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Abstract

Solar flares are accessible to a broad variety of observational methods to see and inves-
tigate the magnetic reconnection phenomenon in high-temperature strongly-magnetized
plasma of the solar corona. An analysis of the topological peculiarities of magnetic field
in active regions shows that the topological trigger effect is necessary to allow for in order
to construct models for large eruptive flares.

The topological trigger is not a resistive instability which leads to a change of the
topology of the field configuration from pre- to post reconnection state. On the contrary,
the topological trigger is a quick change of the global topology, which dictates the fast
reconnection of collisional or collisionless nature.

The current state of the art and development potential of the theory of collision-
less reconnection in the strong magnetic fields related to large flares are briefly reviewed.
Particle acceleration is considered in collapsing magnetic traps created by reconnection.
In order to explain the formation of coronal X-ray sources, the Fermi acceleration and
betatron mechanism are simultaneously taken into account analytically in a collisionless
approximation. Finally, the emphasis is on urgent unsolved problems of solar flare physics.

1 The role of magnetic fields in flares

1.1 Basic questions

Frequent observations of solar flares became available in the 1920s. Early studies showed
that flares were associated with magnetic fields. Estimates of the energy required to power
large flares led to the conclusion that flares must be electromagnetic in origin. Step by step
it became more clear that a flare is the result of reconnection of magnetic fields. However
there were some objections to the hypothesis that the energy of a flare could be stored in
the form of a magnetic field of reconnecting current layers (RCLs).

(1) It was claimed that measurements of photospheric magnetic fields do not demon-
strate an unambiguous relation between flares and the changes of the fields. More exactly,
the changes in question are those that occur immediately before a flare to create it. These
changes were supposed to be the cause of a flare.
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(2) Next objection was related to the time of dissipation of the magnetic field in a
volume that would contain the energy necessary for a flare. If this time is estimated in
a usual way as the diffusion time in a solar plasma of a finite conductivity, then it is too
long compared with the observed duration of a flare.

(3) The third objection was the most crucial one: the observers had never seen real
RCLs in solar flares.

Starting from Severny [1], solar observers have been studying flare-related changes in
photospheric magnetic fields to provide information how an active region (AR) stores and
releases its energy (see Lin et al. [2], Wang [3]). However the role of photospheric fields is
still an area of ongoing research (Section 1.3). What are the answers of the reconnection
theory to the objections listed above?

1.2 Concept of magnetic reconnection in solar flares

According to contemporary views, the principal flare process is contingent on the accu-
mulation of the free magnetic energy in the corona. By ‘free’ we mean the surplus energy
above that of a potential magnetic field

Bα(r) =
∂ψ

∂rα
. (1)

Here ψ(r) is the potential of the field, the index α = 1, 2, 3. The potential field has the
sources (sunspots, background fields) in the photosphere.

The free magnetic energy is related to the electric currents in the corona. A solar flare
corresponds to rapid changes of these currents. So we distinguish between two processes:
a slow accumulation of energy and its fast release, a flare. Let us see them in a classi-
cal example, the evolution of the quadrupole configuration of sunspots (Figure 1). The
sunspots of pairwise opposite polarity are shown: N and S represent a bipolar group of
sunspots in an AR, n and s model a new emerging flux. All sunspots are placed along the
axis x in the photospheric plane Ph at the bottom of the chromosphere Ch.

The field line A1 in Figure 1a is the separatrix line of the initial state (a), this line
will reconnect first. X is the zeroth point of the field at the initial state, here the RCL is
created at the state (b). The field line A2 is the separatrix of the final state (c) or the last
reconnected field line. Therefore δA = A2 −A1 is the reconnected magnetic flux.

Three solid arrows under the photosphere Ph in Figure 1b show a slow emergence of
a new magnetic flux (the sunspots n and s). The sunspots have been emerged but the
field lines do not start to reconnect. More exactly, they reconnect too slowly because of
high conductivity of plasma in the corona. In the first approximation, we neglect this
reconnection.

In general, the redistribution of fluxes appears as a result of the slow changes of the
field sources in the photosphere. These changes can be either the emergence of a new flux
from below the photosphere (Figure 1) or other flows of photospheric plasma, in particular
the shear flows, inhomogeneous horizontal flows along the neutral line of the photospheric

2



N s n S

N s n S

N s n S

(a)

(b)

(c)

A

A

1

2

RCL

Ch

Ph

x

X

Figure 1: The classical 2D cartoon of magnetic reconnection in a solar flare. Three states
of the field: (a) the initial one, (b) the pre-reconnection state, (c) the final state after
reconnection.

magnetic field. For this reason, an actual (slow and fast) reconnection in the corona is
always a three-dimensional (3D) phenomenon (Section 2).

1.3 Some new results of the magnetic field observations

Let us come back to objection (1) in Section 1.1 to the reconnection theory of flares.
According to the theory, the free energy is related to the current J inside the RCL. A
flare corresponds to rapid changes of this current. However the magnetic flux through the
photosphere Ph (Figure 1) changes only little over the whole area of a flare during this
process, except in some particular places, for example, between close sunspots N and s.

Sunspots in the photosphere are weakly affected by a flare because the plasma in the
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photosphere is almost 109 times denser than the plasma in the corona. It is difficult
for disturbances in the tenuous corona to affect the extremely massive plasma in the
photosphere. Only small perturbations penetrate into the photosphere.

The same is true in particular for the vertical component of the field. The photospheric
magnetic field changes a little during a flare over its whole area. As a consequence,
after a flare the large-scale structure in the corona can remain free of noticeable changes,
because it is determined mainly by the potential part of the field above the photosphere.
More exactly, even being disrupted, the structure will come to the potential configuration
corresponding to the post-flare position of the photospheric sources.

On the other hand, in the “Bastille-day” flare on 2000 July 14 and in some other large
flares, it was possible to detect the real changes in a sunspot structure just after a flare.
The outer penumber fields became more vertical due to reconnection in the corona during
a flare (Liu et al. [4], Wang et al. [5]). One can easily imagine such changes by considering
Figure 1 between sunspots N and s.

Sudol and Harvey [6] used the magnetograms to characterize the changes in the ver-
tical component of photospheric field during 15 large flares. An abrupt, significant, and
persistent change occurred in at least one location within the flaring AR during each event
after its start. Among possible interpretations, Sudoh and Harvey favor one in which the
field changes result from the penumber field relaxing upward by reconnecting magnetic
field above the photosphere. This interpretation is similar to than one given by Liu et
al. [4] and Wang et al. [5].

As for objection (2) to the hypothesis of accumulation of energy in the form of magnetic
field of current layers, the rapid dissipation of the field necessary for a flare is explained
by the theory of super-hot turbulent-current layers (Section 4). In what follows, we advo-
cate that the potential part of magnetic field in the solar corona determines a large-scale
structure and properties of active regions, while the reconnecting current layers determine
energetics and dynamics of flares.

2 Three-dimensional reconnection in flares

2.1 The first topological model of an active region

2.1.1 The potential field approximation

Gorbachev and Somov [7,8] have developed a 3D model for a potential field in the AR 2776
with an extended flare of 1980 November 5. Before discussing the AR and the flare (see
Section 2.2), let us consider, at first, the general properties of this class of models called
topological .

In the simplest model (Gorbachev and Somov [9]), four field sources – the magnetic
“charges” e

N
and e

S
, en and es, located in the planeQ under the photosphere Ph (Figure 2)

– are used to reproduce the main features of the observed field in the photosphere related
to the four most important sunspots: N, S, n and s. As a consequence, the quadrupole
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Figure 2: A model for the magnetic field of four sunspots of pairwise opposite polarity.
The sunspots N and S in the photospheric plane Ph. The separatrices S1 and S 2 cross
at the separator X1XX2 above the plane Q of the effective magnetic charges e

N
, e

S
, etc.

model reproduces only the large-scale features of the actual field in the corona related to
these sunspots. As a minimum, the four sources are necessarily to describe two interacting
magnetic fluxes having the two sources per each. The larger number of sources are not
necessarily much better.

