio
emission during the 20 January
2005 event, observed at the
Learmonth station of the RSTN
network (180 – 25 MHz) and the
WAVES spectrograph aboard the
Wind spacecraft (14 – 1 MHz).
The overplotted white curve is
the time history of the proton
intensity at 5 GV rigidity (kinetic
energy of 4.15 GeV), shifted
backward by 216 s (see Section 3
for the evaluation of the time
shift).

to 3.5 × 1031 if a greater angular range of 30◦, corresponding to a size of 7.8 × 1010 m at
1 AU, is used. This result is to be considered with caution since we use a (steep) power law
as the rigidity spectrum. As discussed earlier, the real spectrum is expected to consist of a
flatter power law at low rigidities with a steep falloff or cutoff above some limiting rigidity.
Thus, if this limiting rigidity is near or above 1 GV, our evaluation of the proton intensity
above 1 GV with the power law will be overestimated. For comparison, the spectrum that
generates the pion-decay γ -ray emission contains about 1029 protons above 1 GV (kinetic
energy of 433 MeV), which is within the broad range of values estimated for the escaping
protons.

In summary, the energetic particle signatures in the low atmosphere during the impulsive
flare phase reveal several successive episodes of particle acceleration with durations of the
order of a minute. The most energetic one starts close to 06:45:30 UT, judging from the γ

rays and the accompanying peaks in the hard X-ray and microwave emissions of energetic to
relativistic electrons. The most energetic protons and electrons hence start to be accelerated
during this episode, more than 2 minutes after the first radiative signatures of high-energy
electrons in the solar atmosphere.
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2.3. Radio Evidence on Particle Escape to the High Corona and Interplanetary Space

Metric-to-hectometric radio emissions of nonthermal electrons from the middle corona to
the interplanetary medium are measured, respectively, by the RSTN network3 (with data
from the Learmonth station at 25 – 180 MHz) and the Wind/WAVES experiment in the
range 0.04 – 14 MHz (Bougeret et al., 1995). The combined spectrum of the two instru-
ments in the 1 – 180 MHz band, corresponding roughly to a range of heliocentric distances
between 1.2R� and 10 – 20R�, is represented in Figure 4. Different burst groups can be
distinguished.

Two groups of decametric-to-hectometric (henceforth DH) type III bursts are seen in the
Wind/WAVES spectrum between 1 and 14 MHz, respectively, from 06:45 to 06:55 UT and
06:57 to 07:00 UT. Using the individual time profiles, we find that the first group starts with
a faint burst at 06:45 UT ±30 s, followed by bright bursts starting at 06:46 UT ±30 s (see
the time profile at 14 MHz, the central curve in Figure 5).

The two bright DH type III groups extend up to meter waves seen by RSTN. The starting
frequency is above the RSTN high-frequency limit of 180 MHz. With the usual assumption
that metric type III bursts are emitted at the harmonic of the electron plasma frequency, this
implies that the acceleration sites are in the low corona, where the ambient density is above
108 cm−3. The first meter-wave burst in the RSTN spectrum, however, does not seem to
continue into the WAVES band but bends around to form a type J burst between 35 and
25 MHz. This is probably not an artefact of decreasing sensitivity near the low-frequency
border of the receiver, because no comparable decrease is observed in the subsequent emis-
sions. Hence electrons accelerated during the first acceleration episode do not seem to get
access to interplanetary space but instead propagate in closed coronal magnetic structures.

Figure 5 Temporal evolution of the normalized flux densities in microwaves, that is, gyrosynchrotron
emission of relativistic electrons (top; 35 GHz, Nobeyama Radio Polarimeter), decametric waves (middle;
14 MHz, Wind/WAVES radio spectrograph) emitted by unstable electron beams in the high corona, the nor-
malized proton intensity at Earth (5 GV rigidity, kinetic energy 4.15 GeV; solid line), and the normalized
proton intensity shifted by −216 s (dashed line). Each flux is normalized by individual maximum and a term
is added to properly separate the curves from each other. The time axis refers to the time of detection at the
Wind spacecraft or at Earth.

3http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarradio.html#spectralgraphs.

http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarradio.html#spectralgraphs
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Thus, we assume that the first injection of nonthermal electron beams into interplanetary
space is traced by the first faint DH type III burst at 06:45 UT ±30 s and is followed by a
series of more intense injections corresponding to the first bright type III group.

Shortly after the second type III group, the RSTN spectrum shows a slowly drifting band
of less intense emission. It is observed between 85 and 180 MHz from 07:00 to 07:15 UT.
The frequency drift rate is 0.1 – 0.2 MHz s−1, and the instantaneous bandwidth is about
30% of the low-frequency limit of the burst. This is typical of a type II burst at long meter
wavelengths (Mann, Classen, and Aurass, 1995). The burst therefore shows the propagation
of a shock wave through the corona. If it is harmonic plasma emission, the ambient electron
densities in the metric type II source range from 108 to 2 × 107 cm−3. At lower frequencies
the Wind/WAVES spectrum presents a weak type II emission between 07:03 and 07:30 UT,
without any harmonic relationship to the metric type II burst.

