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Abstract

The properties and dynamics of magnetic fields on the Sun’s photosphere and
outer layers – notably those within solar active regions – govern the eruptive ac-
tivity of the Sun. These photospheric magnetic fields also act as the evolving lower
boundary of the Sun-Earth coupled system. Quantifying the physical attributes of
these magnetic fields and exploring the mechanisms underlying their influence on the
near-Earth space environment are of vital importance for forecasting and mitigat-
ing adverse space weather effects. In this context, we discuss here a novel technique
for measuring twist in the magnetic field lines of solar active regions that does not
invoke the force-free field assumption. Twist in solar active regions can play an im-
portant role in flaring activity and the initiation of CMEs via the kink instability
mechanism; we outline a procedure for determining this solar active region eruptive
potential. We also discuss how twist in active region magnetic fields can be used as
inputs in simulations of the coronal and heliospheric fields; specifically, we explore
through simulations, the formation, evolution and ejection of magnetic flux ropes
that originate in twisted magnetic structures. The results and ideas presented here
are relevant for exploring the role of twisted solar active region magnetic fields and
flux ropes as drivers of space weather in the Sun-Earth system.
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1 Introduction

Twisted magnetic fields within solar active regions (ARs) indicate the pres-
ence of stressed non-potential flux systems that are highly eruptive (Canfield,
McKenzie & Hudson, 1999; Sammis, Tang & Zirin, 2000; Schrijver et al., 2005).
They are believed to be at the heart of many energetic solar phenomena which
govern the Sun-Earth system. Twist is a component of magnetic helicity that
describes how magnetic field lines wind about the axis of a flux tube; it is
an important indicator of the topology or morphology of the 3-D magnetic
structure underlying AR loops observed in the solar atmosphere and is known
to play an important role in flaring activity (Nandy et al., 2003; Hahn et al.,
2005). Photospheric AR twists are used as inputs to model coronal magnetic
structures, study their energetics and compare the reconstructed magnetic
topology to space observations (Valori, Kliem & Keppens, 2005; Régnier &
Canfield, 2006). Twist also plays a role in MHD modelling of the evolution
of coronal and heliospheric magnetic fields (Amari et al. 2003; Mackay &
van Ballegooijen, 2006), including simulations of large-scale eruptions such as
coronal mass ejections (CMEs) mediated via the kink instability mechanism
(Fan 2005).

The aim of this paper is twofold. The first is to outline a new observational
technique that we are developing for the measurement of twist in the flux
systems of solar ARs from photospheric vector magnetograms and to quantify
the susceptibility of these flux systems to the MHD kink instability mecha-
nism that may result in solar eruptive events (Section 2). The second is to
show, using numerical magnetohydrodynamic (MHD) simulations, how mag-
netic flux ropes that underlie solar energetic events such as Coronal Mass
Ejections (CMEs) originate and evolve from these twisted magnetic struc-
tures (Section 3). We also discuss in Section 4, the importance of such studies
in the context of understanding and predicting the influence of the Sun on our
space environment.

2 Observational Investigations: Quantifying Active Region Twist
and Eruptive Potential

We begin with the motivation behind the development of a new technique for
measuring solar photospheric AR twist. To date, the most widely used method
for inferring the twist of solar ARs has been the determination of the value of
the force-free field parameter α in the force-free field equation

∇×B = αB (1)
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that best fits the observed horizontal magnetic fields of an active region, called
αbest (Pevtsov, Canfield & Metcalf, 1995). The αbest method assumes that the
force-free-field equation (above) is applicable to photospheric AR magnetic
fields, and that the latter is characterized by a single (constant) value of the
force-free field parameter α in Equation 1. However, the photosphere is a
forced layer with the plasma-β parameter (ratio of gas to magnetic pressure)
close to unity (Metcalf et al. 1995). It has been claimed that the use of αbest

underestimates the amount of actual twist present (Leka, Fan & Barnes, 2005;
Valori, Kliem, & Keppens, 2005). Accurate quantitative measurements are
needed to test observationally whether MHD kinking indeed is the trigger for
CMEs and eruptive flares (for conflicting viewpoints, see Leamon et al., 2003
and Leka, Fan & Barnes, 2005), for use as inputs in reliable reconstructions
and modelling of coronal and heliospheric magnetic fields and understanding
sub-photospheric flux tube dynamics (see Nandy, 2006). We have developed
a flux-tube fitting technique for measurement of photospheric AR twist that
is based on theoretical and numerical studies and which does not rely on the
force-free assumption (Equation 1). We describe this below.