The main features are two magnetic surfaces called the separatrices: S1 and S 2 (Fig-
ure 2). They divide the whole space above the plane Q into four regions and, correspond-
ingly, the whole field into four magnetic fluxes having different linkages. The field lines
are grouped into four regions according to their termini. The separatrices are formed from
lines beginning or ending at magnetic zeroth points X1 and X 2. For example, the field
lines originating at the point X1 form a separatrix surface S1.

The topologically singular field line X1XX2, lying at the intersection of the separat-
rices, belongs to all four fluxes (two reconnecting and two reconnected fluxes) that interact
at this line, the 3D magnetic separator . So the separator separates the interacting fluxes
by the separatrices. Detection of a separator, as a field line that connects two zeroth
points in the Earth magnetotail, by the four Cluster spacecraft (Xiao et al. [10]) provides
an important step towards establishing an observational framework of 3D reconnection.

2.1.2 Classification of zeroth points

Let us clarify properties of the zeroth points of the magnetic field discussed above. In
the vicinity of a zeroth point Xi located at r = ri in the plane Q, the vector of field is
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represented in the form

Bα(r) =
∂ψ

∂rα
= Mαβ(ri) ξβ . (2)

Here ψ(r) is the potential of the field, the vector ξ = r− ri, the index i = 1, 2 ; the Greek
indices α, β = 1, 2, 3 . The symmetric matrix

Mαβ(ri) =
∂2ψ (ri)

∂rα ∂rβ
=

∣

∣

∣

∣

∣

∣

∣

λ 1 0 0
0 λ 2 0
0 0 λ 3

∣

∣

∣

∣

∣

∣

∣

(3)

in the frame of coordinates r ′α related to the eigenvectors e ′
α, λα are the eigenvalues of the

matrix. Because the field is potential, all the λα are real numbers. Positive eigenvalues λα

correspond to the field lines emerging from a zeroth point and negative λα correspond to
the lines arriving at a point ri.

If the determinant
detMαβ(ri) = λ 1 λ 2 λ 3 6= 0 , (4)

then the zeroth point is called non-degenerate. Such a point is isolated , i.e., the magnetic
field in its vicinity does not vanish. Since div B = 0, we obtain a condition

λ 1 + λ 2 + λ 3 = 0 . (5)

Therefore there exist only three following classes of zeroth points.

Type A. All eigenvalues λα 6= 0. This corresponds to two zeroth points shown in
Figure 2. At the first one X 1

λ 1 < 0 , λ 2 > 0 , λ 3 > 0 . (6)

Using the analogy with fluid flow, we say that field lines “flow in” along the x axis and
“flow out” along the separatrix plane (y, z) as shown in the left bottom insert in Figure 2.
We shall call this subclass of non-degenerate zeroth point as the Type A− since λ 1 < 0 .

On the contrary, at the point X 2

λ 1 > 0 , λ 2 < 0 , λ 3 < 0 . (7)

This will be the Type A+ since λ 1 > 0 .

Type B. This is a degenerate case

λ 1 = −λ 2 6= 0 , λ 3 = 0 . (8)

It can occur, for example, if a zeroth point belongs to a neutral line, i.e. a line consisting
of zeroth points of the hyperbolic type.

Type C. This is another degenerate case

λ 1 = λ 2 = λ 3 = 0 . (9)

It means that three neutral lines intersect at the point ri .
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Table 1: Topological indices of singular and zeroth points

Type of a point Itop

Maximum of potential ψ +1
Minimum of potential ψ −1
Zeroth point of Type A+ +1
Zeroth point of Type A− −1

2.1.3 The number of zeroth points

In order to use some general theorems of differential geometry, we have to smooth the point
charges of magnetic field. The smoothed potential ψ of a positive source has a maximum
at the point where this charge is located. Hence at this point all eigenvalues λα > 0. At
a singular point with a negative charge, all λα < 0, and the potential has a minimum.

In order to establish a relation between the number of non-degenerate points, let us
introduce the topological index

Itop(ri) = sign [ detMαβ(ri) ] = sign (λ 1 λ 2 λ 3 ) . (10)

Here the function sign (x) = +1 if x > 0 and sign (x) = −1 if x < 0. Thus the possible
types of points have the indices presented in Table 1.

According to Dubrovin et al. [11] (see Part II, Ch. 3, § 14), with some difference in
notations that are standard in physics, we formulate the following statement.

Theorem 1: For a 3D potential magnetic field, in a general 3D case of magnetic source
location,

∑

i

Itop(ri) =
1

4π

∫

B

[

∂B

∂θ
× ∂B

∂ϕ

]

dθ dϕ

B3
= J (3) , (11)

where the integral is taken over the sphere of infinite radius.

If the total magnetic charge

e tot =
∑

i

ei > 0 , (12)

then the integral J (3) = +1. Let Nmax (Nmin) is the number of maxima (minima) of the
potential ψ of magnetic field B, NA+ (NA−) is the number of zeroth points of Type A+
(A−), then according to (11) we have

Nmax −Nmin +NA+ −NA− = +1 . (13)
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If e tot < 0 then J (3) = −1, and we write −1 on the right-hand side of Equation (13).
If the total charge

e tot = 0 , (14)

then J (3) = 0, and the following relation is valid:

Nmax −Nmin +NA+ −NA− = 0 . (15)

For the magnetic field shown in Figure 2, Nmax = Nmin = 2. Hence formula (15) gives
us an equation

NA+ = NA− (16)

but not the total number of zeroth points, that we need.

However, if all the charges are located in the plane Q as illustrated by Figure 2, then we
can obtain an additional information about the number of zeroth points, another equation.
Let us determine the topological index for the 2D vector field in the same plane

B (2)(x, y) = {Bx, By } (17)

following general definition from Dubrovin et al. [11]

I
(2)
top (ri) = sign (λ 1 λ 2 ) . (18)

Hence the possible types of non-degenerate points have the indices presented in Table 2.

Table 2: Topological indices of singular and zeroth points of the 2D field in the plane Q

Type of a point I
(2)
top

Maximum of potential ψ +1
Minimum of potential ψ +1
Zeroth point (a saddle) −1

In this case of a plane arrangement of magnetic charges, we have to rewrite Theorem 1
as follows.

Theorem 2: For a potential magnetic field in the plane Q, in which the charges are
located,

∑

i

I
(2)
top (ri) =

1

2π

∫

[

B (2)(x, y)
]−2

(Bx dBy −By dBx ) = J (2) . (19)
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Here the integral is taken over the circle of infinite radius in the positive direction of
circulation.

For a plane field (17) of the dipole type (i.e., e tot = 0 and an effective dipole mo-
ment m 6= 0) the integral J (2) = 2. Thus we have

N (2)
max +N

(2)
min −N

(2)
A = 2 , (20)

where N
(2)
max (N

(2)
min) is the number of maxima (minima) of the potential ψ = ψ(x, y, 0) in

the plane z = 0, N
(2)
A is the number of zeroth points, the saddles. Because of the symmetry

relative to the plane Q, everywhere in the plane (outside of the charges) Bz = 0. Therefore
the saddles of the plane field are zeroth points of a 3D field.

For the field shown in Figure 2, N
(2)
max = 2 and N

(2)
min = 2. Hence, according to

formula (20), the number of zeroth points N
(2)
A = 2. By using Equation (16), we conclude

that, in the simple case under consideration,

NA+ = NA− = 1 . Q.e.d. (21)

2.1.4 The electric currents needed

The potential field model does not include any currents and so cannot model an energy
stored in the fields and released in flares. Therefore here we introduce some currents and
energetics to a flare model.

The topological model under consideration does not mean, of course, that we assume
the existence of magnetic charges under the photosphere as well as the real zeroth pointsX1

and X 2 in the plane Q which does not exist either. We assume that above the photosphere
the large-scale field can be described in terms of such a simple model. If the magnetic
sources move and change, the field also changes. It is across the separator that the
magnetic fluxes are reconnected so that the field could remain potential, if there were no
plasma.

