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C. Möstl1,2, C. Miklenic1, C. J. Farrugia3, M. Temmer2,4, A. Veronig1, A. B. Galvin3, B. Vr šnak4, and H. K. Biernat1,2
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Abstract. This paper compares properties of the source
region with those inferred from satellite observations near
Earth of the magnetic cloud which reached 1 AU on 20
November 2003. We use observations from space missions
SOHO and TRACE together with ground-based data to study
the magnetic structure of the active region NOAA 10501
containing a highly curved filament, and determine the re-
connection rates and fluxes in an M4 flare on 18 November
2003 which is associated with a fast halo CME. This event
has been linked before to the magnetic cloud on 20 Novem-
ber 2003. We model the near-Earth observations with the
Grad-Shafranov reconstruction technique using a novel ap-
proach in which we optimize the results with two-spacecraft
measurements of the solar wind plasma and magnetic field
made by ACE and WIND. The two probes were separated
by hundreds of Earth radii. They pass through the axis of
the cloud which is inclined−50 degree to the ecliptic. The
magnetic cloud orientation at 1 AU is consistent with an en-
counter with the heliospheric current sheet. We estimate that
50% of its poloidal flux has been lost through reconnection
in interplanetary space. By comparing the flare ribbon flux
with the original cloud fluxes we infer a flux rope formation
during the eruption, though uncertainties are still significant.
The multi-spacecraft Grad-Shafranov method opens new vis-
tas in probing of the spatial structure of magnetic clouds in
STEREO-WIND/ACE coordinated studies.
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1 Introduction

The interplanetary coronal mass ejection (ICME) containing
a magnetic cloud (MC) on 20 November 2003 elicited one
of the strongest geomagnetic storms of solar cycle 23 (1995–
2006) with a minimumDst value of−422 nT. (For a discus-
sion of storm strength seeBothmer and Zhukov, 2006). Mag-
netic clouds are defined by a strong magnetic field which ro-
tates smoothly through a large angle in a low proton temper-
ature plasma (Burlaga et al., 1981). They are modeled as he-
lical flux ropes (Burlaga, 1988). Relating them to their solar
progenitors has been discussed mainly for quiescent filament
eruptions, and good correspondences between orientation
and structure have been found (Marubashi, 1986; Bothmer
and Schwenn, 1998; Zhao and Hoeksema, 1998; Yurchyshyn
et al., 2001; Bothmer, 2003). For active regions (ARs),Lea-
mon et al.(2004) found that integrated fluxes in active re-
gions and in their associated magnetic clouds are compara-
ble. The amount of twist (a quantity proportional to the num-
ber of field line turns) is larger in MCs than in the ARs and
there is no sign or amplitude relationship between them, hint-
ing that magnetic clouds are formed by magnetic reconnec-
tion between the AR and their larger-scale surroundings. For
nine events,Qiu et al.(2007) found a close correspondence
over several orders of magnitude between magnetic fluxes
inferred from two-ribbon flares and the fluxes in associated
MCs. Several recent case studies have associated magnetic
cloud fluxes with their associated source regions and/or coro-
nal dimming flux (Mandrini et al., 2005; Attrill et al., 2006;
Yurchyshyn et al., 2006; Longcope et al., 2007).

Cremades and Bothmer(2004) emphasize that the axis
orientation of the erupting flux rope at the Sun is con-
trolled by the active region structure and the ambient corona.
Crooker(2000) pointed out that MC axis orientations tend
to be aligned with the heliomagnetic equator, for which
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Fig. 1. Left 4 panels: Hα filtergrams from the Kanzelḧohe Solar Observatory (Austria) showing the global flare evolution and the erupting
filament (indicated by arrows). Right 3 panels: Temporal evolution of the associated CME in SOHO/LASCO C2 and C3.

observational support was invoked (Mulligan et al., 1998).
Yurchyshyn et al.(2007) find for 2/3 of 25 events studied
a good correspondence between the LASCO halo CME tilt
angle and the MC orientation angle. The orientation is of
central importance because MCs are sources of long duration
interplanetary (IP) southward magnetic fields which depends
on the axis orientation (Zhao and Hoeksema, 1998). MCs are
a major cause of strong geomagnetic storms (e.g.Gonzalez
and Tsurutani, 1987).

Recent reviews on the many open questions regarding
these connections were given byCrooker and Horbury
(2006) andDémoulin(2007). Such studies are expected to
enhance our ability to forecast space weather (see for in-
stanceSiscoe and Schwenn, 2006) and to improve our un-
derstanding of solar-terrestrial relations in general. The aim
of this paper is to apply an advanced methodology to study
the solar M4 flare and the corresponding halo CME on 18
November 2003 and ICME/MC observed near Earth on 20
November 2003, and search for quantitative links in orien-

tations and magnetic fluxes. We start with the solar obser-
vations of the flare, filament and CME in Sect. 2. We then
reconstruct the corresponding magnetic cloud in Sect. 3 and
compare its characteristics with the solar source in Sect. 4.

