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[1] This paper evaluates the performance of an operational proton prediction model currently being used

at NOAA’s Space Weather Prediction Center. The evaluation is based on proton events that occurred

between 1986 and 2004. Parameters for the associated solar events determine a set of necessary conditions,

which are used to construct a set of control events. Model output is calculated for these events and

performance of the model is evaluated using standard verification measures. For probability forecasts we

evaluate the accuracy, reliability, and resolution and display these results using a standard attributes

diagram. We identify conditions for which the model is systematically inaccurate. The probability forecasts

are also evaluated for categorical forecast performance measures. We find an optimal probability and

we calculate the false alarm rate and probability of detection at this probability. We also show results for

peak flux and rise time predictions. These findings provide an objective basis for measuring future

improvements.

Citation: Balch, C. C. (2008), Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction
model, Space Weather, 6, S01001, doi:10.1029/2007SW000337.

1. Introduction
[2] The production of energetic particles by solar activity

was first discovered over 60 years ago [Forbush, 1946]. In
addition to the intrinsic scientific interest in these solar
energetic particles (SEP), there are a number of practical
applications for prediction of SEPs because of their impact
on today’s modern, technologically driven society. A pri-
mary example is manned spaceflight, which requires an
understanding of the radiation hazards posed by SEPs to
astronauts [Cucinotta et al., 2002]. Similar concerns are also
a subject of study for the newly emerging enterprise of
space tourism [Collins, 2006] as well as for high-flying and
commercial airlines [Beck et al., 2005; Dryer et al., 2005;
Getley et al., 2005]. SEPs are also known to affect spacecraft
operations due to the interaction of high-energy particles
with spacecraft electronics, which can lead to data errors
andevenunexpected behavior of the vehicle [Iucci et al., 2005;
Dyer et al., 2004; Feynman and Gabriel, 2000]. In addition,
energetic particles are able to reach the heights of 60--90 km
in the polar ionosphere (the D region) and create a layer of
charge that partially or completely absorbs high-frequency
(HF) radio waves, thereby affecting long-distance radio

communication and radar systems that operate in the HF
band [Hargreaves, 2005; Hunsucker, 1992]. Because of these
effects there is a societal need to specify and predict the
energetic particle environment in order to understand
operational difficulties and to mitigate these impacts.
[3] The requirement for predictions leads naturally to

questions about cause and effect and also raises issues
concerning what kinds of observable phenomena can
provide information about the likelihood for occurrence
or nonoccurrence of SEPs. With regard to physical causes
there are three key components: the particle source pop-
ulation, the acceleration process, and the transport of the
accelerated particles to the affected system. Each of these
components poses a significant challenge to predictions.
For example, Desai et al. [2006] studied the abundance
characteristics of 64 SEP events in the 0.1--10MeV/nucleon
energy range and concluded that the seed population is
highly variable and includes significant contributions
from superthermal particles through which an interplan-
etary shock passes. Analyses of the particle acceleration
process make frequent use of the diffusive shock acceler-
ation (DSA) mechanism in the vicinity of shocks driven by
coronal mass ejections (e.g., see Zank et al. [2005] and also
Roussev et al. [2004]). The theory of diffusive shock accel-
eration, however, is still a work in progress. For example,
Sokolov et al. [2006] argue that the spectrum of energetic
particles accelerated by DSA depends on the magnetic
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field geometry of the shock because of a turbulent feed-
back mechanism in quasi-parallel shocks. A further com-
plication arises because some SEP events appear to have a
contribution due to stochastic acceleration from resonant
wave-particle interactions in solar flares [Miller and Reames,
1996; Temerin and Roth, 1992]. In some cases, both of these
mechanisms may be at work and affect the overall event
profile and particle abundances [e.g., see Cane et al., 2006].
[4] In addition to the problems of source population and

particle acceleration, the transport of particles from the
acceleration region to the affected system is also a chal-
lenging problem in its own right (recently reviewed by
McKibben [2005]). For example, Reames [1999] argues for
nearly scatter-free transport for gradual SEP events. How-
ever, Dalla et al. [2003] argue that Ulysses observations of
several large SEP events provide evidence for an impor-
tant role for cross-field diffusion (see also Giacalone and
Jokipii [2001]). In addition, Pei et al. [2006] demonstrate
complications that arise in determining particle transport
when considering a more realistic configuration for the
interplanetary magnetic field by constructing a Parker
spiral that superposes a stochastically varying component.
[5] Because such complex physical processes are still