In the literature, various descriptors of twist are used, including the total twist
T of a magnetic loop of length L between footpoints, and the twist density
(i.e., twist per unit length) q. These two quantities are related through the
following equation

T = qL (2)

where T/2π is the number of winds about the axis over the length L. If T = 2π,
the field lines wind exactly once over the length L. Henceforth, we refer to the
twist density q simply as “twist”.

We determine q from photospheric vector magnetograms under the assump-
tion that the underlying AR magnetic field structure can be represented by a
cylindrical flux tube (or flux rope) – an approach that is supported by theory,
simulations and observational constraints on flux tube dynamics in the SCZ
(Fan, Fisher & McClymont, 1994; Fisher, Fan & Howard, 1995). A cylindrical
flux tube is characterized by its three magnetic field components, namely, Br,
Bθ and Bz. Twisting a flux tube uniformly by a quantity q just changes the
azimuthal field Bθ(r) such that Bθ(r) = qrBz(r), where Bz is the axial field.
Under the assumption of this uniformly twisted flux tube, it follows then that
the quantity we want to extract is

q =
Bθ(r)

rBz(r)
. (3)

Since leading (Hale) polarities of solar ARs are more coherent and represen-
tative of the underlying cylindrical geometry (Fan, Fisher & DeLuca 1993),
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we use vector magnetograms of the leading polarities of ARs for this analysis.
Vector magnetograms are routinely used to infer Bx, By and Bz components
of the magnetic field in the local heliographic Cartesian-coordinate system
in each magnetogram pixel, following methods described by, e.g., Canfield
et al. (1993). Once we have identified the leading polarity of a given AR, we
first determine the flux-weighted-centroid (FWC) of this flux system assuming
cylindrical symmetry and then through a coordinate transformation, extract
the three components of the underlying cylindrical structure, Br, Bθ and Bz

along with the radial distance r of each of these measurements from the ori-
gin (FWC). In Figure 1 we show a vector magnetogram from the Haleakala
Stokes Polarimeter (HSP, Mickey, 1985) that includes the leading positive po-
larity of AR 7289 (classified as a Mt. Wilson β-region, having a simple bipolar
structure) and show its inferred FWC.

The final step involves the determination of q as given by the relationship
in Equation 3 using the radial distance r and the corresponding Bθ and Bz

values. The overall twist characterizing the AR is determined by calculating
the linear best-fit slope of the Bθ/Bz versus radial distance r distribution – a
quantity that we define as qfit. Figure 2 (left) shows the determination of qfit

from the Bθ/Bz data for AR 7289. The recovered best-fit twist for AR 7289
from this flux-tube fitting technique is qfit = −4.89× 10−8 m−1.

We now outline a methodology for the extraction of another quantity defining
AR flux ropes – the critical twist value qcrit that is necessary for determining
their susceptibility to the kink instability mechanism (conversion of twist to
writhe and deformation of the flux-tube axis itself) that is thought to trigger
breakout reconnection in CMEs (Fan, 2005) and kink flux ropes in the SCZ
(Linton, Longcope & Fisher, 1996; Linton et al. 1999). Accurate quantitative
measurements are important. While some studies indicate that a total twist
of T = qL = 2π is sufficient for flux tubes to be kink unstable (Priest, 1982
Fan & Gibson, 2004), other studies point out that the critical total twist can
be as high as 4.8π (Mikić, Schnack & Van Hoven, 1990); the differences arise
from assumptions regarding various flux tube models. Our new methodology
is model-independent and is motivated from the the analysis and numerical
simulations of Linton, Longcope & Fisher (1996) and Linton et al. (1999).
Their instability analysis and extensive numerical simulations show that the
critical twist threshold for the cylindrical flux tube to be susceptible to the
kink instability, qcrit, is related to the coefficient (µ) of the r2 term in the
Taylor series expansion of the axial field Bz = B0(1− µr2 − pr4 − ...), where
we’ve folded R−2 into µ, R−4 into p, etc (here, B0 is the field strength at
the axis, i.e., at r = 0 and R is the radius of the tube). If one considers a
lowest-order appropriate truncation then this simplifies to

Bz = B0

(
1− µr2

)
. (4)
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These theoretical and numerical flux tube dynamics studies show that the
critical twist is simply qcrit = µ1/2; if the twist q of the flux tube exceeds the
threshold qcrit then the flux tube is kink unstable (Linton, Longcope & Fisher,
1996; Linton et al. 1999). Our aim is to measure qcrit from vector magne-
tograms and thus quantify observationally whether a given AR is susceptible
to kink instability. To determine the critical twist we follow the theoretical
considerations above and fit an equation of the form of Equation 4 to the
radial profile of Bz for AR 7289. To rule out the influence of ephemeral re-
gions and noise, only pixels with Bz > 300 G are considered. For AR 7289,
the fit shown in Figure 2 (right) gives us B0 = 1436 G and critical twist
qcrit = µ1/2 = 7.27× 10−8 m−1.