2 Solar observations

2.1 Overview of the 18 November 2003 flare/CME event

The 20 November ICME has been associated with the
halo CME on 18 November 08:50 UT, which originated from
AR 10501 (Gopalswamy et al., 2005). The halo CME was a
fast one, propagating in the LASCO field of view with a lin-
ear speed of∼1660 km s−1 (from the SOHO/LASCO CME
catalog1), but decelerated down to∼740 km/s by the time
it reached Earth. It was discussed in detail byGopalswamy
et al.(2005). The CME was associated with the 18 November

1http://cdaw.gsfc.nasa.gov/CMElist
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Fig. 2. Temporal evolution of the flare ribbons during the impulsive phase in TRACE UV. Solar north is up, west is to the right. FOV:
320′′×250′′.

GOES M3.9/2N flare event, which occurred in the vicinity
of AR 10501 at S02E18. The Kanzelhöhe filtergrams at
Hα−0.3Å in Fig. 1 show the location and evolution of the
flaring region on the solar disk. There is a dark U-shaped
filament (arrowed), which rises slowly between 07:30 UT
(beginning of observations) and 08:00 UT. Around 08:00 UT
there is a rapid eruption in a south-west direction, and by
08:08 UT the filament has vanished from the Hα filtergrams.
The panels on the right of Fig.1 show the temporal evolu-
tion of the associated CME, whose most prominent front is
also south-west bound, though, in fact, it was a halo CME
(cf. LASCO C3 image in Fig.1). Figure2 shows the tem-
poral evolution of the flare in the 1600̊A UV channel from
the Transition Region and Coronal Explorer (TRACE,Handy
et al., 1999), with two bright, separating flare ribbons. (A
movie of the flare is provided in the online material ofMik-
lenic et al., 20072.)

2.2 Magnetic configuration and orientation of the filament

CMEs as observed in white-light often exhibit a three–part
structure, consisting of a bright front followed by a darker re-
gion (cavity) and a bright core. This bright core is thought to
be the counterpart of an eruptive prominence/filament (Illing
and Hundhausen, 1985) and within this core helical patterns

2http://www.aanda.org/articles/aa/full/2007/02/aa5751-06/
5751mov1.mov

are often present, possibly indicating an underlying flux rope
(see e.g.Chen et al., 1997). Filaments are believed to be
embedded in flux ropes, whose magnetic imprints, such as
magnetic tilt angle (with respect to the solar equator) and
twist, are assumed to be preserved during the eruption (e.g.
Bothmer and Schwenn, 1998; Yurchyshyn et al., 2001). The
tilt angle may be altered near the Sun through interaction
with the ambient corona (Cremades and Bothmer, 2004), by
the helical kink instability (e.g.Fan and Gibson, 2003; Rust
and LaBonte, 2005) or the overlying coronal field (Crooker,
2000). As shown in Fig.1, the direction of the filament erup-
tion is well correlated with that of the CME.

Figure 3 shows the evolution of the filament from 15
November until 18 November 2003, using Hα images
from the solar observatories Big Bear (BBSO), Mauna
Loa (MLSO), and Kanzelḧohe (KSO). The high-resolution
BBSO observations show that this filament actually con-
sists of two separate filaments, namely, the U-shaped fila-
ment which erupts at 08:00 UT on 18 November, as discussed
above, and in the north-west a smaller filament which does
not take part in the eruption (see also bottom panel in Fig.4
and Fig.5). The TRACE 171̊A post-flare loops can be seen
over the southern and apex parts of the filament (Fig.5). This
filament and the associated post-flare loops have an inclina-
tion angle with respect to the solar equator in the range from
∼35◦ (bright southern loops) to∼−25◦ (weaker post-flare
arcade associated with the filament apex). In the following,
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Fig. 3. Evolution of the filament from 15 November until 18 November using Hα observations from BBSO, MLSO, KSO, BBSO (left to
right). When the active region is close to the limb (left panel, BBSO) the two separate filaments are visible, with the northern filament located
at (−710,60).

we assume a 2.5 D situation where a sheared arcade under-
goes reconnection and creates a helical flux rope (see Figs. 1
and 3 inDémoulin et al., 1996), containing both poloidal
as well as axial magnetic field components. The poloidal
magnetic field at the leading edge of an erupting flux rope
can be obtained from the underlying magnetic field provided
by the MDI/SOI instrument (Scherrer et al., 1995) on board
the Solar and Heliospheric Observatory (SOHO), see top
panel of Fig.4. Locations of conjugate HXR footpoints non-
perpendicular to the neutral line may refer to the shear of a
magnetic arcade and can be used to derive the orientation of
the axial field. However, for this event, the orientation of
the axial field cannot be derived in a straightforward man-
ner through footpoint-shearing. The post-flare loops and the
conjugate footpoints of the first hard X-ray (HXR) emission
are oriented roughly perpendicular to the local neutral line
and thus gives ambiguous results.

