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Abstract—The problem of particle acceleration in collapsing magnetic traps in the solar corona has been
solved by taking into account the particle scattering and braking in the high-temperature plasma of solar
flares. The Coulomb collisions are shown to be weak in traps with lifetimes tl < 10 s and strong for
tl > 100 s. In the approximation of strong collisions, collapsing magnetic traps are capable of confining up
to 20% of the injected particles in the corona for a long time. In the collisionless approximation, this value
exceeds 90%. The question about the observational manifestations of collisions is examined. For collision
times comparable to tl, the electron spectrum at energies above 10 keV is shown to be a double-power-law
one. Such spectra were found by the RHESSI satellite in flares.
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INTRODUCTION

The acceleration of charged particles in the solar
corona during flares exhibits peculiarities some of
which have no universally accepted explanation as yet
(see, e.g., Miroshnichenko 2001). Particles with an
initial energy of ∼0.1 keV, corresponding to the coro-
nal temperature, increase it to 10–100 keV and even
to 10–100 MeV in very short times, from seconds to
several tens of seconds. Heavy particles, ions, are ac-
celerated with a higher efficiency (i.e., to higher ener-
gies) than electrons. The increase in particle energy is
usually accompanied by a change in the shape of the
particle energy spectrum. In a considerable number
of flares, the appearance of higher-energy particles is
delayed relative to that of lower-energy ones.

The listed peculiarities can be explained in terms
of the model of a two-stage particle acceleration
during flares with collapsing magnetic traps (So-
mov and Kosugi 1997; Bogachev and Somov 2001,
2005, 2007; Aschwanden 2002; Kovalev and So-
mov 2003; Somov and Bogachev 2003; Karlicky
and Kosugi 2004; Giuliani et al. 2005). According
to this model, the electrons and ions are initially
accelerated in the magnetic reconnection region, in a
high-temperature turbulent current sheet (HTTCS;
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Somov 2006a, 2006b). Here, the electrons can be
accelerated at least to 10 keV (i.e., to an energy that
corresponds to the HTTCS electron temperature).
After their escape from the HTTCS, the particles are
captured into collapsing magnetic traps formed by
reconnected magnetic field lines whose footpoints are
located in the chromosphere. The longitudinal and
transverse sizes of the traps decrease during flares,
causing the trapped particles to acquire an additional
energy under Fermi and betatron accelerations. This
is the second stage of particle acceleration. Charac-
teristically, the protons are accelerated during this
stage to higher energies than the electrons (Somov
et al. 2002).

Interacting with one another, the particles inside
a trap produce X-ray bremsstrahlung whose sources
are observed in the corona during flares. The loca-
tions of the sources (above the flare loops) coincide
with the places of particle trapping and acceleration.
The main types of coronal X-ray spectra can also be
explained in terms of the model under consideration
(Bogachev and Somov 2007). The emission sources
with a power-law spectrum are formed in traps when
electrons with a power-law distribution are injected
into them, irrespective of the dominant acceleration
mechanism, the betatron or Fermi one. However, if
the injection spectrum is thermal (and such electrons
are always present in the HTTCS model), then it
becomes a power law in traps with Fermi acceleration
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and quasi-thermal with a very high temperature in
traps with dominant betatron acceleration.

In this paper, we investigate the effect of Coulomb
collisions on the efficiency of particle confinement
and acceleration in a trap and on the shape of the
particle spectrum. This formulation of the problem,
including the scattering of particles and the losses of
their energy as they brake in the background plasma,
corresponds to the actual physical conditions in the
corona and, hence, describes more accurately the dy-
namics of trapped particles than the collisionless ap-
proximation considered previously. The results of our
calculations are compared with the formulas derived
in the collisionless approximation, in which the prob-
lem of particle motion in a collapsing magnetic trap
has relatively simple analytic solutions (Bogachev
and Somov 2001, 2007).

QUALITATIVE DESCRIPTION
OF THE EXPECTED EFFECT

In the collisionless approximation, which is ap-
plicable for electrons and ions with velocities much
higher than the thermal velocity, only two factors
affect the motion of trapped particles—Fermi and
betatron accelerations in a collapsing magnetic trap.
Let us consider the actual situation more carefully.
The electrons and ions in a trap do not move freely but
interact with one another and with the “background”
plasma, i.e., the plasma formed by electrons and ions
with velocities close to the thermal ones. Although
these effects result from the action of Coulomb forces,
we will distinguish them based on the following con-
siderations. Elastic interactions between particles do
not change their total energy but redistribute it be-
tween slow and fast particles. In addition, collisions
result in particle scattering, which leads to parti-
cle diffusion in pitch angle. This is of fundamental
importance for our analysis of the efficiency of the
acceleration mechanisms given below.