In the presence of a plasma of low resistivity, the separator plays the same role as the
hyperbolic zeroth line of magnetic field, familiar from 2D MHD problems (Syrovatskii [12],
Brushlinskii et al. [13], Biskamp [14,15]; see review of a current state of numerical sim-
ulations and laboratory experiments in Yamada et al. [16]. In particular, as soon as the
separator appears, the electric field E 0 induced by the varying magnetic field produces
an electric current J along the separator. The current interacts with the potential field
in such a way that the current assumes the shape of a thin wide current layer (RCL in
Figure 3).

In a low-resistivity plasma the current layer hinders the redistribution of magnetic
fluxes, their reconnection. This results in an energy being stored in the form of magnetic
energy of a current layer – the free energy. Therefore the slowly-reconnecting current
layer appears at the separator (Syrovatskii [17], Longcope and Cowley [18]) in a pre-flare
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Figure 3: A schematic view of a RCL with a total current J at the separator.

stage. If for some reason (see Somov [19], Cassak et al. [20], Uzdensky [21]) reconnection
becomes fast, the free magnetic energy is rapidly converted into energy of particles. This
is a flare. The rapidly-reconnecting current layer, being in a high-temperature turbulent-
current state (Section 4), provides the energy fluxes along the reconnected field lines.

Reconnection for 3D models without zeroth points in and above the photosphere, as we
assumed in Figure 3, is qualitatively the same as the 2D reconnection in the models with
a non-zero longitudinal magnetic field B ‖ . The inductive electric field along the separator
is the driving force of reconnection. The field lines going to reconnect are pushed into the
RCL and the lines coming out of the RCL are pulled by the longitudinal electric field.
Thus reconnection in 3D should be taken to mean effects associated with the RCL, as in
2D (Greene [22], Lau and Finn [23]).

An actual 3D reconnection at a separator proceeds in the presence of an increasing (or
decreasing) longitudinal field B ‖ . What factors do determine the increase (or decrease)
of this field? - The first of them is the global field configuration, i.e. the relative position
of the magnetic field sources in an AR. It determines the position of a separator and the
value of the longitudinal field at the separator and in its vicinity. This field is not uniform,
of course.

The second factor is evolution of the global configuration, more exactly, the electric
field E 0 related to the evolution and responsible for driven reconnection at a separator.
The direction of reconnection - with an increase (or decrease) of the longitudinal magnetic
field - depends on the sign of the electric field projection on the separator, i.e. on the sign
of the scalar product (E 0 · B ‖ ). In general, this sign can be plus or minus with equal
probabilities, if there are no preferential configurations of the global field or no preferential
directions of the AR evolution.
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2.2 The solar flare on 5 November 1980

2.2.1 Observed and model magnetograms

The first well-studied example was the extended 1B/M4 flare on 5 November 1980 (e.g.
Rust and Somov [24]) observed by the satellite SMM (Figure 4). Three bright hard X-

PNL

Figure 4: The flare of 1980 November 5 as observed by SMM .

ray (HXR) kernels A, B and C are well distinguished in the right panel. The soft X-ray
(SXR) elements of the flare, as seen in the left panel, consist presumably of two overlapping
coronal loops, AB and BC. Their footpoints in the chromosphere have been identified as
the sources of HXR and Hα emission.

Figure 5 shows the line-of-sight magnetogram of the AR 2776 where the flare occurred.
Numbers shows a magnitude of the field measured in 102 G. Two narrow flare ribbons
are shown on either side of the photospheric neutral line (PNL). Let us identify the four
largest regions in which the field of a single polarity is concentrated: two of northern
polarity and two of souther polarity. Since the AR is comparatively close to the center of
the solar disk, the magnetogram represents the vertical component Bz at the photospheric
level fairly well.

Let us make a model of the magnetogram shown in Figure 5. With this aim, we calcu-
late the vertical component Bz of magnetic field in the photospheric plane Ph (plane z = 0
in this Section) in the potential approximation by using the simple formula

B (x, y, z) =
4
∑

i=1

ei
| r− ri | 2

× r− ri

| r − ri |
. (22)

Here ei are the effective charges of field, and ri are their radius vectors:

e1 = − 2.5 , r1 = {− 0.8 , 0 ,− 0.1 } ;
e2 = − 1.0 , r2 = { 0.1 ,− 0.4 ,− 0.1 } ;
e3 = + 3.0 , r3 = {− 0.25 , 0.15 ,− 0.1 } ;
e4 = + 4.5 , r4 = { 0.5 , 0.16 ,− 0.1 } .
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Figure 5: The line-of-sight component of magnetic field in AR 2776. Two flare ribbons
observed in Hα line are shown as shadow areas; FR1 is the longer one.

Note that the total magnetic charge

e tot = 4 > 0 . (23)

Thus, in order to determine a relation between the number of zeroth points and the
numbers of field sources, we have to use formula (13). It gives us an equation

NA+ = NA− + 1 . (24)

We shall come back to this equation, considering a topological portrait of the AR.
The parameters ei and ri have been selected in order to reproduce in an optimal way

the fluxes of individual polarities in the photospheric plane (Figure 6a) as well the shape
of the photospheric neutral line (PNL in Figure 6b). The calculated simplified neutral
line (SNL) smoothes the curve PNL in small scales but conserves its S-type shape in
a large scale, in the linear scale of the AR. In Figure 6, the length unit equals 150 ′′ ≈
1.1 × 1010 cm; the numbers near the curves show the values of the vertical component of
the field measured in 102 G.

Because the simplest model uses a minimal number of magnetic sources – four, which
is necessary to describe the minimal number of interacting fluxes – two, we call it the
quadrupole-type model (Figure 6). This is not an exact definition (because in the case
under consideration e

N
6= − e

S
and en 6= − es) but it is convenient for people who know

the exact-quadrupole model (Sweet [25]). In fact, the difference, the presence of another
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Figure 6: The model magnetogram. (a) Positions and magnitudes of the sources fit
the main features of the observed magnetogram. (b) The calculated simplified neutral
line (SNL) approximates the observed photospheric neutral line (PNL).

separator in the model under consideration, is not small and can be significant for actual
ARs. The second separator may be important to give accelerated particles a way to escape
out of an AR in the interplanetary space.

We calculate the field lines integrating the ordinary differential equations

dx

Bx
=
dy

By
=
dz

Bz
. (25)

Here (dx, dy, dz) is an arch element directed along a field line. The vector B is determined
at each point by formula (22).

2.2.2 Topological portrait of the active region

The topological properties of magnetic field are determined by the number and locations
of zeroth points. In the case under consideration, there are three points in the plane Q
(here z = −0.1) shown in Figure 7. The coordinates of these points are:

X1 = {− 0.133 ,− 0.739 ,− 0.1 } ,
X2 = { 0.076 , 0.179 ,− 0.1 } ,
X3 = {− 2.26 ,− 0.439 ,− 0.1 } .

Figure 7 shows the topologically important field lines in the plane (x′, y′) which is
the plane Q of the sources e1, e2, e3, and e4. Since the total charge e tot > 0, instead of

13



e

X

X

1

2

Q

X
3

2

e
1

e
3 e

4

x

y

NL

-2 -1

1

-1

L
1

Figure 7: The topological portrait of the AR 2776 where the extended 1B/M4 solar flare
of 1980 November 5 occurred.

Equation (20) for the number of zeroth points of 2D field (17), we have an equation

N (2)
max +N

(2)
min −N

(2)
A = 1 , (26)

because according to formula (19) we find the value J (2) = 1. It follows from (26) that
the total number of zeroth points

N
(2)
A = 3 . (27)

On the other hand,

N
(2)
A = NA+ +NA− . (28)

With account of (24) taken, we conclude that NA+ = 2 and NA− = 1.
The field lines shown in Figure 7 play the role of separatrices and show the presence

of two separators. Two points X1 (Type A+) and X 2 (Type A−) are located in the
vicinity of the magnetic sources and are connected by the first separator shown by its
projection, the thin dashed line L1. Near this main separator, the field and its gradient
are strong and determine the flare activity of the AR.