We now discuss briefly other work on this issue.Gopal-
swamy et al.(2005) derived a right-handed twist from the
magnetic field polarity of the filament’s footpoints. In addi-
tion, Yurchyshyn et al.(2005) found that the line connect-
ing these footpoints has a similar orientation as the MC axis
at 1 AU (see Sect. 3.3). These authors did not consider the
two separated filaments. Restricting the magnetic field to
the erupting filament only and applying the same method as
Gopalswamy et al.(2005), a negative twist would be the re-
sult. Yurchyshyn et al.(2005) obtained a positive twist of
the post-flare loops using a linear force–free field model. To
keep our discussion limited we will assume further an axial
field pointing to the east, which, together with the poloidal
field, implies (Fig.4) a right-handed flux rope, inline with
the magnetic cloud observations at 1 AU. We note that the so-
lar observations are ambiguous, and that in an active region
a left-handed flux rope in the low corona may also be as-
sociated with a right-handed MC, as in some cases reported
by Leamon et al.(2004). This will be further discussed in
Sect. 4.2.

2.3 Flare reconnected magnetic flux

Magnetic reconnection causes a topological restructuring of
the field and allows the release of stored magnetic energy to
heat plasma, drive plasma flows, and accelerate particles up
to relativistic energies. Oppositely directed magnetic field
lines enter the tiny diffusion region in the corona, where
they reconnect. In the case of a sheared arcade, the recon-
nected flux is divided into (a) a loop disconnected from the
Sun which is propelled out into interplanetary space, and (b)
lower lying field lines collapsing back onto the solar sur-
face (e.g.Démoulin et al., 1996). Since magnetic flux is
conserved, the amount of flux entering and leaving the re-
connection region is the same, and the lower lying flux is
equal to the flux which escaped into interplanetary space.
Thus, the reconnected flux can be determined from chro-
mospheric/photospheric observations, such as Hα/UV im-
age sequences, which show the flare brightenings, and pho-
tospheric line-of-sight magnetograms. Derived positive and
negative fluxes should be equal since equal amounts of posi-
tive and negative magnetic flux participate in reconnection.

The reconnected magnetic flux8r,t at a particular timet

8r,t =

∫ t

t0

Bn da, (1)

is determined separately for each magnetic polarity domain
(Forbes and Lin, 2000). Here, Bn is the magnetic field
strength component perpendicular to the solar surface in the
newly brightened areada that is swept by the flare ribbons.
The reconnection rate,̇8, can be obtained by taking the time
derivative of Eq. (1), and it can be compared with the ob-
served hard X-ray (HXR) emission. This bremsstrahlung-
emission is generated by fast electrons, which have been ac-
celerated at the reconnection site and which deposit their en-
ergy at the chromosphere. Since the intensity of HXR emis-
sion is proportional to the number of accelerated electrons,
and this number in turn is proportional to the rate at which
energy is released at the reconnection site, HXR emission is
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Fig. 4. Top: MDI line-of-sight magnetogram of the active region
(white – positive polarity; black – negative polarity) overlaid with
contour lines of the U-shaped filament as seen in Hα from MLSO
the day before (black line) and KSO during the eruption (blue and
red lines). White and yellow arrows indicate the leading poloidal
and the axial field direction, respectively. Bottom: BBSO Hα image
after the eruption overlaid with the same contour lines.

considered to be proportional to the energy release rate in a
solar flare (Hudson, 1991), and can therefore be used as a
proxy for the reconnection rate. Both derived reconnection
rate and observed HXR emission should evolve similarly in
time.

A TRACE 1600Å image sequence with a cadence of
∼23 s was used to determine the newly brightened area
(NBA) in an image compared to the preceding images (cf.
Fig. 2). The TRACE observations covered a good portion
of the impulsive phase, i.e. the period where signatures of

Fig. 5. TRACE 171Å post-flare arcade at 09:18 UT overlaid with
the same filament contour lines as described in Fig.4 (white is the
MLSO contour line). The white asterisks give the location of the
northern filament which did not erupt.

high-energy particles are observed in RHESSI (Reuven Ra-
maty High Energy Solar Spectroscopic Imager;Lin et al.,
2002) nonthermal HXR emission (see Fig.7). The longitudi-
nal, photospheric magnetic field was derived from a full-disk
magnetogram before flare onset provided by the SOHO/MDI
instrument. The MDI and TRACE data sets were differen-
tially rotated to the same time (07:50 UT) and co-registered.