Naturally, it does not follow from the conservation
of the total kinetic energy of two particles as they col-
lide elastically that scattering does not affect the ac-
celeration efficiency in the trap. Previously (Bogachev
and Somov 2005), we showed in the collisionless
approximation that, irrespective of the acceleration
mechanism (betatron, Fermi, or both), the ratio of the
final particle energy, Kesc, to the initial one, K0, is
defined by the formula

Kesc/K0 = bm sin2 α. (1)

Here, α is the particle pitch angle and bm is the initial
mirror ratio, i.e., the ratio of the magnetic field in the
magnetic mirrors, Bm, to the initial field at the trap
center, B0:

bm = Bm/B0. (2)

It thus follows that if the particles are scattered in the
direction of large pitch angles (α → π/2), then their
final energy Kesc increases, although the energy K0

remains constant. Similarly, diffusion in the direction
of small pitch angles (α → 0) reduces the acceleration
efficiency. The preferential direction of the pitch-angle
diffusion depends on the particle pitch-angle distri-
bution and can be different at different trap collapse
stages and in different segments of the pitch-angle
distribution and the energy spectrum.

Generally, when particular acceleration mecha-
nisms in cosmic plasmas are considered, the role of
Coulomb collisions is reduced to the energy losses of
the accelerated particles, in particular, to the pres-
ence of a “loss barrier” at low velocities (see, e.g.,
Korchak 1980; Bykov et al. 2000). As a result, col-
lisions are believed to reduce the efficiency of any
acceleration mechanism. Meanwhile, it follows from
general principles (see Somov 2006b, Section 12.3)
that weak collisions between the accelerated elec-
trons in collapsing magnetic traps, which cause their
isotropization, increase the phase space volume of the
particles involved in the acceleration process. Thus,
in general, the electron acceleration efficiency in col-
lapsing magnetic traps can be increased significantly
(Kovalev and Somov 2003). We are interested in the
question of precisely how this effect is realized in
collapsing magnetic traps of solar flares.

FORMULATION OF THE PROBLEM
OF NUMERICAL SIMULATION

We will use the method of numerical simulation
described below to solve the problem of the effect
of Coulomb collisions on the particle acceleration in
a collapsing magnetic trap. We will describe a par-
ticle by two parameters, its kinetic energy K and
pitch angle α, and investigate their variations. We are
not interested in the question of precisely where the
particle is located inside the trap at each time. This
approach differs from the standard methods based on
the numerical integration of the equations of motion
for many interacting particles.

What factors change the energy K and pitch an-
gle α of a trapped particle? These primarily include
the betatron and Fermi accelerations, the scattering
and braking of particles in the background plasma,
their acceleration and braking by an electric field, and
other factors that can be significant under particular
conditions (see Somov 2006a). Let us write their
combined effect on K and α using the functions Fk

and Fα in the form of the equations

dK

dτ
= Fk(K,α, τ),

dα

dτ
= Fα(K,α, τ). (3)
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Here, τ is a generalized time, i.e., in general, any
variable whose monotonic change determines the dy-
namics of the process. When traps with a decreasing
length L are investigated, it is convenient to use the
dimensionless trap length l = L/L0, which changes
from 1 to 0, as the generalized time. For transversally
collapsing traps, this can be the parameter b = B/B0,
which changes from 1 to bm and characterizes the
degree of magnetic field compression. Naturally, the
physical time t normalized to the unit of measurement
can also be meant by τ .

The essence of our numerical model consists in
the following. We consider an arbitrary time τ and
assume that the distribution of trapped particles in
pitch angle and energy at this time is described by
a function f(K,α). This function is known. It is
specified by the initial conditions at the initial time
and is determined numerically from the preceding
evolutionary stages at τ . Let us now shift by a short
time interval ∆τ and introduce an unknown func-
tion f1(K1, α1), the distribution of trapped particles
at the time τ + ∆τ . We will link the two distributions
using the transformation Jacobian P:

2πf1(K1, α1)
√

K1 sin α1P (4)

= 2πf(K,α)
√

K sinα.