Another separator starts from the point X3 (the Type A+) far away from the sources
and goes much higher above the AR to infinity. The second separator can be responsible
for flares in weaker magnetic fields and smaller gradients high in the corona. The second
separator is also a good place for the particles accelerated along the main separator to
escape from the AR in the interplanetary space.
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Figure 8: Potential field lines cross a region of primary energy release E situated at the
apex of the main separator (boldface dashed curve). Two flare ribbons are formed where
these lines cross the photospheric plane Ph.

We suppose that a part of the flare energy is released in some region E near the apex
of the main separator. The energy fluxes F

E
propagate along the field lines connecting the

energy source with the photosphere. Projections of the energy source E on the photospheric
plane Ph along the field lines are shown as two “flare ribbons” FR1 and FR2 in Figure 8.
Therefore the model allows us to identify the flare brightenings, in the Hα line as well as
in EUV and HXRs, with the ribbons located at the intersection of the separatrices with
the chromosphere which is placed slightly above the photospheric plane (Ph).

The characteristic saddle structure of the orthogonal (perpendicular to a separator)
field B⊥ in the vicinity of the separator leads to a spatial redistribution of the energy
flux F

E
of heat and accelerated particles. This flux is split apart in such a way that it

creates the long-narrow ribbons. Thus, at first, the model had reproduced the observed
features of the real solar flare. In particular, the model predicts the simultaneous flaring of
the two chromospheric ribbons. Moreover it predicts that a concentration of the field lines
that bring energy into the ribbons is higher at the edges of the ribbons, i.e. at relatively
compact regions indicated as A, B, and C. Here the Hα brightenings must be especially
bright. This is consistent with observations of Hα “kernels” in this flare.

2.3 Features of the flare topological model

Since in the kernels the energy fluxes are concentrated, the impulsive heating of the chro-
mosphere creates a fast expansion of high-temperature plasma upwards into the corona
(e.g. Somov [26]). This effect is known as the chromospheric “evaporation” observed in
the EUV and SXR emission. Evaporation lights up the coronal loops in flares.

The topological model also shows that the flare ribbons as well as their edges with
Hα kernels are connected to a common source of energy at the separator (see E in Figure 9).
Through this region all four kernels are magnetically connected to one another. Therefore
the SXR loops look like they are crossing or touching each other.
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Figure 9: Field lines that connect the Hα kernels A, B, C, and D. Chromospheric
evaporation creates a picture of the crossing SXR loops.

So the reconnecting magnetic fluxes are distributed in the corona in such a way that
the two SXR loops may look like that they interact with each other. That is why
such structures are usually considered as evidence in favor of a model of two interacting
loops (Sakai and de Jager [27]). The difference, however, exists in the primary source
of energy. High concentrations of electric currents and twisted magnetic fields inside the
interacting loops are created by some under-photospheric dynamo mechanism. If these
currents are mostly parallel they attract each other giving an energy to a flare (Gold and
Hoyle [28]). On the contrary, according to the topological model, the flare energy comes
from an interaction of magnetic fluxes that can be mostly potential.

The S-shaped structures observed in SXRs are usually interpreted in favour of
non-potential fields. In general, the shapes of loops are signature of the helicity of their
magnetic fields. The S-shaped loops match flux tubes of positive helicity, and inverse
S-shaped loops match flux tubes of negative helicity (Pevtsov et al. [29]). However, in
Figure 9, the S-shaped structure CEB connecting the bright points C and B results from
the computation of the potential field.

In the AR 2776, Den and Somov [30] found a considerable shear of a potential field
above the PNL near the brightest loop AB. Many authors concluded that an initial energy
of flares is stored in magnetic fields with large shear. However, such flares presumably were
not the case of potential field having a minimum energy. This means that the presence of
observed shear is not a sufficient condition for generation of a flare.

The topological model by Gorbachev and Somov [7] postulated a global topology for
an AR consisting of four main fluxes. Reconnection between, for example, the upper and
lower fluxes transfers a part of the magnetic flux to the two side systems. Antiochos [31]
addresses the following question: What is the minimum complexity needed in the magnetic
field of an AR so that a similar process can occur in a fully 3D geometry? He starts with a
highly sheared field near the PNL held down by an overlying unsheared field. Antiochos
concludes that a real AR can have much more complexity than very simple configurations.

16



We expect that the large-scale topology of four-flux systems meeting along a separator is
the basic topology underlying eruptive activity of the Sun.

On the other hand, configurations with more separators (as well as with multiply
connected magnetic sources and zeroth-point pairs; see Parnell [32]) have more opportunity
to reconnect and would thus more likely to produce flares. Such complicated configuration
would presumably produce many small flares to release a large excess of energy in an AR
rather than one large flare.

3 Topological trigger for solar flares

3.1 What is that?

The effect of topological trigger was suggested by Gorbachev et al. [33] in spite of a
large language barrier between its mathematical background (Dubrovin et al. [11]) and
the physical terms used by models of ARs. Many people simply understood the simple
topological model but, unfortunately, not the topological trigger.

Fortunately, Barnes [34] investigated a relationship between solar eruptive events and
the existence of the coronal zeroth points of field, using a collection of over 1800 vector
magnetograms. Each of them was subjected to the charge topology analysis, including
determining the presence of coronal zeroth points. It appears that the majority of events
originate in ARs above which no zeroth point (a magnetic null) was found. However a
much larger fraction of ARs, for which a coronal zeroth point was found, were the source
of an eruption than ARs for which no zeroth point was found. Clearly the presence of a
coronal zeroth point is an indication that an AR is more likely to produce an eruption,
as 35 % of the ARs for which such a point was found produced eruptions, compared with
only 13 % of ARs for which no zeroth point was found. We consider this fact as indication
that the topological trigger can play a significant role in the origin of eruptive flares. This
is also consistent with the study of Ugarte-Urra et al. [35].

The possibility of a topological approach to the question of the trigger for flares was not
often discussed in the literature. Syrovatskii and Somov [36] considered a slow evolution
of coronal fields and showed that, during such an evolution, some critical state can be
reached, and fast dynamic phase of evolution begins and is accompanied by a rapid change
of magnetic topology. For example, it is possible a rapid ‘break-out ’ of a ‘new’ magnetic flux
through the ‘old’ coronal field of an AR (Figure 10). When an effective magnetic moment
of the internal growing group of sunspots becomes nearly equal an effective moment of the
AR (Syrovatskii [37]), the closed configuration quickly turns into the open one.

In this paper we discuss another possibility. Near a separator the longitudinal com-
ponent B ‖ dominates because the orthogonal field B⊥ vanishes at the separator. Recon-
nection in the RCL at the separator just conserves the flux of the longitudinal field (see
Somov [19]). At the separator, the orthogonal components are reconnected. Therefore
they actively participate in the connectivity change, but the longitudinal field does not.
Thus it seems that the longitudinal field plays a passive role in the topological aspect of
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Figure 10: Topological change of a potential field created by four magnetic sources. (a)
The closed configuration with the zeroth point X. (b) The critical instant when the
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Figure 11: The zeroth point X c rapidly moves along the separator and switches back the
longitudinal component B‖ of magnetic field.

the process but it influences the physical properties of the RCL, in particular the recon-
nection rate. The longitudinal field decreases compressibility of plasma flowing into the
RCL. When the longitudinal field vanishes, the plasma becomes “strongly compressible”,
and the RCL collapses, i.e. its width decreases substantially. As a result, the reconnection
rate increases quickly. However this is not the whole story.

The important exception constitutes a zeroth point which can appear on the sepa-
rator above the photosphere. Gorbachev et al. [33] showed that, in this case, even very
slow changes in the configuration of field sources in the photosphere can lead to a rapid
migration of such a point along the separator (Figure 11) and to a topological trigger
of a flare. This essentially 3D effect will be considered below in more detail. Note that
the topological trigger effect is not a resistive instability which leads to a change of the
topology of the field configuration from pre- to post reconnection state. On the contrary,
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the topological trigger is a quick change of the global topology, which dictates the fast
reconnection of collisional or collisionless origin. Thus the topological trigger is the most
appropriate nomenclature to emphasize the basic nature of the topological effect involved,
and it is a welcome usage.