According to Eq. (1), the reconnected flux at timet is the
newly brightened area times the magnetic field strength at
this area. Since each area unit in an image is equal to 1 pixel,
it is sufficient to add up the magnetic field strength values
at each newly brightened pixel in an image and to convert
‘square pixels’ to km2 to get the reconnected positive and
negative magnetic flux at timet . Positive and negative fluxes
should be equal, since the magnetic flux, which participates
in the reconnection process, originates in equal amounts from
the positive and negative magnetic polarity domains. The
total reconnected flux8r is the sum of all fluxes in all pixels
that brightened during any period of the flare. Further details
on the methods that were used to determine the reconnected
magnetic flux can be found inQiu et al.(2004) andMiklenic
et al.(2007).

The upper panel of Fig.6 is a snapshot of the flaring region
near the end of the impulsive phase (cf. Fig.2). In the mid-
dle panel, all TRACE pixels that brightened during any pe-
riod of the analyzed time interval of the flare are superposed
on that TRACE image. In the bottom panel, the contours
of these flare pixels have been superposed on the MDI mag-
netogram. The northern ribbon sweeps the negative polarity
domain (blue), whereas the southern ribbon goes through the
positive domain (red).

www.ann-geophys.net/26/3139/2008/ Ann. Geophys., 26, 3139–3152, 2008
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Fig. 6. Upper panel: TRACE 1600̊A flare ribbons near the end
of the impulsive phase.Middle panel: Blue/red pixels mark all
TRACE pixels that brightened during any period of the analyzed
time interval of the flare, where blue areas refer to negative and red
areas to positive magnetic polarities of the underlying photospheric
magnetic field. Bottom panel: Contours of the total flare area super-
posed on a MDI magnetogram, where white/black patches represent
the positive/negative magnetic polarity domains.

Fig. 7. Upper panel: Reconnection rate and cumulated positive and
negative magnetic flux derived during the flare impulsive phase.
Lower panel: Cumulated total magnetic flux and RHESSI 20–
60 keV HXR time profile.

The upper panel of Fig.7 shows the derived reconnection
rate along with the accumulated positive and negative mag-
netic flux during the flare impulsive phase. Although near
the end of the impulsive phase the flux profiles start to di-
verge, before this time they are very similar, as is theoret-
ically expected (correlation coefficient over the entire time
interval = 0.99). Up to the end of the analyzed time interval,
8+

=1.7×1021 Mx of positive and8−
=−1.9×1021 Mx of

negative magnetic flux, respectively, have been reconnected,
indicating that indeed equal amounts are involved. In the
lower panel of Fig.7, the total reconnected magnetic flux
8r is plotted along with the RHESSI 20–60 keV light curve,
which is nonthermal bremsstrahlung produced by fast elec-
trons with energies≥20 keV. RHESSI observed four main
peaks during the impulsive phase. A visual comparison of
the RHESSI profile with the derived reconnection rate in the
upper panel shows that the three peaks that were observed
in the HXR flux also appear clearly in the reconnection rate.
Furthermore, the reconnected magnetic flux profile steepens
at the beginning of each HXR burst, which means that more
magnetic flux is reconnected during the HXR bursts than in
the time intervals between them. This indicates that pulses
in the magnetic flux transfer rate are associated with bursts
of accelerated electrons. The overall magnetic flux that has
been reconnected during the analyzed time interval adds up
to 8r=3.6×1021 Mx. The actual value might be somewhat
higher, since the very end of the flare impulsive phase, as
indicated by the RHESSI HXR flux, was not covered by
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Fig. 8. Data from the ACE spacecraft, from top to bottom: Magnetic
field components (coloured as indicated) and absolute value (black
line), proton bulk velocity, proton number density and temperature
as well as protonβ (ratio of plasma to magnetic pressure). The
first vertical solid line indicates the shock, and the second and third
the final GS-reconstruction interval. Dashed vertical lines are the
boundaries of the back region.

TRACE observations, and since the applied intensity thresh-
old does not identify faint flare pixels.

3 Distant WIND-ACE observations at 1 AU

3.1 Data

We now consider the near-Earth observations of the ICME.
In Figs.8 and9, in situ solar wind observations by ACE and
WIND are shown for 20–21 November 2003. The WIND
magnetic field data are from the MFI (Lepping et al., 1995)
and the plasma data from the SWE (Ogilvie et al., 1995) in-
strument. ACE data were acquired by the MAG (magnetic
field, Smith et al., 1998) and SWEPAM (plasma,McComas
et al., 1998) instruments. Both data sets were linearly in-
terpolated to a 4-min time resolution. The average space-
craft positions in GSE were[240, 26, −9] RE for ACE at L1
and [−212, −38, −13] RE for WIND, far down the tail di-
rection and on the dawn side of the magnetosphere. The
shock reached ACE at 07:24 UT, 20 November and WIND
about 1.07 h later at 08:28 UT. The initial time interval of the
MC at ACE was chosen where the magnetic field strength
is above average, the field rotates smoothly and plasmaβ

is well below unity (Burlaga et al., 1981). The interval at
WIND follows from a time shift given by the shock arrival
time. The boundaries are then further adjusted in the course
of our reconstruction technique such that the vector poten-
tial A has approximately the same value at the back as at the