an area of active research, utilization of physics-based
numerical models has not yet evolved to the point where
they can be used for forecasting. There have been some
efforts in this direction. For example, Aran et al. [2006] have
constructed a code that uses a large database of SEP event
profiles and then provides a predicted, interpolated SEP
profile using the heliolongitude and initial CME shock
speed as input parameters. However, the model assumes
that the observation of a CME with a shock is a sufficient
condition for an SEP event and therefore does not address
the important issue of SEP probability given the observed
conditions. Other physics-based model development
efforts and their limitations were recently reviewed by
Lario [2005].
[6] Because of these difficulties, current methods for

forecasting SEPs necessarily rely on observations of asso-
ciated precursor phenomena. Such prediction schemes are
intrinsically not deterministic but rely on empirical, sta-
tistical relationships between characteristics of observed
phenomena and SEP parameters. Several examples of this
approach have been presented [Gerontidou et al., 2006;
Belov et al., 2005; Garcia, 2004a, 2004b; Kubo and Akioka,
2004; Gabriel and Patrick, 2003; Balch, 1999; Smart and Shea,
1989]. Although these approaches do not involve predic-
tions that are derived from first-principles physical laws
(the inductive approach), they should not be considered
‘‘unphysical’’ but should be considered to be deductive
approaches that use data to identify patterns or relation-
ships among the parameters which in turn point to the
underlying physical processes behind SEP generation. In
this paper we present results from a comprehensive
evaluation of the performance of the operational model
currently used in operations at NOAA’s Space Weather
Prediction Center (SWPC) of the U.S. National Centers for

Environmental Prediction (NCEP). This model was previ-
ously described by Balch [1999].
[7] To carry out this analysis for the SWPC proton

prediction model, the existing list of SEP events main-
tained at SWPC (http://swpc.noaa.gov/ftpdir/indices/
SPE.txt, based on 5-min averaged proton flux from the
National Oceanic and Atmospheric Administration
(NOAA) Geostationary Operational Environmental Satel-
lites (GOES)) was extensively reviewed, improved,
updated, and extended. In addition, flare associations
were reviewed and improved and a complementary list
of control flares was compiled (i.e., flares met the neces-
sary conditions for an SEP but were not associated with an
SEP). A revision of the list as a result of this study is
currently planned but not complete as of publication
submission date.
[8] The evaluation of the model necessarily introduces

the topic of forecast verification. Since many in the space
weather community may be primarily space scientists and
may be less familiar with the ‘‘weather’’ part of space
weather, we provide an introduction to some of the ideas
and methodologies which are used to measure the quality
of the forecasts produced by the model. These concepts
have been well developed in the context of tropospheric
weather forecasting over the last several decades and are
readily adapted to space weather applications. In this
paper we use these techniques to evaluate the model’s
probability forecasts. We also provide a summary of the
prediction performance for maximum flux and for proton
event rise time. We find that the probability predictions
have quadratic score of 0.0250 (rms error of 0.158). We also
find specific conditions where the model is systematically
inaccurate or is unable to discriminate between proton
events and control events. An optimal strategy is devised
for using the model to make categorical forecasts, but even
at the optimum we find that the false alarm rate is 55%
and the probability of detection is 57%. The results show
that there remains significant room for improvement. It is
hoped that by clearly establishing the current baseline for
performance of an existing model, it will be possible to
objectively measure the improvement of newer, updated
prediction models. We also plan to use the updated
database to carry out a new statistical analysis for empirical
SEP predictions. This new analysis will look carefully at
solar precursors to find the best discriminators between
activity associated with SEPs and activity not associated
with SEPs. The results of this work will be submitted in a
future publication.