3.2 How does the topological trigger work?

Let us trace how a rapid rearrangement of the field topology occurs under conditions of slow
evolution of photospheric sources with the total charge equals zero. We shall arbitrary fix
the positions of three charges, while we move the fourth one along an arbitrary trajectory
in the plane Q.

Let an initial position of the moving charge corresponds to the values of the topological
indices Itop = −1 and + 1 for the zeroth points X1 (Type A− with λz > 0) and X 2

(Type A+ with λz < 0) respectively (Figure 2). Thus two points in the plane Q have
different indices. Equation (15) is satisfied. The separator is the field line connecting
these points without a coronal null. This field line emerges from the point X1 and is
directed along the separator to the point X 2. The value and sign of the magnetic-potential
difference between the zeroth points are determined from the relation

ψ 2 − ψ1 =

2
∫

1

B d l , (29)

where the integral is taken along the separator. ψ 2−ψ1 < 0 for the field shown in Figure 2.
According to Gorbachev et al. [33], the moving charge can arrive in a narrow region

(let us call it the region TT ) such that both points in the plane Q will have the same
indices (Figure 11). It follows from the general 3D Equation (15) that in this case there
must also exist two zeroth points outside the plane. They are arranged symmetrically
relative to the plane Q (the plane z = 0 in this Section). Figure 12 illustrates how these
additional points appear.

Before the start of trigger, the moving charge is outside of the region TT , the in-
dex Itop = −1 and the eigenvalue λz > 0 at the non-degenerate zeroth point X1 (Fig-
ure 12a). When the moving charge crosses the boundary of the region TT , the eigen-
value λz at the point X1 vanishes (Figure 12b):

λz(X1) = 0 . (30)

The point becomes degenerate. At this instant, another pair of zeroth points is born from
the point X1 (Figure 12c). We shall consider only one of them, the point Xc in the upper
half-space z > 0. This non-degenerate point travels along the separator and merges with
the point X 2 in the plane z = 0 when the moving charge emerges from the region TT . At
this instant, the eigenvalue λz vanishes:

λz(X 2) = 0 . (31)
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Figure 12: Changes of the field pattern at the zeroth point X1. (a) An initial state is the
non-degenerate point of the Type A− with λz > 0. (b) A degenerate hyperbolic point
(line) with λz = 0 at the beginning of trigger. (c) After the beginning of trigger, the
pattern of field is the non-degenerate point of the Type A+ with λz < 0 and two zeroth
points outside the plane z = 0.

As a result of the process described, the direction of the field at the separator is reversed
with the point X 2 of the Type A− with λz > 0. After that, the moving charge is
located outside the region TT , there are no zeroth points outside the plane z = 0. Thus
Equations (30) and (31) determine the boundaries of the topological trigger region TT .
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Figure 13: The topological trigger (nar-
row dashed) region is restricted by two
boundaries: curves C1 and C2 corre-
sponding to Equations (30) and (31).

Figure 13 presents an illustrative sample of charge configuration. The fixed charges
e1 = −e2 = −e3 = 1 are located in the plane Q at the points (1; 0), (0; 0) and (0; 1),
respectively. The charge e4 = 1 moves along a trajectory shown by a thin curve Tr. In the
beginning of trigger, it crosses the boundary curve C1. Between the boundaries C1 and C2

20



there exists a curve Cc at which ψ2 − ψ1 = 0. The field at the separator changes sign at
the point Xc . Hence the sections X1Xc and XcX 2 of the separator make contributions
of opposite signs to the integral (29). These contributions exactly compensate each other
for a position of the point Xc when the trajectory Tr crosses the curve Cc .

Typically the region TT is narrow. That is why small shifts of the moving charge
within this region lead to large shifts of the zeroth point Xc along the separator above the
plane z = 0 just creating a global bifurcation. Using the analogy with hydrodynamics, we
see that the separatrix plane (y, z) in Figure 12a, which plays the role of a “hard wall” for
“flowing in” magnetic flux, is quickly replaced by the orthogonal “hard wall”, the separat-
rix plane (x, z) in Figure 12c. Thus the topological trigger drastically changes directions
of magnetic fluxes in an AR as illustrated by Figure 14.

Another specific sample is a charge arrangement along a straight line, e.g., the axis x
in Figure 1. In this case, owing to the axial symmetry, the entire separator consists of
zeroth points. Thus we have a zeroth line. By using an inversion transformation (e.g.
Landau et al. [38]):

r′ =
R2

r2
r , (32)

where R is the inversion radius, it is easy to show that the axial symmetry is not a
necessary condition for the appearance of zeroth line. Moreover, the new zeroth line also
represents a circle centered in the plane z = 0. Thus the 3D zeroth lines of the magnetic
field can exist if the sunspots do not lie in a straight line.

Up to now, we have considered the travel of one charge while the coordinates and
magnitudes of the other three charges were fixed. It is obvious, however, that all the
foregoing remains in force in the more general case of variation of the charge configuration.
It follows from the results that a slow evolution of the configuration of field sources in the
photosphere can lead to a rapid rearrangement of the global topology in ARs in the corona.
The phenomenon of topological trigger is necessary to model the large eruptive flares.

4 Basic physics of reconnection in the corona

4.1 Super-hot turbulent-current layers

Coulomb collisions do not play any role in the super-hot turbulent-current layers (SHTCL).
So the plasma inside the SHTCL has to be considered as collisionless (see Somov [19]).
The concept of an anomalous resistivity, which originates from wave-particle interactions,
is then useful to describe the fast conversion from field energy to particle energy. Some of
the general properties of such a collisionless reconnection can be examined in a frame
of a self-consistent model which makes it possible to estimate the main parameters of the
SHTCL.

As it reconnects, every magnetic-field line at first penetrates into the current layer with
velocity v0 and later on it moves out with velocity v1 as illustrated by Figure 15. Basing
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Figure 14: Global changes
of the magnetic field con-
figuration related to the
topological trigger effect in
the model of an active re-
gion as illustrated by Fig-
ure 13. (a) An initial state
before the trigger; the ze-
roth point X1 is the non-
degenerate point with a ver-
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Figure 15: A magnetically non-neutral reconnecting layer: the electric current distribution
is schematically shown by the shadow, the dotted boundary indicates the field lines going
through the current layer. 2a is the thickness of the current layer, 2b is its width. 2aout

is an effective cross-section for the outflows of energy and mass along the reconnected
magnetic-field lines.

on the mass, momentum and energy conservation laws, we write the following relations:

n0v0 b = nsv1 a
out, (33)

2n0kB
T0 +

B 2
0

8π
= nskB

T

(

1 +
1

θ

)

, (34)

nskB
T

(

1 +
1

θ

)

=
1

2
Mnsv

2
1 + 2n0kB

T0 , (35)

χef E in
mag + E in

th,e = E out
th,e + C an

‖ , (36)

(1 − χef) E in
mag + E in

th,i = E out
th,i + K out

i . (37)

Here n0 and ns are the plasma densities outside and inside the layer. T0 is the temperature
of inflowing plasma outside the layer, T = Te is an effective electron temperature inside
it, the ratio θ = Te/Ti, Ti is an effective temperature of ions. The velocity of electric drift
of plasma in direction to the layer

v0 = Vd = c
E0

B0
, (38)

and

v1 = V
A,S

=
B0√

4πMns
(39)

is the velocity of the plasma outflow.
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The continuity Equation (33) and the energy Equations (36) and (37) are of integral
form for a quarter of the layer assumed to be symmetrical and for a unit length along the
current. The left-hand sides of (36) and (37) contain the magnetic energy flux

E in
mag =

B 2
0

4π
v0 b , (40)

which creates heating of electrons and ions due to their interactions with waves. A relative
fraction χef of the heating is consumed by electrons, while the remaining fraction (1−χef)
goes to the ions.

The electron and ion temperatures of the plasma inflowing to the layer are the same.
Hence, the fluxes of the electron and ion thermal energies are also the same:

E in
th,e = E in

th,i =
5

2
n0kB

T0 · v0b . (41)

The factor 5/2 appears because, for the particles of kind k (electrons, protons, other ions),
the mean kinetic energy flux of chaotic motion, nkmkvk wk, where the heat function per
unit mass or, more exactly, the specific enthalpy is

wk = εk +
pk

ρk
=

5

2

k
B
Tk

mk
.

