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ABSTRACT

Understanding the structure of coronal mass ejections (CMEs) is one of the primary challenges in solar astrophysics.
White-light coronagraphs make images of line-of-sight projections of the CME electron density (Ne). The com-
bination of the coronagraphs on the STEREO and SOHO spacecraft provides three simultaneous viewpoints that
vary in angle with time, according to the spacecraft orbits. Three viewpoints are not enough to permit tomographic
reconstruction via classical methods, but we argue here that recent advances in image processing methods that take
into account prior information about the CME geometry may allow one to determine the CME density structure
with only three viewpoints. The prior information considered here is that the CME is separated from a known (or
simple) background by a closed surface, which may be described by a level set. We propose an alternating iterative
procedure in which the surface is evolved via geometric partial differential equations in one step and the interior
(and exterior) Ne values are determined in the next step.
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1. INTRODUCTION

One of the great challenges of solar remote sensing is the
three-dimensional (3D) reconstruction of coronal mass ejections
(CMEs), in which the Sun launches billions of tons of material
into interplanetary space. These ejections can damage man-
made satellites and threaten astronaut safety, and have even
knocked out terrestrial power grids (Webb & Allen 2005).
CMEs were first observed in white-light images taken by
coronagraphs in the 1970s (see, e.g., Hundhausen 1993 and
references therein), and since then their significance for both
practical and theoretical reasons has steadily increased. In
response to the challenge of understanding the 3D structure of
CMEs, NASA launched the dual-spacecraft STEREO mission
(Howard et al. 2002). The STEREO mission gives humans the
first opportunity to see CMEs from more than one point of view
simultaneously. These spacecraft, named “A” for “ahead” and
“B” for “behind,” orbit the Sun independently of the Earth, but
stay in the plane of the Earth’s orbit. Spacecraft A orbits the Sun
every 11.25 months and spacecraft B makes its orbit every 12.75
months. Thus, each spacecraft separates from the Earth by 22◦
(heliocentric angle) per year. The perspectives of the COR1 and
COR2 coronagraphs on the A and B spacecraft (Howard et al.
2002) as well as those of the C2 and C3 coronagraphs on SOHO
(Brueckner et al. 1995), which orbits near the L1 Lagrangian
point, and the ground-based Mk-IV (Elmore et al. 2003) all
combine to give us three simultaneous view angles of the Sun
(the views from Earth and L1 are not significantly different for
the purposes of this discussion).

Recently, the Extreme UltraViolet Imager (EUVI; Howard
et al. 2002) on STEREO has been used to determine the 3D
geometry of coronal loops (Feng et al. 2007; Aschwanden
et al. 2008). These analyses have assumed that the loops
are one-dimensional filaments. Once the same loop has been
unambiguously identified in images from both spacecraft, one
can use triangulation to find the 3D position of every point

along the loop. Since CMEs are 3D volumetric objects, not
one-dimensional filaments, triangulation cannot determine their
structure. Frazin & Kamalabadi (2005a) have reviewed 3D
tomographic reconstruction of the steady-state corona.

A number of authors have addressed the problem of 3D re-
constructions of CMEs in the corona and their interplanetary
manifestations (ICMEs). These methods may be categorized by
the assumptions they employ about dynamical evolution of the
CME. The work presented here is concerned with reconstruct-
ing a snapshot of a CME at a time at which three simultaneous
coronagraph images are taken with no assumptions about the
dynamical evolution, and in that sense it is similar to the (single
viewpoint) work of Moran & Davila (2004). They used total
brightness (B) and polarized brightness (pB) LASCO-C2 im-
ages to find a type of a mean distance of the material for the line
of sight (LOS) corresponding to each pixel. Pizzo & Biesecker
(2004) developed a method of using LOS intersections from
two spacecraft to localize CMEs and determine propagation
speeds. Lee et al. (2006) used the correspondence between LOS
Doppler shift and spatial position to make a 3D reconstruction
of the 2002 April 21 partial halo CME from a time series of
UltraViolet Coronagraph Spectrometer (UVCS) spectra taken
as the CME drifted past the fixed spectrometer slit. Gapper et al.
(1982) were the first to use interplanetary scintillation (IPS) of
natural radio sources to model the 3D density structures of the
solar wind and ICMEs. In this work, the data were time series
of IPS measurements for many sources, and the assumptions
of radial flow and constant solar wind speed allowed the au-
thors to find a three-dimensional model that was consistent with
the data. Tokumaru et al. (2006) fit a 3D model specified by
nine parameters to a set of time-series IPS data in order to fol-
low the interplanetary evolution of the 1999 September 20 halo
CME, and this work was followed up with a more sophisticated
effort to follow the 2003 October 28 halo CME (Tokumaru
et al. 2007). Behannon & Burlaga (1991) combined IPS data
with in situ plasma measurements from four spacecraft to map
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solar wind stream interactions and transient flows. Howard et al.
(2007) analyzed the eruptions of two filaments seen on the disk,
and used the observed filament positions to remove the pro-
jection effects when the CMEs moved into the LASCO and
Solar Mass Ejection Imager (SMEI; Eyles et al. 2003) fields of
view (FOV). Jackson et al. (2006) used IPS measurements and
SMEI images to make a time-dependent, 3D reconstruction of
the heliospheric manifestation of the 2003 October 28 CME by
least-squares fitting to a model that assumes the flows propagate
radially outward from a source surface. In the future, methods
may take advantage of the approximately self-similar evolution
of CMEs (Gosling 1999).6