2. Description of the Model
[9] The SWPC proton prediction model is based on the

association of solar flares with SEP events. The SWPC
defines an SEP event to be an enhancement of protons
with energy �10 MeV in excess of 10 protons cm�2 s�1

ster�1 as measured by the GOES satellites at geosynchro-
nous orbit. Input parameters for the prediction model are
time-integrated soft X-ray flux, peak soft X-ray flux, the
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occurrence or nonoccurrence of metric radio type II and
type IV sweeps, and the location of the associated flare.
The X-ray event parameters are derived from 1-min
averages of soft X-ray flux using the GOES X-ray Sensor
(XRS) (see Garcia [1994] for a description of XRS). Metric
radio sweep events are reported routinely in real-time
from the USAF Solar Electro-Optical Observatory Net-
work (SEON). Solar flare location is derived either from
ground-based solar observatories using hydrogen-alpha
telescopes or from spaced-based instruments such as the
GOES-12 Solar X-ray Imager (SXI) or the SOHO Extreme
Ultraviolet Imaging Telescope (EIT). On the basis of the
statistical information described by Balch [1999], the model
provides forecasters with a probability for a proton event,
a prediction for the maximum flux at 10 MeV, and the time
of maximum of the proton event.
[10] Note that although no direct parameter characteriz-

ing aCME is used, there remains nonetheless a relationship
between these observations and the characteristics of an
associated CME. For example, in a study of a large
number of CMEs using SOLWIND data, Sheeley et al.
[1983] showed a clear relationship between the duration
of an X-ray event and the likelihood for a CME. Further-
more, the association between SEPs and type II as well as
type IV radio sweeps was recognized very early [Wild et
al., 1963]. In fact the radio signatures were interpreted as
an indication of a shock wave propagating through the
corona. (See Cliver [2000] for a historical review of the
evolution of ideas about SEPs and associated electromag-
netic phenomena).
[11] The probability prediction is based on three input

parameters: the XRS event maximum, the time-integrated
XRS flux, and the occurrence or nonoccurrence of type II
or type IV radio sweeps. The time period for integration of
the XRS flux starts with the onset of the X-ray event and
ends with the ‘‘half-power’’ point during the decay phase
of the X-ray flux. The half-power point is defined as that
time after maximum when the flux decreases to a level
halfway between the maximum flux and the preevent
background level. The current model in operational use
is based on the event data described by Balch [1999] which
consisted of 88 proton events and 1334 control events. The
events were classified into groups according to five possi-
ble ranges of integrated flux, five possible ranges of
maximum flux, and four possible values for the radio
sweep observations. This constituted a 5 � 5 � 4, three-
dimensional discrete parameter space into which proton
events and control events were subdivided. Within each
point in parameter space, the number of proton events
divided by the total number of events was calculated to
estimate the probability for proton event occurrence. For
points in parameter space where the sample size was too
small (taken to be less than 10 events), one dimension of
parameter space was removed and the probability was
reestimated using two parameters. In addition, for those
cases where a point in two-dimensional parameter space
still had insufficient sample size, another dimension was

removed and the probability was evaluated based on a
single parameter. The specifics of these calculations are
shown explicitly in Tables 6, 7, and 8 of Balch [1999].
[12] The prediction of the maximum flux of a proton

event at 10 MeV is based primarily on a statistical rela-
tionship between the log of the peak flux of the proton
events and the log of the integrated X-ray flux of the
associated X-ray event. The prediction also includes infor-
mation about the integrated X-ray flux of the most recent
previous event that occurred in the same active region (if
applicable) as this was found to provide a slightly higher
correlation between the predicted values and the observed
values. The prediction formula is

FP10 ¼ 10aPF �
Xint

0:00987

� �0:82
; ð1Þ

where FP10 is the predicted maximum flux at > 10 MeV,

aPF ¼
Xpfint

0:167

� �1:146

if Xpfint > 0:08;

aPF ¼ 1 if Xpfint � 0:08;

ð2Þ

Xpfint is the integrated X-ray flux of the previous event, and
Xint is the integrated X-ray flux of the associated X-ray
event. The correlation coefficient between the log of the
predicted flux and the log of the observed flux was found
to be 0.489 in the Balch [1999] study.
[13] The prediction of the rise time (i.e., the time differ-

ence between the X-ray event maximum and the proton
event maximum) was based on an empirical relationship
that was found with the location of the associated flare on
the solar disk. The formula derived is

trise ¼ tmin þ
longitude� lSE

l

� �2
; ð3Þ

where lSE is the optimal sub-Earth longitude (78 degrees
west), l is a longitudinal scaling factor (18.1 degrees), and
tmin is the minimum rise time (9.4 h). The model reflected
the trend of the observations (see Figure 13 of Balch [1999])
but there was still a significant scatter of points about the
prediction model. The standard error for the proton events
in the 1999 study was found to be 22.5 h.