−50

0

50

WIND 20/11/2003 12:32:0−20/11/2003 19:48:00 Δ t= 4 min

B
 (

nT
)

 

 
X
Y
Z

400

600

800

V
p 

(k
m

/s
)

0.1

5
10
30

N
p 

(c
m

−
3 )

10
6

T
p 

(K
)

324.4 324.6 324.8 325 325.2 325.4

0.01

0.1

1

10

β

Day of 2003

Fig. 9. Data from the WIND spacecraft. Same format as Fig.8.

front (Hu et al., 2004). We find a duration of the MC from
11:16 UT, 20 November to 18:44 UT, 20 November at ACE
and 12:20 UT, 20 November to 19:48 UT, 20 November at
WIND. Both final reconstruction intervals have the same du-
ration of 7 h and 28 min. Inside the MC interval (solid lines),
the plasma bulk velocity decreases, indicating an ongoing ra-
dial MC expansion (e.g.Farrugia et al., 1993). We have also
marked the boundaries (dashed lines) of the MCs back re-
gion, to be discussed in Sect. 4.1.

3.2 Grad-Shafranov reconstruction technique

The GS technique (Hau and Sonnerup, 1999) is a versa-
tile tool to reconstruct space plasma structures possessing
an invariant direction. Hu and Sonnerup(2002) first ap-
plied this technique to magnetic clouds. The structures are
treated as time-independent and we work in the co-moving
deHoffmann-Teller frame (Khrabrov and Sonnerup, 1998)
with constant velocityVHT . It allows us to recover a 2 1/2
dimensional cross section of the MC magnetic structure in a
plane perpendicular to the invariant axis by integrating away
from the spacecraft observations (trajectory) which are used
as initial values, solving the Grad-Shafranov equation:

∂2A

∂x2
+

∂2A

∂y2
= −µ0

dPt (A)

dA
≡ −µ0

d(p + B2
z /8π)

dA
. (2)

Due to time-independency, time intervals can be directly con-
verted into spatial distances withdx=−VHT ·x̂ dt . The vec-
tor potentialA can then be calculated as

A(x, 0) = −

∫ x

0
By(x, 0)dx. (3)

The single-spacecraft implementation of the technique uses
the fact that the pressure transverse to the invariant direction
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exponential tail (dashed black). Scattered points are the observa-
tions – circles stand for the first half and stars for the second half
of the event. The vertical line drawn at a valueAb=10 T m corre-
sponds to the white contour line in Fig.11.

Pt (A) must be single valued along a spacecraft trajectory to
find the correct orientation of the clouds axis (Hu and Son-
nerup, 2002). As discussed in M̈ostl et al. (2008)3 we have
adapted the multi-spacecraft approach bySonnerup et al.
(2004) andHasegawa et al.(2005, 2006).

3.3 Reconstruction of the 20 November 2003 MC

Here we summarize the two-spacecraft reconstruction
method. The deHoffmann-Teller analysis of the com-
bined set of magnetic field and plasma velocities yields
VHT =615 km/s, a correlation coefficient of 0.9969 and a
Walén slope ofw=0.0078. The combined plots ofPt (A)

(Fig. 10) andBz(A) (not shown) are fitted by a third order
polynomial with exponential tails. The quality of this fit is
measured by the fitting residueRf =0.08 (for a definition see
Hu et al., 2004). With this relation defining the right-hand
side of the Grad-Shafranov Eq. (2), two independent mag-
netic field maps, one for ACE and one for WIND, are pro-
duced by integrating away from the spacecraft measurements
along their respective trajectory used as initial values. These
are then combined into a composite map using a Gaussian
window function, as described inHasegawa et al.(2005). A
correlation coefficientcc between the magnetic field compo-

3Möstl, C., Farrugia, C. J., Biernat, H. K., et al.: in preparation,
2008.
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Fig. 11. Combined magnetic field map. Contour lines represent
transverse magnetic field lines.Bz (pointing out of the paper, along
the invariant direction) is color coded, with its maximum at the
white dot which corresponds toAm=155 T m (see text). The white
contour line is drawn at a value ofAb=10 T m. Yellow arrows along
the spacecraft trajectory are projections of the measured field vec-
tors onto the x-y plane (upper WIND, lower ACE).

nents predicted by the map at the location of the spacecraft
and those actually observed is calculated.