Underneath the structured type III and type II bursts the dynamic meter-wave spectrum
shows a diffuse background (colored in green in Figure 4) that reveals gyrosynchrotron
emission from mildly relativistic electrons. It starts together with the first metric type III
bursts and continues throughout the plotted time interval. It can be identified until at least
07:50 UT in single-frequency records, with broadband fluctuations from centimeter to meter
waves that suggest repeated electron injections.

3. Relativistic Protons at the Earth, Coronal Acceleration, and Interplanetary
Propagation

3.1. Interplanetary Propagation and Initial Solar Release Time

The solar wind speed measured by Wind/SWE (Ogilvie et al., 1995) at the time of the GLE is
800 km s−1, implying a Parker spiral of 1.05 AU in length. The relativistic protons at 5 GV
(corresponding to a velocity of 0.98c) are then expected to arrive 46 s after the electro-
magnetic emission. But the first relativistic protons were detected not earlier than 06:49 UT
(Figure 6 of McCracken, Moraal, and Stoker (2008)), 3 to 6 minutes after the start of the
hard X-ray, microwave, and γ radiations in the solar atmosphere.

However, since the relativistic protons were observed at Earth during a Forbush decrease,
it is clear that the interplanetary magnetic field was far from nominal during this event. This
is confirmed by the actual magnetic field measurements (Plainaki et al., 2007; McCracken,
Moraal, and Stoker, 2008). We therefore compare the time profiles of the proton intensity
at 1 AU with the radio emissions in the corona to attempt a more realistic evaluation of the
interplanetary path length and eventually of the solar release time of the particles detected
near and at the Earth.

In Section 2.3, we concluded that the first DH type III bursts (14 MHz) reveal the first
injection of nonthermal electron beams in interplanetary space. The time profiles of the
radio emission at 14 MHz and of the proton intensity at 5 GV are shown in Figure 5. We
note that both time profiles display similarly rapid initial rise phases and, broadly speaking,
two peaks. These similarities suggest a common release of the relativistic protons and the
radio emitting electron beams.

The rise phases and the first peak of the time profiles of protons and the bright type III
emission at 14 MHz coincide when the proton profile is shifted backward by tshift = 216 s.
The time shift tshift between the two profiles corresponds to the supplementary path length
traveled by the protons. Figure 5 displays the original (black solid line) and the backward-
shifted time profile (black dashed line) of the relativistic protons at 5 GV. The timing would
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not have been changed significantly if we had used a time profile at lower rigidity. Given
the velocity of 0.98c and the light travel time of 489 s from Sun to Earth, the delay of 216 s
implies that the protons traveled a distance of about 1.38 AU in interplanetary space.

The delay of 216 s gives only a lower limit of the travel time, because the acceleration re-
gion is presumably much closer to the Sun than the 14-MHz source. We determine the upper
limit of the path length, assuming that the first relativistic protons are injected immediately
after the acceleration of the protons that created pions in the low solar atmosphere. Thus we
evaluate as an upper limit of the supplementary travel time of the protons with respect to
photons tshift = 4.5 minutes, which induces a path length between the acceleration site of the
first relativistic protons and the Earth of 0.98c × (489 s + tshift) = 1.49 AU.

The time interval between the onset of the second acceleration episode and the bright
14-MHz emission of electron beams (06:46 UT) is 30 s. With the density determination of
Koutchmy (1994), the 14-MHz source is located about 4R� above the photosphere. Thus
the electrons injected in the low corona together with the relativistic protons have to travel
4R� in 30 s. This implies an electron beam velocity of roughly 0.3c, which is a classical
velocity for electron beams producing type III bursts in the corona (Suzuki and Dulk, 1985;
Poquérusse et al., 1996). McCracken, Moraal, and Stoker (2008) evaluate a longer path
length of 1.76 AU. They also assume that the injection of relativistic protons is simultaneous
with the beginning of the high-energy γ -ray emission. The difference of 0.27 AU is mostly
due to the definition of the onset time. These authors use a strongly smoothed version of the
γ -ray profile, from which they deduce an onset time between 06:43 and 06:44 UT. In our
Figure 2, this time corresponds to the beginning of the first acceleration episode. But at this
time pion-decay γ emission has not yet started, as shown in Figure 2 (see also Figure 4 of
Kuznetsov et al. (2006)).