Because of the difference between the temperatures of electrons and ions in the out-
flowing plasma, the electron and ion thermal energy outflows differ:

E out
th,e =

5

2
nskB

T · v1aout , E out
th,i =

5

2
nskB

T

θ
· v1aout . (42)

The ion kinetic energy flux from the layer

K out
i =

1

2
Mnsv

2
1 · v1aout (43)

is important in the energy balance (37). As to the electron kinetic energy, it is negligible
and disregarded in (36). However, electrons play the dominant role in the heat conductive
cooling of a SHTCL:

C an
‖ = f

M
(θ)

ns(kB
T )3/2

M1/2
aout. (44)

Here f
M

(θ) is the function which allows us to consider the field-aligned anomalous thermal
flux depending on the the ratio θ.

Under the conditions derived from the Yohkoh and RHESSI data, contributions to the
energy balance are not made either by the energy exchange between the electrons and the
ions due to collisions, the thermal flux across the magnetic field, and the energy losses for
radiation. The field-aligned thermal flux becomes anomalous and plays the dominant role
in the cooling of electron component inside the SHTCL. All these properties are typical
for collisionless ‘super-hot ’ (Te

>
∼ 30 MK) plasma.
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Under the same conditions, the anomalous conductivity σef in the Maxwell equation
for curlB

cB0

4πa
= σefE0 , (45)

as well as the relative fraction χef of the direct heating consumed by electrons, are deter-
mined by the wave-particle interaction inside the SHTCL and depend on a type of plasma
turbulence and its regime.

4.2 Plasma turbulence inside the SHTCL

In Equation (45) it is convenient to replace the effective conductivity σef by effective
resistivity η ef :

cB0

4πa
=
E0

η ef
. (46)

In general, the partial contributions to the resistivity may be made simultaneously by
several processes of electron scattering by different sorts of waves, so that

η ef =
∑

k

η k . (47)

The relative share of the electron heating χef is also presented as a sum of the respec-
tive shares χk of the feasible processes taken, of course, with the weight factors η k/η ef

which defines the relative contribution from one or another process to the total heating of
electrons inside the SHTCL:

χef =
∑

k

η k

η ef
χk . (48)

In usual practice (e.g. Somov [26]), the sums (47) and (48) consist of no more than
two terms, either of which corresponds to one of the turbulent types or states.

4.3 Marginal and saturation regimes

When the electron current velocity u = j/ns exceeds a critical value, the instabilities due
to current flow of electrons appear. A rapid decrease in the plasma conductivity occurs
and anomalous resistivity arises (Kadomtsev [39], Artsimovich and Sagdeev [40]). The
condition needed for current instability in a RCL is that the layer thickness is of the
order of the ion gyroradius (Syrovatskii [17]). Thus the turbulent current layers must be
sufficiently thin. According to Syrovatskii [41], the development of a thin current layers

(TCL) in the solar atmosphere leads to plasma turbulence and correspondingly to a fast
rate of field dissipation in flares with the heating of plasma to high temperatures, the
high-velocity plasma ejections, and the acceleration of particles to high energies.

Let us consider the turbulence which is due only to the ion-cyclotron (ic) and ion-

acoustic (ia) instabilities. The sums (47) and (48) consist of no more than two terms; either
of which corresponds to one of the said turbulence types. In reality, the ion-cyclotron waves
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prove to be excited earlier than the ion-acoustic waves at all values of the temperature
ratio θ <

∼ 8 (Figure 16).
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Figure 16: The relative velocity of electrons, U = u/VTe as a function of the ratio θ = Te/Ti

inside the SHTCL. The individual ‘arcs’ of the curves correspond to four different regimes
of turbulence. The dashed continuations of the ‘arcs’ are the critical velocities of excitation
of corresponding waves. The arrow A shows that, in equilibrium plasma with θ = 1, the
ion-cyclotron waves (the curved section KO) are excited earlier than the ion-acoustic waves
(the arc LO).

In the case of the marginal regime of turbulence, the velocity of electrons

u =
E0

ens η ef
(49)

coincides with the critical velocity uk of the k-type wave excitation. Hence

Uk (θ) = U mar
k (θ) =

uk

V
Te

. (50)

For example, the ion-cyclotron instability becomes enhanced when the velocity u is not
lower than the critical value uic of the ion-cyclotron waves. In the marginal regime

U mar
ic (θ) =

uic

V
Te

. (51)

This function is shown as the curved section KO in Figure 16.
As long as the ion-cyclotron waves are not saturated, the velocity u remains approx-

imately equal to u ic and thus it is possible to calculate the resistivity η ef from Equa-
tion (49). Therefore, if the velocity u in the SHTCL does not exceed the ion-acoustic
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wave excitation threshold u ia, only the ion-cyclotron waves will contribute to anomalous
resistivity η ef and the factor χ ef .

In the marginal regime, the wave-particle interaction is quasilinear . However, in the
case of sufficiently strong electric field E0, the nonlinear interactions become important,
thereby giving rise to another state of turbulence. In this regime, Ohm’s law can no
longer define the resistivity, but determines the the electron current velocity. Regarding
the resistivity, this is inferred from the turbulence saturation level. In the saturated regime,
U k (θ) must be replaced by certain functions U sat

ic (θ), shown by the curved section KL
in Figure 16, and U sat

ia (θ), shown by the arcs MQ for the ion-cyclotron and ion-acoustic
turbulence, respectively.

Calculations show that the energy release power and the reconnection rate, which are
necessary for solar flares to be accounted for, can be obtained in the marginal regime of
ion-acoustic turbulence (see Somov [26,19]).

5 The collapsing magnetic trap effects

5.1 Fast and slow reconnection

Collapsing magnetic traps are formed by the process of collisionless reconnection in the
solar atmosphere (Somov and Kosugi [42]). Figure 17 illustrates two possibilities. Fast
(Figure 17a) and slow (Figure 17b) modes of reconnection are sketchy shown in the corona
above the magnetic obstacle, the region of a strong magnetic field, which is observed in
SXRs as a flare loop (shaded).

In the first case, let us assume that both feet of a reconnected field loop path through
the shock front (SW in Figure 17a) ahead the obstacle. Depending on the velocity and
pitch-angle, some of the particles preaccelerated by the SHTCL may penetrate through the
magnetic-field jump related to the shock or may be reflected. For the particles reflected
by the shock, the magnetic loop represents a trap whose length L(t), the distance between
two mirroring points at the shock front, measured along a magnetic-field line, decreases
from its initial value L(0) ≈ 2L0 to zero (the top of the loop goes through the shock front)
with the velocity ≈ 2v1. Therefore, the lifetime of each collapsing trap t1 ≈ L0/v1.

In the case of slow reconnection, there is no a shock wave, and the trap length L(t)
is the distance between two mirroring points (M1 and M2 in Figure 17b), measured along
a reconnected magnetic-field line. In both cases, the electrons and ions are captured in
a trap whose length decreases. So the particles gain energy from the increase in parallel
momentum.

Thus, in the first approximation, we neglect collisions of particles ahead of the shock
wave (Figure 17a) or in the trap without a shock (Figure 17b). In both cases, the particle
acceleration can be demonstrated in a simple model – a long trap with short mirrors
(Figure 18). The decreasing length L(t) of the trap is much larger than the length lm of
the mirrors; the magnetic field B = B1 is uniform inside the trap but grows from B1 to
B2 in the mirrors. The quantity B2/B1 is called the mirror ratio; the larger this ratio,
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Figure 17: Plasma flows related to a super-hot turbulent-current layer (SHTCL): the
inflows with a relatively low velocity v0, the downward outflow with a super-Alfvén ve-
locity v1. (a) SW is the shock wave above the magnetic obstacle. v2 is the post-shock
velocity, v‖ is the velocity of spreading of the compressed plasma along the field lines
toward the feet of the loop. (b) The supra-arcade downflow and collapsing trap without
a shock. M1 and M2 are the mirroring points where the field becomes sufficiently strong
to reflect fast particles above the chromosphere (Ch).
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the higher the particle confinement in the trap. The validity conditions for the model are
discussed by Somov and Bogachev [43].