Here, K and α are the particle energy and pitch angle
at τ , while K1 and α1 are the particle energy and pitch
angle at τ1. According to Eqs. (3), these are related by

K1 = K + Fk∆τ, α1 = α + Fα∆τ. (5)

Using Eqs. (5), let us calculate the Jacobian

P =

⎛

⎝
∂α1
∂α

∂K1
∂α

∂α1
∂K

∂K1
∂K

⎞

⎠ =

⎛

⎝1 + ∂Fα
∂α ∆τ ∂Fk

∂α ∆τ

∂Fα
∂K ∆τ 1 + ∂Fk

∂K ∆τ

⎞

⎠ .

Once the terms have been grouped by orders of small-
ness in ∆τ , we have

P = 1 + D1∆τ + D2∆τ2, (6)

where the coefficients

D1 =
(

∂Fα

∂α
+

∂Fk

∂K

)
, (7)

D2 =
(

∂Fα

∂α

∂Fk

∂K
+

∂Fα

∂K

∂Fk

∂α

)
.

Let us now return to Eq. (4) and expand the distri-
bution f1(K1, α1) in terms of the small parameter ∆τ :

f1(K1, α1) = f1(α,K) (8)

+
(

∂f1

∂α

)
Fα∆τ +

(
∂f1

∂K

)
Fk∆τ.

Similarly, let us transform the factors sinα1 and
√

K1

appearing in (4):

sin α1 = sin α + cos αFα∆τ (9)

and
√

K1 =
√

K +
1

2
√

K
Fk∆τ. (10)

Substituting Eqs. (6), (8), (9), and (10) into (4) yields
the equation

f(K,α) =

[

f1(α,K) +
(

∂f1

∂α

)
Fα∆τ (11)

+
(

∂f1

∂K

)
Fk∆τ

](
1 +

Fα

tan α
∆τ

)

×
(

1 +
Fk

2K
∆τ

)(
1 + D1∆τ + D2∆τ2

)
.

Recall that the function f(K,α) is assumed to be
known, while the function f1(α,K) is unknown.
Since the distribution f1 appears on the right-hand
side of Eq. (11) together with its derivatives with
respect to the pitch angle and energy, the derived
equation is not closed. Note, however, that the func-
tions f1 and f differ by a quantity of the first order of
smallness in ∆τ :

f1 = f + o(∆τ). (12)

This means that disregarding the terms of the sec-
ond order of smallness, we can substitute ∂f/∂α
and ∂f/∂K, respectively, for the derivatives ∂f1/∂α
and ∂f1/∂K on the right-hand side of Eq. (11). After
the substitution, we obtain

f1 =

[(
1 +

Fα

tan α
∆τ

)(
1 +

Fk

2K
∆τ

)
(13)

×
(

1 + D1∆τ + D2∆τ2

)]−1

f

−
[(

∂f

∂α

)
Fα +

(
∂f

∂K

)
Fk

]
∆τ.

Formula (13) is defined to terms of the second order
of smallness in ∆τ . If we use f1 found in this way
to calculate the derivatives ∂f1/∂α and ∂f1/∂K on
the right-hand side of Eq. (11) and repeat the calcu-
lations, then the result will be accurate to the third
order of smallness in ∆τ and so on.

If the time step ∆τ is small compared to the
characteristic times of the processes being studied,
then the terms of all orders of smallness in ∆τ , ex-
cept for the first order, may be neglected when f1 is
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determined. In this case, Eq. (13) can be simplified
significantly:

∆f = −
(

Fα

tan α
f +

Fk

2K
f (14)

+
∂

∂α
fFα +

∂

∂K
fFk

)

∆τ.

SIMULATION OF THE ACCELERATION
PROCESSES

Equations (13) and (14) allow us to calculate how
the distribution of trapped particles f(K,α) changes
as the trap collapses. Let us first determine the ranges
within which the pitch angle α and energy K vary. If
a symmetric collapsing trap is considered, then the
pitch angle ranges from 0 to π/2. In general, the
kinetic energy can take on any values, although it
rarely exceeds 100 MeV in the solar corona for the
electrons accelerated in flares. Let us introduce a two-
dimensional grid whose points are specified by the
formulas

αi =
π

2
i

N − 1
, Kj = 10−2+7j/(N−1) keV, (15)

where N is the grid size (in our calculations, N =
1000), while the indices i and j run from 0 to N − 1.

Grid (15) uniformly covers the range of pitch an-
gles from 0 to π/2 with a step ∆αi = (π/2)/(N − 1)
and the range of energies from 0.01 keV to 100 MeV.
The step ∆Kj increases with K. This allows the dis-
tribution of particles at low energies, where the bulk of
them are located, to be investigated more accurately.