From the dependence ofRf and cc on the latitude and
longitude of the invariant axis we select the one where a
high correlation coefficient is matched by a low value ofRf ,
the latter being important to ensure thatPt (A) is single val-
ued. Doing this we find the optimal axis atθ=−50±4◦ and
φ=80±10◦ in GSE (Angleθ is the inclination to the ecliptic
andφ is measured from the sunward direction towards east).
There,Rf =0.08 andcc=0.9883. The impact parameter for
WIND is 3×10−3 AU and for ACE 5×10−4 AU. By compar-
ison, from minimum variance analysis (MVA) of the same
time interval we obtainθ=−55◦. MVA, force-free fitting
(FF) and GS methods have been applied by other authors.
We now cite these results in terms of the axis inclinationθ :
(i) −49◦ (GS,Yurchyshyn et al., 2005) (ii) −73◦ (FF,Gopal-
swamy et al., 2005) (iii) −87◦ (FF, Lynch et al., 2005) (iv)
−71◦ (MVA, Huttunen et al., 2005). We note that not all
intervals examined were the same. Trendwise, for the short
interval (Yurchyshyn et al., 2005, and this study) the inclina-
tions are less.

The MC axis is highly inclined to the ecliptic and
points towards east. The longitude of the axis implies
that the spacecraft encounter the apex of the flux rope.
The MC is right-handed, and the combined magnetic
field map is shown in Fig.11. The reconstruction
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coordinate system is x̂′
=[0.9936, −0.0861, 0.0736],

ŷ′
=[−0.0193, −0.7693, −0.6386], ẑ′

=[0.1116, 0.6330,
−0.7660] in GSE. Note that thêy′-axis points south of the
ecliptic. From Fig.11 it can be seen that the field lines are
not circular, but resemble rather ellipses elongated especially
in the x̂′-direction, i.e. along the Sun-Earth line, with an
estimated eccentricity of∼2.

3.4 Magnetic fluxes

The toroidal (axial) flux is given by8t=
∫ ∫

Bz dx dy, and
is determined by the MC cross-section and the axial magnetic
field strength. Inside of a boundary set atAb=10 T m we
find a 8t=0.55×1021 Mx. The poloidal flux is determined
by 8p=|Am−Ab|L, with Am being the vector potential at
the MC axis (white dot in Fig.11), Ab the vector potential at
the MC boundary (white contour in Fig.11) andL the length
of the MC. WithAm=155 T m andAb=10 T m determined
from the reconstruction, we find a8p=2.2×1021 Mx/AU.
We now discuss the uncertainties in the determination of8t

and8p.
We calculate a lower limit of the toroidal flux because we

use a limited reconstruction domain. It is expected from
MHD simulations (e.g.Manchester et al., 2004), theoretical
considerations (Russell and Mulligan, 2002) and recent ob-
servations (Liu et al., 2006) that the MC transverse size, i.e.
perpendicular to the radial and axial directions (usually out
of the ecliptic), may be up to an order of magnitude larger
compared to its radial size (“flattening” or “pancake shape”,
Riley and Crooker, 2004). However, “flattening” may not be
of importance for this particular MC, because the elliptical
cross-section is elongated along the radial direction. Addi-
tionally, in Fig.12we have plotted results for8t for different
boundariesAb. Looking from right to left in Fig.12 we see
that8t rises almost linearly with decreasingAb. For lower
values ofAb the slope decreases due to the lower magnetic
fields in the outskirts of the cloud. This means that we can
assume that the full toroidal flux may not exceed much the
value of8t=0.6×1021 Mx that we infer at the very outer-
most boundary whereAb=0. Though the area of the flat-
tened part of the cloud may well be much larger, its weak
field strengths do not add much more to the axial flux.

We now estimate the poloidal flux. By far the largest un-
certainty arises from the unknown lengthL of the flux rope.
There is evidence that both feet of particular MCs were still
connected to the Sun (e.g.Farrugia et al., 1993, 2002; Shod-
han et al., 2000), though there are no direct observations.
Larson et al.(1997) measuredL for one event to be 2.5 AU.
In the ACE electron pitch angle distribution4, bidirectional
streaming electrons are intermittently visible from 14:00 UT
to 18:00 UT 20 November 2003, i.e. in the second half of
the MC, suggesting a connection to the Sun. Additionally,

4http://www.srl.caltech.edu/ACE/ASC/DATA/level3/swepam/
index.html
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Fig. 12. Fluxes inside different boundaries of the vector potential
Ab, from the inside of the flux rope (right) to the outside (left).

it is not known how well the magnetic structure at the feet
of the cloud matches the one we infer at its apex.Farrugia
et al. (2005) showed ICME magnetic field scale lengths to
be at least 400 Earth radii, using the largest separations at-
tained by near-Earth spacecraft at the time of the study. In
the 20 November 2003 magnetic cloud,8p is not influenced
by the cross-section because the impact parameter is negli-
gible and we find it also insensitive to small changes in the
orientation and boundaries. As seen from the definition and
from Fig. 12, 8p is inversely proportional toAb. Within
the boundary (Ab=10) we calculate8p=2.2×1021 Mx per
AU. In the view of all these limitations, choosing a plausi-
ble length at 1 AU in a range between 0.5 and 2 AU (same as
in Qiu et al., 2007) and varyingAb between 0 and 20 yields
8p=1.1−4.4×1021 Mx.