Whether the coronal magnetic field structure associated with a twisted AR
is kink unstable and likely to erupt depends additionally on line-tying con-
siderations – specifically on the total twist T in the coronal loop-length that
is line-tied between two photospheric footpoints rooted within the two polar-
ities of the AR (see e.g., Hood & Priest, 1979; Einaudi & van Hoven, 1983;
Melville, Hood & Priest, 1986; Török, Kliem & Titov, 2004). In this case,
the coronal loops are unstable to helical kink perturbations with wavelengths
below 2π/qcrit (equivalently, coronal loop-lengths exceeding this wavelength
are kink-unstable). As discussed in these papers, the critical (total) twist Tcrit

is at least 2π; it is often higher due to line-tying conditions, and the exact
value depends on the assumed field structure and equilibrium configuration
(Hood & Priest, 1979; Einaudi & van Hoven, 1983; Melville, Hood & Priest,
1986; Török, Kliem & Titov, 2004). Therefore, for determining the stability
of coronal loops associated with a twisted AR, one needs to estimate the total
twist T = qL, where L is the coronal loop length and q is the twist of the
AR flux tube. Note also that an AR flux system with twist exceeding qcrit is
an inherently unstable structure, and will quickly trade some of its twist for
writhe through kink instability. Therefore, it is unlikely that many observed
AR structures will have twist exceeding qcrit, unless it is observed during the
early phase of its emergence process.

3 Theoretical Investigations: Simulations of Flux Rope Formation,
Evolution and Ejection

In the solar atmosphere, magnetic fields produce a wide variety of phenomena.
These phenomena include, sigmoids (Rust & Kumar, 1996; Canfield et al.,
1999; Pevtsov, 2002), solar filaments (Priest, 1989; Martin, 1998), solar flares
(Priest, 1982; Somov, 1992) and coronal mass ejections (Hundhausen, 1993;
Low, 2001). A common feature of these phenomena is that they require the
presence of highly sheared or twisted magnetic fields called magnetic flux ropes
(Russell et al., 1990; Amari et al., 1999; Low, 2001). Flux ropes may be stable
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for many days, then suddenly loose equilibrium (Torok & Kleim, 2005; Amari
et al, 2003; Lin & Forbes, 2000 ; Isenberg et al., 1993), resulting in a flare,
filament eruption or coronal mass ejection. To understand what causes such
eruptions we need to determine how flux ropes are related to the magnetic
helicity of active regions. In this section idealized simulations are carried out
of the interaction of two bipolar regions (Mackay and van Ballegooijen, 2005,
Mackay et al., 1997) to determine the relationship between the helicity in
active regions and how flux ropes form and are ejected from the solar corona.

To consider the formation of magnetic flux ropes we use a magnetic flux trans-
port and magnetofrictional model (van Ballegooijen, Priest and Mackay, 2000,
Mackay and van Ballegooijen, 2001, Mackay and van Ballegooijen, 2006a,b).
The Sun’s magnetic field, B(= Br, Bθ, Bφ) = ∇×A is evolved by the induc-
tion equation. At the lower boundary, the photosphere, the magnetic field is
driven by the large-scale flows of differential rotation, meridional flows and
surface diffusion, the later representing the effect of small-scale flows such as
supergranulation (Leighton, 1964). To represent these physical processes ap-
propriate boundary conditions are applied at the lower boundary (for details,
see Mackay and van Ballegooijen, 2006 a,b). In the coronal region the mag-
netic field evolves in response to these motions through the non-ideal induction
equation,

∂A

∂t
= v ×B− ηcj, (5)

where v(r, t) is the plasma velocity, j = ∇ × B and ηc the coronal diffusion.
To ensure that the coronal field evolves through a series of force-free states a
magneto-frictional method is employed (Yang et al., 1986). We assume that
the coronal plasma velocity is given by,

v =
1

ν

j×B

B2
+ voe

−(2.5R¯−r)/rw r̂.

where the first term on the right hand side represents in an approximate
manner the fact that the Lorentz force is dominant in the corona. The second
term represents a radial outflow velocity which is imposed to ensure that the
field lines remain radial at the source surface (r = 2.5R¯). Full details of the
choice of these parameters along with the numerical scheme applied can be
found in Mackay and van Ballegooijen (2006a,b).