Before the beginning of our calculations, we
should specify the values of fij = f(Kj , αi) defining
the initial particle distribution at the grid points.
Except for the specially stipulated cases, this distri-
bution will be assumed to be thermal and isotropic:

fij =
1
4π

2√
πk3T 3

exp
(
−Kj

kT

)
. (16)

If it is necessary to abandon this assumption, then
it will suffice to replace the initial values at the grid
points with new ones.

Fermi Acceleration

Before turning to the simulation of specific accel-
eration mechanisms, we will note that the general
formula (13) shows how the distribution f at the
time τ is transformed into the distribution f1 at the
time τ + ∆τ . Naturally, it imposes no constraints on
the factors under which this transformation is made.
An unambiguous determination of these factors will
suffice.

To apply Eq. (13) for a specific physical process,
we must specify the functions Fα, Fk and the coef-
ficients D1, D2. Let us begin our investigation with
Fermi acceleration. In this case (Bogachev and So-
mov 2005), the particle pitch angle and energy in a
trap change as

tan α = ltan α0, K = K0

(
cos2 α0

l2
+ sin2 α0

)
,

(17)

where l is the dimensionless trap length that de-
creases from 1 to 0. Let us choose l as the generalized
time. Having determined τ ≡ l in Eqs. (3), we find

Fα =
dα

dl
=

sin 2α
2l

, (18)

Fk =
dK

dl
= −2Kcos2 α

l
.

Thus, the problem of the numerical simulation of
Fermi acceleration is completely defined and solv-
able, since the parameters D1 and D2 are expressed
in terms of the functions Fα and Fk. According to
Eqs. (7),

D1 = −1
l
, D2 = −2cos2α cos 2α

l2
. (19)

Substituting (18) into (14), we find that in the ap-
proximation including only the terms of the first order
of smallness, the equation for the numerical simula-
tion of Fermi acceleration is

∆f =
(

f − sin 2α
2

∂f

∂α
+ 2Kcos2 α

∂f

∂K

)
∆l

l
. (20)

Equation (20), among other things, allows the ac-
curacy of the numerical method to be estimated. Let
us transform the model distribution (denote it by fn)
into the number of particles in the trap,

Nn(l) = 2πN0 (21)

×
∞∫

0

π−αesc∫

∞

fn(K,α, l)
√

KdKsin αdα,

and compare it with the exact formula (Bogachev and
Somov 2005),

N(l) = N0
l
√

bm − 1
√

1 + (bm − 1)l2
. (22)

The ratio Nn/N is plotted against the trap length in
Fig. 1. We see that the results of our calculations
agree with the exact formula to within <1% up to a
time l ∼ 0.003. At smaller l, the accuracy decreases
rapidly for an obvious reason. According to (17), the
kinetic energy of the trapped particles increases with
decreasing l. This is the Fermi acceleration. At the
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Fig. 1. Ratio of the numerically determined number of particles, Nn, to the exact number of particles N in a collapsing magnetic
trap: a—betatron acceleration (Nn and N coincide to within ∼ 1%) and b—Fermi acceleration (the solutions coincide to
within 1% up to a time l ∼ 0.003).

final stage, when l approaches zero, K increases too
rapidly to be described as a small increment within the
interval ∆l. This can be avoided by using a nonlinear
time scale whose step decreases as l → 0. However,
we do not set the goal of investigating the particle
dynamics at excessively low l, at which the physical
processes disregarded in our simple model became
significant, and we do not wish to complicate it by
additional assumptions and features.

Betatron Acceleration

To simulate betatron acceleration, it is convenient
to choose the dimensionless parameter b, which in-
creases from 1 to bm for a transversally collapsing
trap, as the generalized time.

The particle pitch angle and kinetic energy for
betatron acceleration change as

tan α =
√

btan α, K = K0

(
cos2 α0 + b sin2 α0

)

(23)

(Bogachev and Somov 2005). Having determined
τ ≡ b in (3), we obtain

Fα =
sin 2α

4b
, Fk =

Ksin2 α

b
. (24)

According to (7), the coefficients

D1 =
1
2b

, D2 =
sin2α cos 2α

2b2
. (25)

Substituting (24) and (25) into Eq. (14) yields the
following expression for betatron acceleration:

∆f = −
(

f +
sin 2α

4
∂f

∂α
+ Ksin2 α

∂f

∂K

)
∆b

b
.

(26)

In contrast to Fermi acceleration, the increase in
particle energy for betatron acceleration is limited
(see Eq. (23) for b → bm). As a result, the numerical
simulation of betatron acceleration is stable up to
complete trap collapse, as demonstrated in Fig. 1.