Three viewpoints are not enough to permit classical tomo-
graphic reconstruction. For example, in medical imaging appli-
cations one often has a detector that rotates around the patient
taking one or more images per degree of rotation (Kak & Slaney
1987). Previous authors have used solar rotational tomography
(SRT) to reconstruct static structures (Altschuler & Perry 1972;
Frazin 2000; Frazin & Janzen 2002; Frazin et al. 2007), but
the 14 days required to obtain enough view angles are much
longer than the hour timescale of dynamic phenomena such as
CMEs. Extensions of the classical methods should allow treat-
ment of some mild time-dependent evolution of the corona but
not CMEs (Frazin et al. 2005; Saez et al. 2007; Barbey et al.
2008). While in classical tomography one solves for a pixelwise
representation of the unknown object (i.e., each pixel of the ob-
ject is an independent unknown), methods that use other types
of representations can be effective in situations in which there
is not enough information for classical tomography. Consider a
two-dimensional (2D) object living in the plane that is bounded
by a closed curve, such that the value of the scene is unity inside
the curve and zero outside. One may reconstruct this type of
object from a few of its projections, using a curve evolution-
based approach (Santosa et al. 1998; Feng et al. 2003). The
smooth bounding curve is iteratively evolved using geometric
partial differential equations (PDEs), in which the algorithm it-
eratively modifies the boundary curve until the projections of
the reconstructed object match the data. It has been shown that
this procedure produces good reconstructions with many fewer
viewing angles than would be required for reconstruction via
classical tomography methods (Feng et al. 2003). The recon-
struction problem is made well-posed by introducing the avail-
able prior information to reduce the degrees of freedom. The
most important way in which the CME reconstruction problem
differs from this simple example is that some CMEs can be
assumed to be 3D objects with smooth interiors bounded by a
closed surface. We adapt the geometric PDE-based algorithm
to the specific problem of CME reconstruction by incorporating
this prior information into the model.

2. THE INVERSE PROBLEM

Figure 1 shows a LASCO-C2 image of a CME just after being
launched from the Sun’s surface. The CME is in the upper left
part of the image, and the raylike structures are the background
corona. The intensity seen in the jth coronagraph image pixel
is given by an LOS integral of the free electron density Ne
(van de Hulst 1950):

yj =
∫ ∞

−∞
w(rj (l))Ne(rj (l)) dl , (1)

6 An object that changes in a self-similar manner does not change its shape
and its evolution can be described by a time-dependent scale factor.

Figure 1. Satellite image of a CME (upper left) superimposed on the background
structure in the solar corona. An occulter covers the inner corona and the disk
of the Sun that is shown as a white circle. All such images are two-dimensional
projections of the corona’s complicated three-dimensional structure. Instrument
vignetting decreases the large coronal brightness variation from near the Sun to
regions more distant from it.

where yj is the intensity value of the pixel in question, rj (l)
is a vector that traces the LOS as a function of distance l,
and w(r) is a weighting function given by the physics of the
Thomson scattering process. The measurement yj can be the
polarized brightness (pB) or the total brightness (B). Using both
types of measurements may be useful (Moran & Davila 2004),
depending on their relative accuracy (Frazin & Kamalabadi
2005b).

Let the vector f be a discrete representation of Ne (e.g.,
each element of f can represent the value of Ne in a particular
volume element of the computation grid). Note that since the
f vector represents a three-dimensional object, it will typically
have hundreds or thousands or millions of components. Now
consider the vector y which contains all of the intensity values,
i.e., if there are three images each with M pixels, the vector y
will have 3M elements. The vector y is related to f via:

y = Af + n, (2)

where the A matrix is calculated from Equation (1), and n
represents noise in the data. The vector of electron densities
f exists in a convenient coordinate system, and A must account
for the transformations that relate the coronagraph images to the
coordinate system, taking the spacecraft orbital geometry and
solar-pole tilt angle into account (Frazin & Janzen 2002).