In Figure 3, the initial relaxed equilibrium configuration can be seen. To pro-
duce this configuration, two bipoles expressed by the mathematical form,
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Bx = B0e
0.5

(
z

ρ0

e−ξ + 4β
xy

ρ2
0

e−2ξ

)
,

By = 2βB0e
0.5

(
1− x2 + z2

ρ2
0

)
e−2ξ,

Bz = B0e
0.5

(
− x

ρ0

e−ξ + 4β
yz

ρ2
0

e−2ξ

)
,

relative to their center point (φ0,λ0) are inserted, where ξ ≡ [(x2 + z2)/2 +
y2]/ρ2

0, ρ0 is the half separation between the peaks of the photospheric flux
pattern (corresponding to a heliocentric angle of 5◦), B0 is the peak flux density
(B0 = −200 G), and β is a dimensionless parameter describing the twist of the
magnetic field (in this form, the spherical coordinate system is transformed
such that x = φ, y = −ln(tan(θ/2)), z = ln(r/Rodot)). The bipoles are
inserted in non-equilibrium over a finite region in the photosphere and corona.
One is placed at φ0 = 42◦, λ0 = 17◦ and the other at φ0 = 65◦, λ0 = 17◦ where
both are given the twist value of β = −0.2. Once inserted the bipoles expand to
fill the entire coronal volume and relax to an equilibrium as shown in Figure 3
where the grayscale image shows the distribution of the radial magnetic field
at the photosphere. White represents positive flux and black negative flux.
The lines connecting the white and black regions represent coronal field lines
where both bipoles have the same shear. In the papers of Mackay and van
Ballegooijen (2006a,b) another example is considered where the trailing bipole
(in the direction of rotation) has slightly more shear applied compared to the
lead bipole.

Flux transport effects are then allowed to act on the magnetic field for a period
of 45 days and the formation of flux ropes over the internal PIL of each bipole
and external PIL between the bipoles occurs. The key physical effect that
leads to the formation of the flux ropes is the surface diffusion of the flux. This
process, described in terms of the large-scale supergranular diffusion first leads
to the transport of sheared field lines to the PIL. Once there, cancellation of
the opposite polarity foot points of the field lines and subsequent reconnection
of them can produce an axial field component along the PIL. Examples of these
highly sheared regions can be seen in Figure 4 where they are shown for (a)
the two internal PILs on day 20 and (b) the external PIL between the bipoles
on day 45. For the internal PILs strongly sheared inverse-S shaped (sigmoidal)
structures – which are known to be associated with CMEs (Canfield, Hudson
& McKenzie, 1999) – are found to lie above the internal PILs of both bipoles.
In contrast to this, above the external PIL a much less twisted structure is
found.

The larger the magnitude of the initial twist in the bipoles, the earlier in the
simulation the flux ropes form. Although this is true for both the internal
and external PIL’s, the internal PILs show a much stronger variation. This
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is because for the flux ropes to form above the external PILs, untwisted field
lines lying in the outer extents of the bipoles have to be cancelled first, before
the formation can start (for an extended discussion, see Mackay and van Bal-
legooijen, 2006a). This essentially takes the same amount of time irrespective
of the magnitude of twist added to the internal parts of the bipole. In all of
the simulations flux ropes may be formed by the combined effects of surface
diffusion and differential rotation. The role of the initial twist is to affect the
time it takes for flux ropes to form.