COULOMB SCATTERING AND PARTICLE
BRAKING

Recall that we distinguish two effects related to
the Coulomb collisions between trapped particles in-
side a collapsing trap: the scattering of particles as
they interact with one another and their braking in a
high-temperature plasma (see the Section “Qualita-
tive Description of the Expected Effect”). Let us first
consider the first effect.

Particle Scattering

To take into account the Coulomb collisions, we
will add the term containing the collision integral
(∂f/∂t)c to Eqs. (20) and (26), more specifically,

∆fc =
(

∂f

∂t

)

c

∂t

∂τ
∆τ. (27)
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Here, the factor ∂t/∂τ relates the physical time t to
the generalized time τ .

For traps with a decreasing length, as previously,
we will set τ ≡ l. In this case,

∂t

∂τ
∆τ =

∂t

∂l
∆l =

L0

∂L/∂t
∆l = −tl∆l, (28)

where tl is the characteristic time of the decrease in
trap length. The minus arises, because ∂L/∂t < 0.

For betatron acceleration at τ ≡ b, we obtain

∂t

∂τ
∆τ =

∂t

∂b
∆b (29)

=
B0

Bm − B0

Bm − B0

∂B/∂t
∆b =

tb
bm − 1

∆b.

The characteristic transverse collapse time, tanb,
determines how fast the initial magnetic field B0 at the
trap center becomes equal to the field Bm in the trap
mirrors. In this case, the field increases by Bm–B0.

For the collision integral, we will use the simplest
model

(
∂f

∂t

)

c
=

fM − f

tc
, (30)

which describes the relaxation of the current distri-
bution f(K,α) to a Maxwellian one fM(K,α) under
the action of Coulomb collisions. This simplification
is admissible, since the time ∆τ during which the in-
teraction of particles is considered at each simulation
step is short.

The characteristic relaxation time, tc, is inversely
proportional to the collision frequency and is

tc =
√

meK
3/2

2πnee4lnΛ
, (31)

where the Coulomb logarithm

ln Λ = ln
3

2e3

(
k3T 3

πne

)1/2

. (32)

The relaxation to a Maxwellian distribution pro-
ceeds with different speeds among particles of dif-
ferent energies. Low-energy particles are thermal-
ized most rapidly. In contrast, the acceleration in the
Maxwellian tail is almost collisionless. For particles
with energies 10–100 keV at np ≈ 109 cm−3, the
characteristic time tc lies within the range 7–200 s.
Moreover, the effect of Coulomb collisions decreases
as the particles accelerate.

Substituting the collision integral (30) into
Eqs. (20) and (26), we will find formulas to calcu-
late the distribution function including the particle

scattering. For Fermi acceleration, according to (27)
and (28),

∆fс = −(fM − f)
(

tl
tc

)
∆l, (33)

whence

∆f =
(

f − sin 2α
2

∂f

∂α
+ 2Kcos2 α

∂f

∂K

)
∆l

l
(34)

− (fM − f)
tl
tc

∆l.

For betatron acceleration,

∆fс =
fM − f

bm − 1
tb

tc
∆b. (35)

In this case,

∆f = −
(

f +
sin 2α

4
∂f

∂α
(36)

+ Ksin2 α
∂f

∂K

)
∆b

b
+

(
fM − f

bm − 1

)
tb

tc
∆b.

The times tl and tb are determined by the trap
properties in the corona. Different authors give differ-
ent values for these times. Thus, for example, Brown
and Hoyng (1975) considered the collisionless be-
tatron acceleration of particles in a long-lived mag-
netic trap existing during the impulsive phase of a
flare for ∼1000 s. Traps with much shorter lifetimes
were suggested by Somov and Kosugi (1997). They
assumed the trap lifetimes to be determined by the
time it takes for the reconnected magnetic field lines
to move from the reconnection region (HTTCS) to
the top of a stationary magnetic loop, a magnetic
obstacle. As soon as the field line falls on this loop, the
trap disappears. The lifetime of an individual trap was
estimated by the authors to be 1–10 s. Having com-
pared these lifetimes with the characteristic Coulomb
collision time (7–200 s), we conclude that the colli-
sions are weak in short-lived collapsing traps. To a
first approximations, these may be neglected (Somov
and Kosugi 1997; Bogachev and Somov 2001, 2005,
2007). In contrast, the particle acceleration in long-
lived traps should be considered in the approximation
of strong collisions.