As an alternative, we also checked the frequently used assumption that all energetic par-
ticles accelerated during a flare start to be released together with the onset of the electromag-
netic emission. If we assume that the escaping protons were accelerated and released with
the first microwave emitting electrons, their travel time would be 489 s+ tshift = 489+506 s,
and the interplanetary path length would be 1.95 AU. Although this value is not inconsistent
with particles traveling along a twisted magnetic field line within an interplanetary CME
(Larson et al., 1997), it is in conflict with the idea suggested by the DH type III emission
that the first microwave and hard X-ray emitting electrons have no access to interplanetary
space. It is of course also inconsistent with the timing of the pion-decay γ -ray emission,
which starts several minutes after the first hard X-ray and microwave signatures.

3.2. Release of Relativistic Protons and Associated Solar Activity throughout the Event

Figure 4 shows the superposition onto the radio spectrum of the 5-GV proton profile in
white, shifted backward in time by 216 s so as to correct the travel path difference between
protons and photons.

By construction the first peak in the proton time profile starts with the first group of DH
type III bursts. Moreover, its duration is comparable with that of the DH type III group
(about 10 minutes). Thus we conclude that the proton intensity time profile at the Earth and
the radio time profile of the first DH type III group in the high corona are similar and that the
first protons are injected into interplanetary space with the first escaping nonthermal elec-
trons. This injection time coincides with the second episode of impulsive coronal particle
acceleration, hence with the start of the γ -ray emission from protons above 300 MeV in the
solar atmosphere, and with a fresh electron injection with a harder spectrum than before.
Particles accelerated during and after the second acceleration episode get direct access to
interplanetary space.
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The time profile of the proton intensity shows a second peak that lasts longer than the
first. Provided the path length of the relativistic protons is the same as during the first peak,
the onset of this second peak coincides with the second group of type III bursts seen from 1
to 180 MHz, and the prolonged tail of the peak is accompanied by the type II burst between
75 and 180 MHz.

As noted by Pohjolainen et al. (2007), the shock wave producing this type II emission
is not the bow shock of the CME observed by SOHO/LASCO. Indeed, at 06:54 UT, a few
minutes before the type II burst, the CME front is at a heliocentric distance of 4.5R�, where
electron densities inferred from eclipse measurements are below 2 × 106 cm−3 (Koutchmy,
1994), corresponding to plasma frequencies below 13 MHz, much lower than those of the
metric type II burst.

The exciter speed of the type II burst is also very different from the CME speed: The
measured relative frequency drift rate is −6.8 × 10−4 s−1. Such a drift is produced by an
exciter that moves at a speed of roughly 500 km s−1 along a hydrostatic density gradient
(electron-proton plasma, T = 1.5 × 106 K) at a heliocentric distance of 2R�. This is much
lower than the speed of the CME, which Grechnev et al. (2008) estimated to be between
2 000 and 2 600 km s−1.

4. Discussion

4.1. Summary of the Observational Findings

From the preceding analysis we infer the following scenario:

• The particle acceleration in the corona deduced from the electromagnetic signatures (Sec-
tion 2.2) has several episodes in the impulsive phase, with individual durations of the order
of 1 minute.

• Protons with energies above 300 MeV start to be accelerated during the second accel-
eration episode within the impulsive phase, together with electrons that have a harder
spectrum than during the first episode (Section 2.2).

• The electrons accelerated during the first episode remain confined in closed coronal mag-
netic structures, whereas particles accelerated during the second and later episodes have
access to interplanetary space along open magnetic structures (Section 2.3).

• The first rise of the relativistic proton profile at Earth is due to protons that are accelerated
during the second episode of the impulsive phase.

• A second rise of the relativistic proton profile occurs after the peak of the hard X-ray and
microwave emissions. The onset of this second peak coincides with a new acceleration
of electrons in the low corona during the decay of the microwave and hard X-ray bursts,
and with a fresh injection of electron beams into interplanetary space (second group of
type III bursts seen on Figure 4). It is accompanied by shock-related radio emission in the
corona at heliocentric distances below 2.5R�.

4.2. Evidence for Relativistic Proton Acceleration in the Flaring Active Region

Relativistic protons arrive at Earth during this GLE with some delay with respect to the first
radiative signatures of particle acceleration and the travel time along the nominal Parker
spiral. The delay comes from the interplanetary path length, which is longer than the nom-
inal Parker spiral. But a key for understanding the timing of particle acceleration during
this event is the identification of elementary episodes within the impulsive flare phase. The
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first peak of the relativistic proton time profile is not related to the impulsive phase of the
flare but to the second identified episode of particle acceleration. Similarly to the escaping
relativistic protons, the bulk of the high-energy protons producing indirectly high-energy γ

rays through neutral pions are also accelerated in the second episode. The close connection
between the interacting and escaping high-energy protons is corroborated by the finding that
the number of protons required for the GLE would also be sufficient to produce a pion-decay
γ -ray excess.