4 Comparison

In this section we link the results of Sects. 2 and 3, discuss
several possible scenarios to account for discrepancies and
try to obtain a coherent picture of what has happened from
the time of the flare/CME eruption on the Sun to the arrival
of the MC at Earth.

4.1 Flare reconnection flux and magnetic cloud fluxes

The part of the reconnection flux which closes down onto
the solar surface as inferred from flare ribbon observations
is 8r̄=(8+

+8−)/2. This is found to be8r̄=1.8×1021 Mx
and should be considered as a lower limit. This should be
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compared with the fluxes in the MC as measured at 1 AU:
8p=1.1−4.4×1021 Mx and8t=0.55×1021 Mx.

We now estimate the original MC flux near the Sun.
When the MC is propagating through the IP space, recon-
nection with the IMF at its boundaries may progressively
sweep away magnetic field lines (e.g.McComas et al., 1994).
Therefore, we may expect that a significant amount of the
original flux (both8t and8p) has been removed from the
MC prior to observations at 1 AU if reconnection has taken
place. Farrugia et al.(2001) found a reconnection layer as-
sociated with a magnetic cloud, which separated two regions
of ejecta material. Many other examples of reconnection re-
lated to ejecta have since been found. In the numerical sim-
ulations ofSchmidt and Cargill(2003) the location of the
reconnection site is found to depend on the direction of the
MC leading field and the surrounding IMF, and their recon-
nection rate increases with increasing relative speed between
the MC and the solar wind. While propagating away from the
Sun towards the HCS, the 20 November 2003 MC is in the
IMF-toward sector (Bx>0, IMF By< 0), and the MC leading
field is pointing to the north and east (By> 0). Based on these
simulations (Schmidt and Cargill, 2003), we may thus expect
that reconnection is taking place from the leading edge to the
southern flank of the MC. The speed difference between the
sheath plasma (∼730 km/s) and the downstream solar wind
(∼420 km/s) is also significant. As recently discussed by
Dasso et al.(2006, 2007), further evidence for such recon-
nection is an extended back region of non-rotating smooth
magnetic field lines in a low protonβ plasma. This may
be the case for our event as can be seen from Figs.8 and9
(the two dashed lines behind each cloud observation delimit
this interval). Using Eq. (6) byDasso et al.(2007) we esti-
mate the time since this reconnection started to∼30 h. We
can crudely estimate the flux that was lost since the MC was
expelled from the Sun as∼50%. We obtained this by inte-
grating the vector potentialA to the back boundary, yield-
ing Ab=−150, thus8p would be increased by a factor of
2 (8p=2.2−8.8×1021 Mx). This is now in very good agree-
ment with the fluxes obtained for the longer interval by force-
free fitting and single-spacecraft GS (Lynch et al., 2005; Qiu
et al., 2007), only our physical interpretation is different.

Thus the flux closing down onto the solar surface into the
post-flare loops and the original MC poloidal flux fit within
a factor of 1–4, and the MC toroidal flux is an order of mag-
nitude lower. This good agreement between the flare recon-
nection flux and the MC poloidal flux is not unique to this
event and allows to discriminate between a variety of scenar-
ios (see discussion inQiu et al., 2007). If the helical structure
of a flux rope is predominantly formed in situ then8p∼8r̄ ,
while the presence of a substantially twisted pre-existing flux
rope implies8p>8r̄ . Our result suggests that reconnection
adds a large amount of poloidal flux during an in situ forma-
tion of an erupting flux rope which is then recognized in IP
space as a magnetic cloud (cf.Leamon et al., 2004). Either a
significant amount of poloidal flux is added to a pre-existing

flux rope or the complete MC flux rope is created by this
reconnection. However, due to the significant uncertainties
arising from present observations, we cannot yet discrimi-
nate between these two possibilities.

4.2 The orientation of the axis

The spacecraft encounter the MC apex and thus we can ex-
clude projection effects that might weaken the correlation to
the solar source orientation. There is a difference in orienta-
tion between the magnetic cloud axis in IP space and the as-
sociated bright flaring arcade (southern part of the filament)
by about∼90◦, turning counter-clockwise between Sun and
Earth. The orientation of the filament apex differs by only
∼30◦ with respect to the MC axis (taking into account the
difference between ecliptic north and the solar rotation axis
∼7◦). Since the reconnected flux of the flare and the flux
in the MC are in good agreement, we have to assume that
the southern part of the erupted filament (i.e. outlined by the
bright post-flare arcades, Fig.5) changed its orientation. The
question arises whether this rotation has taken place close to
the Sun or while the MC was in the IP medium.