5.2 The first-order Fermi-type acceleration

We consider the traps for those the length scale and timescale are both much larger than
the gyroradius and gyroperiod of an accelerated particle. Due to strong separation of
length and timescales, the magnetic field inside the trap can be considered as uniform
and constant (for more detail see Somov and Bogachev [43]). If so, then the longitu-
dinal momentum of a particle increases with a decreasing length L(t), in the adiabatic
approximation, as

p ‖(l) =
p ‖ 0

l
. (52)

Here l = L(t)/L(0) is the dimensionless length of the trap. The transverse momentum is
constant inside the trap,

p⊥ = p⊥ 0 , (53)

because the first adiabatic invariant is conserved:

p 2
⊥

B
= const . (54)

Thus the kinetic energy of the particle increases as

K(l) =
p 2

‖ + p 2
⊥

2m
=

1

2m

(

p 2
‖ 0

l 2
+ p 2

⊥ 0

)

. (55)

The time of particle escape from the trap, l = les, depends on the initial pitch-angle θ0
of the particle and is determined by the condition

tg θ0 =
p⊥ 0

p ‖ 0

≤ 1

R les
, (56)
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Figure 18: Two main effects in a collapsing trap. (a) Magnetic mirrors move toward each
other with velocity vm. (b) Compression of the trap with velocity vt.
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where

R =

(

B 2

B 1
− 1

)1/2

. (57)

The kinetic energy of the particle at the time of its escape is

Kes =
p 2

⊥ 0

2m

(

R2 + 1
)

=
p 2

⊥ 0

2m

B 2

B 1
. (58)

One can try to obtain the same canonical result by using more complicated approaches. For
example, Giuliani et al. [44] numerically solved the drift equations of motion. However it is
worthwhile to explore first the simple analytical approach to investigate the particle energi-
zation processes in collapsing traps in more detail before starting to use more sophisticated
methods and simulations.

5.3 The betatron acceleration in a collapsing trap

If the thickness of the trap decreases with its decreasing length, then the strength of the
field B1 inside the trap increases as a function of l, say B 1(l). In this case, according
to (54), the transverse momentum increases simultaneously with the longitudinal momen-
tum (52):

p⊥(l) = p⊥ 0

(

B 1(l)

B 1

)1/2

. (59)

Here B 1 = B 1(1) is the initial (at l = 1) value of the field inside the trap. The kinetic
energy of a particle

K(l) =
1

2m

(

p 2
‖ 0

l 2
+ p 2

⊥ 0

B 1(l)

B 1

)

(60)

increases faster than that in the absence of trap contraction, see (55). Therefore it is
natural to assume that the acceleration efficiency in a collapsing trap also increases.

However, as the trap is compressed, the loss cone becomes larger (Figure 19),

θes(l) = arcsin

(

B 1(l)

B 2

)1/2

. (61)

Consequently, the particle escapes from the trap earlier.
On the other hand, the momentum of the particle at the time of its escape satisfies

the condition
p ‖(l) = R(l) p⊥(l) , (62)

where

R(l) =

(

B 2

B 1(l)
− 1

)1/2

. (63)
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Figure 19: The betatron effect in a collapsing magnetic trap. As the trap is compressed
with velocity vt, the loss cone becomes larger. A particle escapes from the trap earlier
with an additional energy due to betatron acceleration.

Hence, using (59), we determine the energy of the particle at the time of its escape from
the trap

Kes =
p⊥(l) 2

2m

(

R(l) 2 + 1
)

=
p 2

⊥ 0

2m

B 1(l)

B 1

B 2

B 1(l)
=
p 2

⊥ 0

2m

B 2

B 1
. (64)

The kinetic energy (64), that the particle gains in a collapsing trap with compression,
is equal to the energy (58) in a collapsing trap without compression, i.e. without the
betatron effect.

Thus the compression of a collapsing trap (as well as its expansion or the transverse
oscillations) does not affect the final energy that the particle acquires during its accelera-
tion. The faster gain in energy is exactly offset by the earlier escape of the particle from
the trap (Somov and Bogachev [43]). The acceleration efficiency, which is defined as the
ratio of the final (l = lls) and initial (l = 1) energies, i.e.

Kes

K(1)
=

p 2
⊥ 0

p 2
⊥ 0

+ p 2
‖ 0

B 2

B 1
=

(

p⊥ 0

p 0

)2 B 2

B 1
, (65)

depends only on the initial mirror ratio B 2/B 1 and the initial particle momentum or, to
be more precise, on the ratio p⊥ 0/p 0. The acceleration efficiency (65) does not depend on
the compression of collapsing trap and the pattern of decrease in the trap length either.

It is important that the acceleration time in a collapsing magnetic trap with compres-
sion can be much shorter than that in a collapsing trap without compression. For example,
if the cross-section area S(l) of the trap decreases proportionally to its length l:

S(l) = S(1) l , (66)

then the magnetic field inside the trap

B 1(l) = B 1(1) / l , (67)
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and the effective parameter

R(l) =

(

R2 − 1 − l

l

)1/2

, (68)

where R is define by formula (57). At the critical length

lcr =
1

1 +R2
, (69)

the magnetic field inside the trap becomes equal the field in the mirrors, and the magnetic
reflection ceases to work. If, for certainty, B 2/B 1 = 4, then lcr = 1/4. So contraction of
the collapsing trap does not change the energy of the escaping particles but this energy is
reached at an earlier stage of the magnetic collapse when the trap length is finite. In this
sense, the betatron effect increases the actual efficiency of the main process – the particle
acceleration on the converging magnetic mirrors.

5.4 The betatron acceleration in a shockless trap

If we ignore the betatron effect in a shockless collapsing trap, show in Figure 17b, then
the longitudinal momentum of a particle is defined by the formula (instead of (52))

p ‖(t) ≈ p ‖(0)
(l1 + l2)

l2 + (l1 − v1t)
⇒ p ‖(0)

(l1 + l2)

l2
, when t→ t1 . (70)

The particle acceleration on the magnetic mirrors stops at the time t1 = l1/v1 at a finite
longitudinal momentum that corresponds to a residual length (l2 in Figure 17b) of the
trap.

Given the betatron acceleration due to compression of the trap, the particle acquires
the same energy (58) by this time or earlier if the residual length of the trap is comparable
to a critical length lcr determined by a compression law (Somov and Bogachev [43]).
Thus the acceleration in shockless collapsing traps with a residual length becomes more
plausible. The possible observational manifestations of such traps in the X-ray and optical
radiation are discussed by Somov and Bogachev [43]. The most sensitive tool to study
behavior of the electron acceleration in the collapsing trap is radio radiation. We assume
that wave-particle interactions are important and that two kinds of interactions should be
considered in the collapsing trap model.

The first one is resonant scattering of the trapped electrons, including the loss-cone
instabilities and related kinetic processes (e.g. Benz [45], Chapter 8). Resonant scattering
is most likely to enhance the rate of precipitation of the electrons with energy higher that
hundred keV, generating microwave bursts. The lose-cone instabilities of trapped mildly-
relativistic electrons (with account taken of the fact that there exist many collapsing field
lines at the same time, each line with its proper time-dependent loss cone) would provide
excitation of waves with a very wide continuum spectrum. In a flare with a slowly-moving
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upward coronal HXR source, an ensemble of the collapsing field lines with accelerated
electrons would presumably be observed as a slowly moving type IV burst with a very
high brightness temperatures and with a possibly significant time delay relative to the
chromospheric footpoint emission.

The second kind of wave-particle interactions in the collapsing trap-plus-precipitation
model is the streaming instabilities (including the current instabilities related to a return
current) associated with the precipitating electrons.