Particle Braking in Plasma

Let us now consider the case where there is a
background plasma together with energetic particles
in the trap. This plasma can be injected from a current
sheet together with particles or be located in the trap
before injection.

Although the separation of matter into particles
and plasma is somewhat arbitrary, it is justified in
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many problems. The background plasma is often
much denser and colder than the protons and elec-
trons interacting with it and, therefore, forms a self-
consistent MHD system whose properties differ from
those of fast particles.

When simulating the particle acceleration in a trap
with plasma, we will take into account the following
effects: betatron acceleration, Fermi acceleration, es-
cape through the loss cone, and relaxation in energy
and pitch angle for plasma particles; all of the listed
effects and energy losses through braking for fast
particles.

To be specific, let us consider the Fermi accelera-
tion of electrons. The equation for betatron accelera-
tion can be derived similarly. Let us transform Eq. (34)
in such a way that it includes the particle braking in
plasma. For this purpose, we will use the well-known
classical formula

dK

dt
= −a

np√
K

, a =
e4 ln Λ
4
√

2me
, (37)

where np is the plasma proton density and ln Λ is the
Coulomb logarithm. After transformations, we obtain

dK

dl
=

dK

dt

dt

dl
= a

np√
K

tl. (38)

Let us now return to the chain of Eqs. (18)–(20) and
modify its first equation

Fk =
dK

dl
= −2K cos2 α

l
+ a

np√
K

tl. (39)

Repeating the calculations, we find

∆f =

(

f − sin 2α
2

∂f

∂α
(40)

+ 2K cos2 α
∂f

∂K

)
∆l

l

− anptl√
K

(
∂f

∂K
− 1

2K
f

)
∆l − (fm − f)

tl
tc

∆l.

Here, the first, second, and third terms describe, re-
spectively, the collisionless Fermi acceleration, the
particle braking in plasma, and the scattering of par-
ticles as they interact with one another.

SIMULATION RESULTS

We now turn to the presentation of our simulation
results. We will denote the numerically calculated
distribution function by fn(K,α). The subscript n
distinguishes it from the exact function. Our main
goal will be to compare the simulation results with
the formulas derived in the collisionless approxima-
tion. This gives an insight into the extent to which

the collisions between particles affect the efficiency
of their acceleration in collapsing magnetic traps and
the shape of their spectrum.

We will begin with an analysis of the pitch-angle
distribution:

fn(α) =

∞∫

0

fn(K,α)
√

KdK. (41)

In collapsing traps with lifetimes shorter than 10 s,
Coulomb scattering affects only slightly the parti-
cle pitch-angle distribution. In long-lived traps with
lifetimes of ∼1000 s, the role of scattering is more
significant. The results of our calculations for this
case are shown in Fig. 2.

Curve a in both figures indicates the initial particle
pitch-angle distribution, which was assumed to be
isotropic. As the trap collapses, this distribution is
modified. In the collisionless approximation, as we
showed previously (Bogachev and Somov 2005), it
changes as

Fαa =
1
4π

l
√

b
(
sin2 α + bl2 cos2 α

)3/2
(42)

and takes the shape b and, in the approximation with
Coulomb particle scattering, the shape c. The dif-
ference between curves b and c shows the difference
between the two cases. As would be expected, the
interaction of particles causes isotropization of their
pitch-angle distribution. As a result, the latter is in-
termediate between two limits — the collisionless and
isotropic ones. The stronger the interaction, the closer
the distribution to the isotropic limit.

If we select a sector of pitch angles [α,α + dα]
in the pitch-angle distribution, then the number of
particles in the sector can both increase and de-
crease compared to the collisionless case as a result
of their scattering. Let us call this different directions
of isotropization (indicated by the arrows in Fig. 2).
These directions differ for betatron and Fermi accel-
erations. In traps with Fermi acceleration (Fig. 2a),
scattering increases the number of particles in the
region of large pitch angles through the decrease in
their number in the region of pitch angles close to
zero. In contrast, in traps with betatron acceleration,
the particles escape from the region of large pitch
angles and tend to fill the region of small α. It can
be said that the pitch angles of the scattered par-
ticles predominantly increase for Fermi acceleration
and decrease in traps with betatron acceleration com-
pared to the collisionless case.
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Fig. 2. Change in the pitch-angle distribution of trapped particles. (a) Fermi acceleration: a—initial distribution, which is
assumed to be isotropic; b—distribution at time l = 0.5 in the collisionless approximation; c—the same distribution but
with particle scattering. (b) Betatron acceleration: a—initial distribution; b—distribution at time b = 4 in the collisionless
approximation; c—the same distribution with particle scattering.