Release delays of GLE protons with respect to the first electromagnetic signatures are
well established (Carmichael, 1962; Cliver et al., 1982). They are often attributed to the
trapping of the accelerated particles in closed magnetic structures or to the acceleration in a
shock wave at greater altitude than the flaring loops (Lockwood, Debrunner, and Flückiger,
1990; Kahler, 1994). But the delay observed on 20 January 2005, among the shortest ever
found, is consistent with a distinct acceleration episode in the impulsive flare phase. Such
delays have been regularly reported for pion-decay γ -ray emission in other flares (Forrest
et al., 1986; Debrunner et al., 1997; Dunphy et al., 1999; Trottet et al., 2008) and had been
identified in the SONG data of the 20 January 2005 flare by Kuznetsov et al. (2008) and
Grechnev et al. (2008). Acceleration delays of relativistic protons on time scales of a few
minutes hence seem to be a general feature of large flares.

Imaging observations of this event at hard X rays and γ rays (Krucker et al., 2008)
show the usual configuration of bright chromospheric footpoints of coronal loops, on top
of UV ribbons, together with a presumably coronal γ -ray source. Such observations are
commonly ascribed to a complex magnetic topology, implying magnetic reconnection in
the low corona. So the timing, the energetics, and the X-ray and γ -ray source configuration
during the 20 January 2005 event are consistent with a common origin of the interacting
protons and the protons producing the first GLE peak in the flaring active region.

4.3. The Second Peak of the Relativistic Proton Profile

The correspondence between radio emissions and the second peak in the proton time profile
is more complex than for the first peak.

The duration of this second peak and its occurrence in the decay phase of the hard X-ray
and microwave emissions suggest a difference in the acceleration region, the conditions of
particle propagation, or both. The finding that this second peak is accompanied by distinct
metric radio emission and by some weak microwave and hard X-ray signature can, however,
be considered as a further argument that the peak is due to a fresh injection of protons at the
Sun, rather than being due to changed conditions of interplanetary propagation as argued by
Sáiz et al. (2005). The metric radio observations suggest two possible scenarios:

• The first builds on the association of the start of the proton rise with a new, short group
of type III bursts and a faint rise of the decaying microwave and hard X-ray time pro-
files. If the relativistic protons are injected simultaneously with the nonthermal electron
beams, during about 3 minutes (photon arrival time of 06:57 – 07:00 UT), the prolonged
tail would be ascribed to interplanetary scattering or reflection beyond 1 AU. Scattering
requires very different propagation conditions from the first proton peak, which Sáiz et al.
(2005) attribute to perturbations created by the first proton beam. The prolonged presence
of gyrosynchrotron radiation in the corona could also argue for prolonged particle accel-
eration there, without any need to invoke interplanetary transport for the duration of the
relativistic proton release. But we have no common feature in the timing to corroborate
this idea.
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• An alternative scenario is based on the association with a metric type II burst during the
maximum of the second relativistic proton peak and its decay phase, which may suggest
shock acceleration of the second peak as proposed for different reasons by McCracken,
Moraal, and Stoker (2008). Pohjolainen et al. (2007) extrapolate the type II radio band
backward to a start near 06:54 UT at 600 MHz (their Figure 13). If this is correct, the
entire second peak of the proton profile is accompanied by the radio signature of a coronal
shock. This shock is seen at an altitude below 2.5R� and at least its radio emission, if not
the shock itself, is of short duration. Both findings are more consistent with a lateral
shock than with a radially outward driven shock in front of the CME. A lateral shock
would be expected to be quasiperpendicular with respect to open magnetic flux tubes
in the low corona (see Figure 2 of Vainio and Khan (2004)). The initially lateral shock
would become quasiparallel to the open field lines upon propagating outward. It has been
argued elsewhere (Tylka and Lee, 2006) that quasiparallel shocks are less efficient particle
accelerators at high energies than quasiperpendicular shocks. This could explain the short
duration of this type II burst and the duration of the second proton peak.

4.4. Multiple Acceleration Episodes in Solar Energetic Particle Events

GLE scenarios including two components, called a prompt one and a delayed one, had been
introduced before (Torsti et al., 1996; Miroshnichenko, De Koning, and Perez-Enriquez,
2000). The delayed component was ascribed to acceleration at a CME-driven shock wave.
Although the present analysis contains one scenario that is consistent with this two-
component injection, it also shows that the coronal acceleration history is much more com-
plex: There is no unique flare-related acceleration, but the impulsive flare phase is itself
structured, as has long been known from hard X-ray observations (de Jager and de Jonge,
1978). If a coronal shock wave accelerates relativistic protons in a later phase of the event,
it is not necessarily the bow shock of the CME that is the key element. Clearly, detailed
comparative timing analyses of GLEs and flare/CME tracers provide relevant constraints to
understand the origin of relativistic particles at the Sun.
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