The reconstruction of the 3D structure of the CME from
just three 2D parallel projections (each coronagraph image is
a projection) is a highly ill-posed inverse problem made more
difficult by a number of factors, including (1) the linear system
Equation (2) is either very undetermined and/or has many small
singular values, (2) the rapid decrease of intensity with radius in
the coronagraph image (due to the Thomson scattering geometry
and coronal density fall-off), (3) specification or removal of
the background streamer structure (this could be done either
in the coronagraph images themselves or in the 3D model
space), (4) the complex structure of the CME, and (5) the large
density contrast between the shock compressed leading edge
and rarefied region behind the shock front.

Some of the challenges one may expect in this 3D reconstruc-
tion problem can be appreciated by looking at 3D magnetohy-
drodynamic (MHD) simulations of CMEs. Such simulations
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Figure 2. Depiction of the structure of a simulation of the 2003 March 28
CME, viewed from behind the event 15 minutes after initiation, as simulated by
Manchester et al. (2008). The yellow ball represents the Sun, the green surface
shows the leading shock front, the brown isosurface outlines a region of shock
compressed gas, and the blue isosurface outlines a region of rarefaction (also
caused by the shock wave).

represent our best guess about the 3D structure of real CMEs,
and as an example we use the simulation of the 2003 Octo-
ber 28 event recently published by Manchester et al. (2008).
Figure 2 shows a view (from behind the CME) of the simulation
15 minutes after initiation. The yellow ball represents the Sun’s
surface, and the green surface corresponds to the shock front that
precedes the CME. The blue surface outlines the rarefaction re-
gion, which has a lower density than the ambient medium. The
brown surface shows the region of density enhancement behind
the shock front.

The solar corona has a quasi-steady background structure
through which the CMEs propagate. The background structures
have densities that are comparable to the CMEs and hence are
prominent in CME images. This presents an issue for the CME
reconstruction, because the CME + background has much more
complexity than the CME alone. Figure 3 shows the background
corona in projection as seen by the LASCO-C2 (inner portion)
and C3 coronagraphs (outer portion). This image has been
processed to remove the steep decrease of brightness with radius
using methods developed by Morgan et al. (2006). One way to
reduce the importance of the background is to subtract pre-
event or post-event images from the images that contain the
CME eruption. However, this process can introduce errors since
the pre- and post-event images can themselves contain transient
structures not present at the time of the CME. Figure 4 shows an
early stage of the 2003 October 28 CME as seen by C2. The left
image has no background subtraction, while the center image
has the background from Figure 3 subtracted. The image on
the right is synthetic observation based on the simulation of the
event by Manchester et al. (2008). The left and center images
have been processed with the algorithm by Morgan et al. (2006).
While the background subtraction appears to be successful in
removing much of the background, the remaining background
structure sill has some regions comparable in brightness to the
CME, and the subtraction process needs to be improved. We
note that background subtraction is often used to estimate the
masses of CMEs (Vourlidas et al. 2000), but the uncertainty in
the CME mass estimate caused by the time-varying background
can be large depending on the mass and compactness of the
CME. Such masses are in fact only excess mass relative to
a presumed stable background. A ejection of coronal mass
during a CME incorporates both the outward-moving ambient

Figure 3. Processed image of the pre-event (background) corona as seen by the
LASCO-C2 (inner portion) and C3 (outer portion) coronagraphs on the SOHO
satellite. A procedure developed by Morgan et al. (2006) removes the steep
decrease of intensity with radius so that the structure becomes visible. In the left
part of the image, one can see a planet (which saturates the local CCD pixels)
and remnants of a previous CME.

and the mass amount that exists in excess during the event.
This unknown ambient is not usually included in coronagraph
CME mass estimates, since it requires knowledge of the CME
volume. Another option is to use SRT to estimate a stable three-
dimensional ambient background, but this is again not a direct
measurement at the time of the CME.