A surprising feature of the simulations is that once formed the flux ropes may
then be expelled out of the computational box. This process is driven by the
magnetic pressure force pinching and reconnecting field lines underneath the
flux ropes as they rise. During this process the coronal field diverges from an
equilibrium between the surface shearing motions and the relaxation. However
once the flux ropes have been expelled such a balance is obtained once again.
When the bipoles are given the same initial twist the flux ropes that form
above the internal PILs are ejected at the same time. In Figure 5 an overview
of the simultaneous ejection of the flux ropes can be seen. In Figure 5(a)
the field lines can be seen on day 20 before the ejection begins. Above each
of the bipoles a strongly sheared axis of the flux rope lies at low heights
with weakly sheared arcades lying above it. In contrast, in Figure 5(b) (day
30) the axis of both flux ropes has risen by pushing the arcades above them
upward. As each rises, a quasi-separatrix layer (QSL, Priest and Demoulin,
1995) forms underneath, through the distortion of the coronal field along its
entire length in the corona. At this location, oppositely orientated field lines
reconnect and the reconnected field lines help to push the axis of the flux rope
further upwards. As the two flux ropes rise, they interact with one-another
before they are ejected out of the top of the box. In contrast, in Mackay and
van Ballegooijen (2006) – where the bipoles have different initial twists, the
flux ropes are ejected at different times.

4 Conclusions

We have outlined novel observational techniques for measuring the twist of
solar ARs from photospheric vector magnetograms and determining their sus-
ceptibility to the MHD kink instability. Using these techniques, it would be
possible to quantify the eruptive potential of solar ARs – via the kink instabil-
ity mechanism – that may result in eruptive flares or CMEs. Thus, this could
be a basis for short-term (on the order of days) space weather forecasting based
on photospheric vector magnetic field properties derived from magnetogram
observations alone.

We have also shown through simulations how flux ropes may originate and

8



evolve into twisted magnetic structures through the combined action of sur-
face flux transport processes (such as diffusion, meridional circulation and
differential rotation) and how these flux ropes are subsequently ejected. The
two bipole interactions described here, which is the simplest case, will describe
the basic interactions occurring for many bipoles in more complicated (future)
full-Sun simulations. We are currently developing techniques to utilize direct
observational inputs of the twist component of magnetic helicity in solar ARs
(as outlined in Section 2) to drive the photospheric and coronal field evolution
simulations (as outlined in Section 3) to understand the magnetic topolo-
gies that spawn large-scale solar eruptions such as CMEs. Complementary to
the earlier short-term space weather forecasting (on the order of days) based
on magnetic field observations alone, these simulations can lead to long-term
space weather forecasting (on the order of months) because of the cumulative
effect of relatively slower photospheric magnetic field dynamics – which drives
the formation and evolution of flux ropes.

We would like to thank the British Council’s Researcher Exchange Programme,
the UK Particle Physics and Astronomy Research Council and NASA for fi-
nancial support. Constructive comments of the referees are also acknowledged.
The simulations were carried out on a SHRIF/PPARC funded supercomputer
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Fig. 1. Photospheric vector magnetogram of the leading polarity of the bipolar
active region (Mt. Wilson β classification) AR 7289. In the background we have
shown the Bz distribution (grayscale) for ease of identification of the cross-section
of the inferred flux tube. Positive and negative vertical magnetic field contours
are depicted in solid and dashed lines respectively and short white arrows depict
transverse field vectors. The derived location of the FWC is indicated by a black
diamond.
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Fig. 2. Left: A plot of the Bθ/Bz versus radial distance r distribution for AR 7289 –
from which we extract the best-fit slope to quantify the overall twist qfit following
techniques described in Section 2. The solid line shows the fit, while the dotted lines
indicate the 95% confidence bounds. The recovered best-fit twist qfit = −4.89×10−8

m−1. Only those magnetogram pixels that are over specified noise thresholds are
used for the calculation. Right: Axial (vertical) field Bz versus radial distance r
distribution for AR 7289 – to which we fit Equation 4 as described in Section 2.
The recovered fit parameters are B0 and µ which we use to plot the best-fit curve
(solid line). The inferred critical twist qcrit = µ1/2 = −7.27×10−8 m−1. Although we
show the radial profile of Bz over the whole magnetogram here, note that only Bz

values over a threshold of 300 G (dotted line) have been used in the determination
of qcrit (see text).
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Fig. 3. (a) Initial magnetic field distribution when the bipoles are inserted and the
coronal field relaxes to equilibrium. The simulations is carried out mainly in the
Northern Hemisphere.

(b)(a)

Fig. 4. Example of the inverse S-shaped (sigmoidal) flux ropes formed over (a) the
two internal PIL on day 20, (b) the external PIL between the bipoles on day 45.
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(a)

(b)

Fig. 5. Example of the simultaneous lift off of the flux ropes lying above the internal
PILs of both bipoles on (a) day 20, (b) day 30. In (b) the formation of a quasi-sep-
aratrix layer occurs below each flux rope in the form of an X-line when viewed in
2D. This quasi-separatrix layers are seen to rise as the flux ropes rise.
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