A recent study byYurchyshyn et al.(2007) revealed that
the associated halo CME had an inclination of∼−35◦ in the
LASCO field of view which lies in between the MC axis ori-
entation and the filament orientation at the Sun. The incli-
nation of a halo CME is the angle between the solar equa-
tor and the semi-major axis of the elliptical model fitted by
Yurchyshyn et al.(2007) to the halo CME’s white light sig-
nature. From this it may follow that the major change in axis
orientation took place already close to the Sun. The heli-
cal kink instability is a candidate mechanism for explaining
the rotation of the axis in the solar corona (e.g.Fan and Gib-
son, 2003; Rust and LaBonte, 2005). However, in the present
event, the right-handed flux rope turns counter-clockwise,
which is at variance with what is expected from this insta-
bility, because, by virtue of magnetic helicity conservation,
right handed twist turns into positive writhe through a clock-
wise rotation. There is also no particular evidence from the
filament eruption that any winding took place during the lift-
off. A small coronal hole is observed to the east of the solar
source region which could result in some interaction between
a faster stream and the CME and might have constrained the
eruption to the south-west, but the possibility that the axis
rotated near the Sun seems difficult to explain.

We now examine a second possibility. Fig.13 shows the
source surface extrapolation provided by the Wilcox Solar
Observatory (WSO) indicating the HCS as extremely curved
for Carrington rotation 2009 (23 October 2003–18 Novem-
ber 2003). It can be seen that the solar source is situated
in the negative polarity of the coronal magnetic field. The
HCS,∼30◦ away from the solar source, is strongly inclined
to the ecliptic. The arrows in Fig.13 indicate the orienta-
tion of the post-flare arcade from the southern (solid yellow)
and the apex part of the filament (dashed yellow), as well as
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Fig. 13.WSO coronal magnetic field extrapolation at 2.5 R� of Carrington rotation 2009 showing the source surface field and the heliospheric
current sheet (HCS). The position of the solar source and the associated MC that arrived at 20 Nov at the Earth are marked asx and#,
respectively. The orientation of the axial magnetic field of the post-flare arcade and the axial magnetic field of the MC with respect to the
ecliptic are given as yellow and red arrows, respectively.

the orientation of the MC as measured in situ (solid red). At
1 AU, the MC is at the sector boundary, as the IMF before
(after) the MC is pointing away (toward) the Sun. This can
also be seen from Fig.13by tracing back the solar wind with
constant velocity (∼470 km/s) along the Parker spiral. We
find that this solar wind has left the Sun∼4 days before, on
16 November 2003, which is at the location of the HCS. We
conclude that the MC, propagating radially outward, over-
took the solar wind in the IMF toward sector and ran into
the HCS. It acts as a boundary for the ejected plasma and
its shock which cannot be permeated (seeXie et al., 2006).
Thus a rotation of the magnetic axis in order to align it with
the HCS in IP space seems to be a plausible explanation for
the change in the direction of the magnetic axis (cf.Smith,
2001; Yurchyshyn, 2007).

An alternative scenario is that from the AR a flux rope with
negative twist started to rise and a right-handed MC was pro-
duced from the overlying coronal field through reconnection.
Leamon et al.(2004) showed that the handedness in an AR
does not necessarily imply the observation of a MC with the
same handedness. A possible mechanism reversing the twist
of a flux rope emerging into overlying pre-existing fields in-
voking reconnection is discussed inZhang and Low(2003).

5 Conclusions

We have discussed the magnetic cloud on 20 November 2003
and its associated flare and CME with particular emphasis
on the orientations and magnetic fluxes involved. From the
available solar observations, we cannot determine the hand-
edness of the erupting flux rope because the axial field di-

rection is ambiguous. Assuming a right-handed flux rope
erupting from low in the corona, a rotation of the axis would
be necessary to match with the MC orientation. This may be
explained through an interaction with the heliospheric cur-
rent sheet during the propagation from Sun to Earth. Con-
cerning the fluxes, the picture emerging from our case study
is that the poloidal flux of the magnetic cloud8p is in the
same range as the reconnection flux8r̄ of the flare, while
the toroidal (axial) flux8t of the MC is about one order of
magnitude lower. This is in full agreement with studies by
Qiu et al. (2007) and Longcope et al.(2007). This result
gives us valuable insights to discriminate between the vari-
ety of CME-initiation models (see discussion inQiu et al.,
2007) and favors the in situ formation the flux ropes during
the eruption (cf.Leamon et al., 2004), while being inline with
the sheared arcade model byDémoulin et al.(1996). How-
ever, distinct uncertainties exist in calculating and compar-
ing these fluxes, leaving the possibility that significant parts
of the flux rope existed before the eruption. The sources
of these uncertainties need to be carefully assessed. First,
the flare reconnection flux depends on the chosen intensity
threshold. Secondly, the loss of MC flux in interplanetary
space can be substantial (50%), and the length of the MC
and the distribution of magnetic flux along the entire flux
rope is hardly known. In this respect, upcoming coordinated
STEREO-ACE/WIND and future HELEX observations will
provide us with clues about the spatial structure of magnetic
clouds, which is a necessary input for an accurate determi-
nation of both their fluxes as well as the helicity which they
carry into interplanetary space.
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