3. A LEVEL SET SOLUTION METHOD

Since the standard filtered back-projection algorithm (Kak
& Slaney 1987) is designed for a large number of projections,
it is not useful in this context. Tikhonov (1977) regularized
reconstruction (basically, stabilized least squares) is a popular
approach to solve ill-posed problems. This scheme assumes a
smooth object and reconstructs it from the available projections.
This method also fails to provide good reconstructions when
only three viewpoints are available. While a Tikhonov scheme
would be optimal for a uniformly smooth object, in the CME
problem, we assume the object space consists of a localized
CME region with a relatively smooth background, with the
two regions separated by a closed surface (or curve in the
2D examples given here). We model the object space as being
composed of two regions: a smooth background (denoted by f2)
and a relatively less smooth foreground, which represents the
CME (indicated by f1):

ftotal(r) =
{

f1(r); if r ∈ Ω

f2(r); if r ∈ R
2 \Ω.

(3)

Here, Ω indicates the foreground region, and R
2 is the entire

object space. The functions f1, f2 as well as the boundary of Ω are
the unknowns that are estimated from the projection data. The
functions f1 and f2 are supported on Ω and R

2 \Ω, respectively.
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Figure 4. Images of the 2003 October 28 CME without (left) and with (center) the background from Figure 3 subtracted. The image on the right shows a synthetic
observation of the MHD simulation of this event, and a quantitative comparison to the measured coronagraph intensities is given in Manchester et al. (2008). The left
and center images have radial gradients removed with the technique of Morgan et al. (2006).

See Figure 5 for an illustration. We pose the estimation scheme
as an optimization problem:

{f∗
1 , f∗

2 , Ω∗} = arg min
f1,f2,Ω

C (f1, f2, Ω) , (4)

where the cost function C is given by

C (f1, f2, Ω) = ‖Aftotal − y‖2︸ ︷︷ ︸
data−consistency

+ λ1

∫
Ω

|∇f1(r)|2dr︸ ︷︷ ︸
smoothness

+ λ2

∫
R2\Ω

|∇f2(r)|2dr︸ ︷︷ ︸
smoothness

+ κ

∫
∂Ω

ds︸ ︷︷ ︸
arc−length

. (5)

Here, A is the operator that maps ftotal onto the projection planes,
and y is the vector of measured intensities (see Equation (2)).
The integral

∫
∂Ω ds is the arc length of the boundary of Ω (the

boundary is denoted as ∂Ω). The first term in Equation (5) is
the data-consistency term, while the second and third terms
ensure the smoothness of f1 and f2. We choose λ1 	 λ2 so as
to ensure a smooth background and a reasonable reconstruction
of the foreground. The last term ensures that the boundary of
Ω is smooth. Similar to the approach followed in Jacob et al.
(2006), we propose to use a two-step iterative algorithm to derive
the optimal parameters f∗

1 , f∗
2 , and Ω∗. Starting with an initial

guess of ∂Ω, we will derive the optimal f1 and f2 using the
standard conjugate gradient algorithm. In the second step, we
update Ω, assuming f1 and f2 from the previous step. For this
step, we represent the region Ω using a level-set scheme and
use standard curve evolution schemes (Sethian 1996), which
require computational differential geometry, to update ∂Ω. This
two-step procedure is repeated until convergence.

Jacob et al. (2006) used a similar approach for the reconstruc-
tion of functional activations from near-infrared spectroscopic
imaging data of human brain tissue. By assuming the activations
to be spatially localized and smooth within the spatial support,
the constrained imaging scheme provided much improved re-
constructions in comparison to standard methods. The proposed
CME reconstruction algorithm is essentially an extension of this
scheme.

4. PRELIMINARY RESULTS

To illustrate the appropriateness of the proposed method for
the reconstruction of CMEs, we implemented a 2D version of
the proposed algorithm. The results are shown in Figure 6.
As ground truth, we used a 2D slice of a 3D MHD CME

Figure 5. Graphical illustration of the model. The object space is assumed to be
composed of two regions: a smooth background and a foreground corresponding
to the CME. The foreground region is indicated by Ω, and the boundary curve
∂Ω separates it from the background. In one step, the algorithm solves for
the foreground and background images with ∂Ω fixed. In the next step, the
algorithm modifies ∂Ω, and then the cycle repeats until convergence is achieved.
(As illustrated, the boundary curve may intersect the edge of the object space.)

simulation (Tóth et al. 2007; Manchester et al. 2008). The
simulation was used to model the 2003 October 28 CME and was
shown to reproduce some of the main features of the observed
images of this event (Manchester et al. 2008), as in Figure 6.
The 2D slice of this simulation was taken at z = +2 Rs

(meaning parallel to the Sun’s equator but 2Rs above), and
it is shown as the left panel of Figure 6. In order to test the new
reconstruction process, we calculated line-of-sight projections
of the slice for a distant observer at angles (in the plane of the
slice) of (0◦(vertical), 60◦, 120◦). The projections were used as
input data to reconstruct the CME using the proposed algorithm
(center panel of Figure 6) as well as the standard Tikhonov
scheme (right panel). Note the prominent ray-like artifacts
(the ray artifacts are along the (0◦, 60◦, 120◦) directions) in
the Tikhonov reconstruction. These artifacts are much reduced
in our scheme, because it separates the object space into two
domains while minimizing the arc length of the curve that
separates the domains. Also note that the new reconstruction
method does a good job reproducing the boundary of the CME,
with the exception of a bump on the left part of the image.