5.5 Some observational results

In order to interpret the temporal and spectral evolution and spatial distribution of HXRs
in flares, a two-step acceleration was proposed by Somov and Kosugi [42] with the second
step of acceleration via the collapsing magnetic-field lines. The Yohkoh HXT observations
of the Bastille-day flare (Masuda et al. [46]) clearly show that, with increasing energy,
the HXR emitting region gradually changes from a large diffuse source, which is located
presumably above the ridge of soft X-ray arcade, to a two-ribbon structure at the loop
footpoints. This result suggests that electrons are in fact accelerated in the large system
of the coronal loops, not merely in a particular one. This seems to be consistent with the
RHESSI observations of large coronal HXR sources; see, for example, the X4.8 flare of
2002 July 23 (see Figure 3 in Lin et al. [47]).

Efficient trapping and continuous acceleration also produce the large flux and time
lags of microwaves that are likely emitted by electrons with higher energies, several hun-
dred keV (Kosugi et al. [48]). The lose-cone instabilities (Benz [45]) of trapped mildly-
relativistic electrons in the system of many collapsing field lines (each line with its proper
time-dependent lose cone) presumably can provide excitation of radio-wave with a very
wide continuum spectrum.

Qiu et al. [49] presented a comprehensive study of the X5.6 flare on 2001 April 6.
Evolution of HXRs and microwaves during the gradual phase in this flare exhibits a sep-
aration motion between two footpoints, which reflects the progressive reconnection. The
gradual HXRs have a harder and hardening spectrum compared with the impulsive com-
ponent. The gradual component is also a microwave-rich event lagging the HXRs by tens
of seconds. The authors propose that the collapsing-trap effect is a viable mechanism that
continuously accelerates electrons in a low-density trap before they precipitate into the
footpoints.

Imaging radio observations (e.g. Li and Gan [50]) should provide another way to
investigate properties of collapsing magnetic traps. It is not simple, however, to understand
the observed phenomena relative to the results foreseen by theory. With the incessant
progress of magnetic reconnection, the loop system newly formed after reconnection will
grow up, while every specific loop will shrink. Just because of such a global growth of
flare loops, it is rather difficult to observe the downward motion of newly formed loops.
The observations of radio loops by Nobeyama Radioheliograph (NoRH) are not sufficient
to resolve specific loops. What is observed is the whole region, i.e., the entire loop or
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the loop top above it. Anyway, combined microwave and HXR imaging observations are
essential in the future.

6 Open issues of reconnection in flares

The existing models of reconnection in the solar corona can be classified in two wide
groups: global and local ones (Figure 20). The global models are used to describe actual

Reconnection models

Global Local

Advantages

Disadvantages

Direct comparison with 
global structures and 
dynamics observed by 
Yohkoh, SOHO, TRACE, 
RHESSI, Hinode, Stereo

Plasma physics of
reconnection and
acceleration of
electrons and ions

No internal 
consistency

No incorporation 
in global models

Figure 20: Models of magnetic reconnection in the solar atmosphere.

ARs or even complexes of activity in different approximations and with different accuracies
(Somov [51], Gorbachev and Somov [7], Bagalá et al. [52], Antiochos [31], Aschwanden et
al. [53], Morita et al. [54], Longcope et al. [55], Barnes [34], Longcope and Beveridge [56],
Ugarte-Urra et al. [35]). We make no attempt to review all the models but just remark
that the main advantage of the global models is direct comparison between the results of
computation and the observed large-scale patterns. For example, the ‘rainbow reconnec-

tion’ model (Somov [57]) is used to reproduce the main features of magnetic fields in the
corona, related to the large-scale vortex flows in the photosphere.

The advantage of the local models is that they take kinetic effects into account and
allow us to develop the basic physics of reconnection in flares. In general, many analytical,
numerical, and combined models of reconnection exist in different approximations and with
different levels of self-consistency (see Biskamp [15], Priest and Forbes [58]). It becomes
more and more obvious that collisionless reconnection in a rarefied plasma is a key process
in flares. This process was introduced by Syrovatskii [59] as a dynamic dissipation of field
in a current layer and leads to fast conversion from field energy to particle energy, as well
as a topological change of the magnetic field (e.g. Horiuchi et al. [60], Yamada et al. [16]).

General properties and parameters of the collisionless reconnection can be examined
in a frame of models based on the mass, momentum, and energy conservation laws (Sec-
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tion 4). A particular feature of the models is that electrons and ions are heated by wave-
particle interactions in a different way. The magnetic-field-aligned thermal flux becomes
anomalous and plays the role in the cooling of electrons in a super-hot turbulent-current

layer (SHTCL). These properties seem to be typical for the conditions derived from the
observations by Yohkoh and RHESSI (e.g. Joshi et al. [61], Liu et al. [62]), the SOXS

mission (Jain et al. [63]). Unfortunately, the local models are not incorporated in the
global consideration of reconnection in the corona. Only a few first steps have been made
in this direction (see Somov [19]).

Spacecraft observations of collisionless reconnection in the magnetotail and magne-
topause as well as recent simulations have shown the existence of thin current layers
(TCLs), with scale lengths of the order a few electron skin depth. In the electron MHD
model of such TCLs, reconnection is facilitated by electron inertia which breaks the frozen-
in condition (Jain and Sharma [64]). The simulations demonstrate the instability of the
whistler-like mode which presumably plays the role of the ion-cyclotron instability in the
SHTCL model. Stark et al. [65] combine the TCL models with a global model of magnetic
field in the magnetosphere.

As for particle acceleration in flares, it goes in two steps. During the first one, the
ions and electrons are accelerated by the DC electric field in a super-hot turbulent-current
layer (Litvinenko and Somov [66,67]). During the second step, the energy of particles
trapped in collapsing traps additionally increases by the first-order Fermi mechanism (So-
mov and Kosugi [42]) and the betatron mechanism (Somov and Bogachev [43], Karlicky
and Kosugi [68]). In a collisionless approximation, Bogachev and Somov [69] show that
the collapsing trap model predicts two types of coronal HXR sources: thermal and non-
thermal. Thermal sources are formed in traps dominated by the betatron mechanism.
Non-thermal sources with power-law spectra appear when electrons are accelerated by the
Fermi mechanism. These results are of interest in interpreting the RHESSI observations.

Future models of solar flares should join global and local properties of reconnection
under coronal conditions. For example, chains of plasma instabilities, including kinetic
instabilities, can be important for our understanding the types and regimes of plasma
turbulence inside the collisionless current layers with a longitudinal magnetic field. In
particular it is necessary to evaluate better the anomalous resistivity and selective heat-
ing of particles in such a SHTCL. Heat conduction is also anomalous in the super-hot
plasma. Self-consistent solutions of the reconnection problem will allow us to explain the
energy release in flares, including the open question of the mechanism or combination of
mechanisms which explains the observed acceleration of electrons and ions to high energy.

To understand the 3D structure of reconnection in flares is one of the most urgent
problems. Actual flares are 3D dynamic phenomenon of electromagnetic origin in a highly-
conducting plasma with a strong magnetic field. RHESSI and Hinode observations offer
us the means to check whether phenomena predicted by topological models (such as the
topological trigger) do occur [70]. However some puzzling discrepancies may also exist,
and further development of realistic 3D models is required.
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68 Karlický, M., Kosugi, T., Astron. Astrophys., 419 (2004), 1159.
69 Bogachev, S.A., Somov, B.V., Astronomy Letters, 33 (2007), 54.
70 Somov, B.V., Astronomy Letters, 34 (2008), 635.

38


	The role of magnetic fields in flares
	Basic questions
	Concept of magnetic reconnection in solar flares
	Some new results of the magnetic field observations

	Three-dimensional reconnection in flares
	The first topological model of an active region
	The potential field approximation
	Classification of zeroth points
	The number of zeroth points
	The electric currents needed

	The solar flare on 5 November 1980
	Observed and model magnetograms
	Topological portrait of the active region

	Features of the flare topological model

	Topological trigger for solar flares
	What is that?
	How does the topological trigger work?

	Basic physics of reconnection in the corona
	Super-hot turbulent-current layers
	Plasma turbulence inside the SHTCL
	Marginal and saturation regimes

	The collapsing magnetic trap effects
	Fast and slow reconnection
	The first-order Fermi-type acceleration
	The betatron acceleration in a collapsing trap
	The betatron acceleration in a shockless trap
	Some observational results

	Open issues of reconnection in flares