The next question is the effect of Coulomb scatter-
ing on the efficiency of particle confinement in a trap.
We will say that collisions increase the efficiency of
particle confinement if their number inside the trap,

Nn = 22N0

∞∫

0

π−αesc∫

αesc

fn(K,α)
√

KdK sin αdα, (43)

increases compared to the collisionless case. If it de-
creases, then collisions reduce the efficiency of par-
ticle confinement. The results of the corresponding
calculations are shown in Fig. 3. Curve a in the figure
corresponds to collisionless acceleration in the trap
(this case is described by Eq. (22)), while curves b
and c were obtained in the approximation of weak
and strong collisions. We see from their comparison

that the trap confines particles most efficiently in the
collisionless approximation. Even weak scattering of
particles transfers some of them into the loss cone,
i.e., reduces the number of particles in the trap. The
stronger the scattering, the faster the particle precip-
itation: in the case of strong collisions (curve c), the
number of particles N is appreciably smaller than that
in the case of weak ones (curve b).

The particle scattering efficiency depends on the
particle acceleration mechanism. At the same scat-
tering times, traps with Fermi acceleration (Fig. 3a)
confine particles better than those with betatron one.
The reason is that in the case of betatron acceleration,
the particles are scattered mainly in the direction of
the loss cone, where they are ejected from the trap. In
contrast, in traps with Fermi acceleration, the particle
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Fig. 3. Change in the number of particles in a trap: (a) Fermi acceleration and (b) betatron acceleration. Everywhere: a—
collisionless approximation, b—short-lived trap with a lifetime of 10 s with particle scattering, and c—long-lived trap with a
lifetime of 1000 s with particle scattering.

diffusion in pitch angle proceeds in a direction away

from the loss cone, which increases their lifetime in

the trap. Both these effects are clearly seen in Fig. 2,

which shows the preferential directions of the particle

diffusion in pitch angle. It can be said that the two

effects (loss-cone filling and pitch-angle diffusion)

collectively reduce the efficiency of particle confine-

ment for betatron acceleration and partially cancel

each other out for Fermi acceleration. As a result, a

difference in the efficiencies of particle confinement in

traps of different types arises.

Note that in the collisionless approximation,
transversally collapsing betatron traps confine par-
ticles better than longitudinally collapsing Fermi
traps. This is not true for strong scattering—a larger
number of particles and their higher density can be
reached in the case of Fermi acceleration.

The Coulomb interaction of particles also changes
significantly their spectrum. Figure 4 shows the re-
sults of our simulation of the particle energy distribu-
tion using the formula

fn(K) = 2π

π−αesc∫

αesc

fn(K,α) sin αdα (44)

for a Maxwellian injection spectrum. Compared to
the collisionless approximation, the fraction of low-
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Fig. 4. Energy distribution of trapped particles: (a) Fermi acceleration and (b) betatron acceleration. Everywhere: a—initial
particle distribution, which is assumed to be thermal with T = 108 K; b—final distribution in the collisionless approximation;
c—final distribution with particle scattering.

energy particles with K < 10 keV, which interact with
one another most efficiently and are the first to be
scattered into the loss cone, decreases sharply in
this distribution. In addition, the slope of the power-
law segment of the spectrum decreases in traps with
Fermi acceleration.

The investigation of power-law injection spec-
tra is also significant practically. In the collisionless
approximation, the shape of these spectra does not
change during acceleration—the power-law distri-
bution just shifts to the right (Bogachev and So-
mov 2007). If the particles interact with one another,
then the power-law shape of the distribution is not
retained (Fig. 5). A dip is formed in the region of low
energies (P1), because this part of the distribution
escapes through the loss cone. A power-law seg-

ment with a smaller slope than that of the injection
spectrum is formed in the region of energies P2. Fi-
nally, in the region of collisionless acceleration (P3),
which corresponds to very high energies, the spec-
trum remains a power law with the previous slope but
shifts to the right along the energy axis. As a result
of these changes, the particle spectrum at energies
above 10 keV becomes a double power law. Such
spectra were previously detected experimentally dur-
ing RHESSI observations of the Sun (see, e.g., Lin
et al. 2003).

We will also present our simulation results for
traps with plasma. To take into account the particle
braking using (40), we must know the function np(l),
i.e., the change in plasma density as the trap col-
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lapses. The results of our np(l) simulation are shown
in Fig. 6.