5. CONCLUSIONS

We have argued here that once the background corona can
be independently estimated (or eliminated), the blob-like and
confined nature of CMEs may allow them to be reconstructed
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Figure 6. Left: a 2D slice of the simulated 1998 October 28 CME (Manchester et al. 2008) 45 minutes after launch. This slice is taken parallel to the Sun’s equatorial
plane at z = +2 Rs . Center: a reconstruction from three projections at angles of (0◦(vertical), 60◦, 120◦) using our new method. Right: a reconstruction using the
standard Tikhonov method. Note that the ray-like artifacts are much reduced when the new method is used and the boundary of the CME is accurately captured, except
for a bump on the left edge.

from simultaneous observations at three view angles, which are
provided by the SOHO and STEREO missions. The resulting
reconstruction problem cannot be solved via classical methods
and must be addressed by more modern image processing
methods such as level sets. We described a reconstruction
method based on level sets and demonstrated its utility on the
reconstruction, from only three view angles, of a 2D slice of
a 3D CME simulation. A similar three view-angle situation is
provided by the SOHO + STEREO missions.

We hypothesize that the extension of the level set algorithm
to three dimensions will significantly improve the performance.
The CME is reasonably smooth along the third (z) dimension,
and the use of this information significantly constrains the
solutions in the 3D case relative to the 2D case. Given a rapid
enough cadence of observations, the situation may improve still
further in four dimensions, that is space plus time. In this case,
the CME boundary is a smooth 3D surface in four-dimensional
spacetime, yielding an even more highly constrained problem.
Rathi et al. (2007) proposed a particle filtering method for
following the evolution of level-set contours in problems that
evolve the tracking of deformable objects. Perhaps a similar
methodology may be helpful for finding a the time-dependent
surface that separates the CME from the background.

The emerging field of compressed sensing (Donoho 2006;
Candès et al. 2006a; Candès & Tao 2006) may offer another al-
ternative to classical tomographic reconstruction methods. The
compressed sensing (CS) theory states that an image containing
N pixels can be accurately reconstructed from just M 	 N lin-
ear measurements,7 provided that (1) the image can be expressed
as a sparse linear combination of just K < M/ log(N ) elements
from some basis or dictionary (e.g., wavelet bases), and (2) the
linear measurements are collected in a domain that is incoher-
ent with the sparsity-inducing dictionary (for a review of these
concepts see Candès & Wakin (2008)). Thus, the CS paradigm
is explicitly geared to deal with signal reconstruction from in-
complete information. The available linear measurements leave
an underdetermined problem (such as Equation (2)) which is
solved not by seeking a minimum energy solution (akin to clas-
sical techniques), but by seeking an image, subject to agreement
with the measurements, whose L1 norm in the sparse dictionary
is smallest. This particular optimization program can be cast as
a linear program, and a variety of other formulations have also

7 A linear measurement can be modeled by a linear operator acting on the
object space. A polarized white-light coronagraph image is an example of a
linear measurement.

been proposed including greedy algorithms (Tropp & Gilbert
2007) and total variation minimization for image reconstruc-
tion (Candès & Tao 2006). Again, the problem is made well
posed, because the true number of unknowns (the K coefficients
in the sparse basis) is less than the number of available mea-
surements; the recovery is also provably robust to measurement
noise and extensible to signals that are approximately, but not
strictly, sparse (Candès et al. 2006b). Additional models such
as manifolds have also been proposed to capture the concise
structure present in many real-world signals; these too can be
incorporated into the CS paradigm (Baraniuk & Wakin 2009).
Some of the earliest experiments in CS demonstrated the dra-
matic potential for sparsity-based magnetic resonance image re-
construction from highly undersampled Fourier measurements
(Candès et al. 2006a). Application of these techniques to CME
reconstruction will require the characterization of an appropri-
ate sparsity-inducing dictionary or other concise model for CME
images, and the possible development of customized reconstruc-
tion algorithms adapted to the particular characteristics of CME
coefficients within the dictionary (e.g., Duarte et al. 2008).
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