The plasma density in the trap changes due to
the decrease in trap volume and the plasma escape
through the loss cone. The former effect should lead
to an increase in density, while the latter effect should
lead to its decrease. Our calculations show that both
these effects are roughly balanced, i.e., np is kept
approximately at the same level throughout the accel-
eration process. In traps with short lifetimes, np ≈ n0,
while in long-lived traps, where the scattering into

the loss cone plays a greater role, np ≈ 0.1n0, i.e., the
mean density is approximately an order of magnitude
lower than the initial one.

Substituting the simulated function np(l) into
Eq. (40), we will find how the simulation results
will change if, apart from the particle scattering,
we take into the particle braking in plasma. Our
calculations showed that the presence of plasma with
a density up to 1010 cm−3 in the trap affected only
slightly the particle spectrum. To be more precise,
this effect turned out to be negligible compared to
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other factors—the acceleration of particles and their
scattering due to the interaction with one another.
Higher densities in the formation region of hard X-ray
emission in the corona are unlikely, since these are in
conflict with observations (see, e.g., Tsuneta et al.
1997).

However, we established that the plasma in the
trap affects the efficiency of particle confinement.
Figure 7 shows the function N(l), the change in
the number of particles in the trap, for three cases:
(a) collisionless acceleration, (b) acceleration with
particle scattering, and (c) acceleration with particle
scattering and braking in plasma. As can be seen,
in the latter case, the particles are confined least
efficiently.

CONCLUSIONS
We investigated the acceleration of particles in

collapsing magnetic traps in the solar corona in terms
of a model that included the particle scattering and
braking in plasma. Our main goal was to understand
the extent to which the Coulomb interaction of par-
ticles under coronal conditions affects the efficiency
of their acceleration and the shape of their spectrum.
Previously, the problem of particle motion in a col-
lapsing magnetic trap as applied to flare physics was
solved only in the collisionless approximation.

To answer the question of what role is played by the
Coulomb interaction, we simulated the distribution
of trapped particles as a function of longitudinal and
transverse trap collapse and compared the results of
our calculations with those obtained in the collision-
less approximation. The calculations were performed

for traps of two types: collapsing traps with lifetimes
of less than 10 s suggested by Somov and Kosu-
gi (1997) and long-lived traps with lifetimes compa-
rable to the duration of the impulsive phase of solar
flares. Both types of traps can probably be formed in
the corona during flares.

Our investigation showed that the Coulomb in-
teraction of particles is weak in short-lived traps. Its
characteristic times are comparable to or longer than
the trap lifetime. In traps with lifetimes longer than
100–1000 s, the collisions between particles should
be considered as strong ones.

From the standpoint of maximum particle energy,
including the Coulomb interaction does not reduce
the particle acceleration efficiency. The reason is that
a coronal plasma with a density 108–109 cm−3, typ-
ical of the solar corona, cannot effectively influence
high-energy (50–100 keV) particles and the acceler-
ation of the latter is virtually collisionless. The particle
spectra in the corresponding energy range are de-
scribed with a high accuracy by the formulas derived
in the collisionless approximation (Bogachev and So-
mov 2007).

At energies below 10 keV, the interaction of parti-
cles is strong. A dip produced by the braking of this
part of the distribution in plasma and by the effective
scattering of low-energy particles into the loss cone
is formed in the particle distributions in this energy
range.

Including the Coulomb interaction reduces the
efficiency of particle confinement in traps. The largest
and smallest numbers of particles are reached, re-
spectively, in collisionless traps and in long-lived
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traps with effective particle scattering and braking.
Nevertheless, even in the latter case, collapsing traps
are capable of confining more than 20% of the injected
particles for a long time (up to half of their lifetime).
This percentage exceeds 80% for short-lived traps
and 90% for traps with collisionless acceleration.

The efficiency of particle confinement also depends
on the predominant acceleration mechanism, the be-
tatron or Fermi one. In the collisionless approxima-
tion, the particles are better confined in traps with
betatron acceleration. This is not true when the scat-
tering is taken into account—a larger number of par-
ticles and their higher density are reached in the case
of Fermi acceleration.

The interaction of particles with one another and
with plasma causes changes in their spectra that can
be detected through observations. A double-power-
law spectrum with an inflection point at energies
above 10 keV is formed for a power-law spectrum of
particle injection from the reconnection region inside
traps. Such spectra were previously detected experi-
mentally during RHESSI measurements of the hard
X-ray emission from coronal sources. Our model ex-
plains these observations.
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