3. Description of the New Event Database
[14] Since the time of the 1999 study, solar cycle 23 has

passed through solar maximum (April 2000) and has
produced numerous proton events. This provides an
opportunity to reexamine the model performance by the
inclusion of these new events. The original 1999 paper
covered events from 1976 to 1995: in this study, we
consider two solar cycles of proton events as recorded
from 1986 to 2004. The greater availability of digital data
from GOES as well as ground-based optical and radio
observatories has enabled a careful examination and con-
siderable improvement in the quality of the event data-
base as compared to what was previously possible.
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[15] A review of all proton events from 1986 to 2004 was
carried out by an examination of corrected, archived 5-min
GOES particle flux. Because of the ready availability of the
5-min flux values it was possible to verify and improve
existing proton event records. The result was a compila-
tion of 165 events from 1986 to 2004. Each event includes
several parameters derived from the GOES Energetic
Particle Sensor (EPS) data, including onset time, threshold
time (flux exceeding 10 particles cm�2 s�1 ster�1), time
of maximum, end time, maximum flux at �10 MeV,
�30 MeV, �60 MeV, and �100 MeV, and event fluences
(time integrated flux) for the same energies.
[16] A comparison of the corrected, 5-min GOES inte-

grated particle flux with the existing list of 10 MeV proton
events (http://swpc.noaa.gov/ftpdir/indices/SPE.txt)
revealed inconsistencies between the peak fluxes of the
events prior to 1990. The source of these discrepancies was
the introduction of corrections to the calculation of inte-
grated particle flux in January 1990 as described by Onsager
et al. [1996] (see also http://goes.ngdc.noaa.gov/data/avg/
readme.txt). These corrections were applied to the older
GOES EPS data sets after the fact and resulted in correc-
tions to the proton event data for the period prior to 1990.
In addition to the corrected events, some events were
removed from the original list since the corrected peak flux
no longer exceeded the threshold of 10 particles cm�2 s�1

ster�1. SWPC plans to apply these corrections to the event
list on the Web site but this has not yet been completed as
of the submission date of this publication.
[17] An additional modification of the SWPC proton

event list was necessary for this analysis. Some of the
proton events consisted of multiple injections of energetic
particles from multiple solar events. Since the emphasis of
this study is the prediction of energetic particles using
solar observations, it was necessary to consider each
injection to be a distinct, solar-generated proton event.
This necessarily introduces some uncertainty in the onset
times and end times for these special cases. This particular
definition of a proton event will not be incorporated into
the SWPC Web site event list because those events are
defined strictly in terms of threshold crossings of the
GOES � 10 MeV proton flux.
[18] The association of GOES XRS events with the

proton events was also reexamined. Readily available
1-min XRS digital data helped facilitate this process, and it
was possible to improve the associations and the XRS event
parameters relative to what had been done previously. In
particular, the time-integrated x-ray flux was recalculated
to insure that the parameter was derived consistently over
the study period. The parameters derived from the XRS
data set include begin time, maximum time, postmaximum
half-power time, end time, peak flux, time-integrated flux,
and background subtracted integrated flux.
[19] The association of ground-based H-alpha flare

reports and radio sweep events was also reexamined. In
addition to the event reports received from the USAF
SEON network, it was possible to supplement the obser-

vations with reports from other observatories as archived
by the National Geophysical Data Center. The ground
based data quality was further enhanced by information
about times of active observing. Thus associated activity
could be classified according to three possibilities: (1) an
associated event did occur, (2) an associated event did not
occur, or (3) it is unknown whether an associated event
occurred. The inclusion of this supplemental data together
with the SEON report archive enabled the addition of
optical location, type II occurrence, and type IV occurrence
for a large majority of the events.
[20] In examining each of these events, it was found that

28 (17%) originated from sources behind the solar limb.
Most of these originated behind the west limb, but two
cases were found to have originated behind the east limb.
Obviously, these events present a special kind of space
weather challenge since some or all of the soft X-ray
emission and radio emission may have been unobservable
due to obscuration of the solar disk. The solar signatures
needed for the prediction model were either unavailable
or showed indications that they were affected by partial
disk obscuration. Therefore for this analysis we will treat
these as a priori missed events. If relevant observations
could be made for activity behind the limb using a
strategically placed spacecraft-based observatory, then
we would expect the number of missed events to decrease.
[21] We also found that 9 (5.4%) of the SEP events

attained threshold due to energetic storm particles (ESP),
which are trapped particles that are observed in situ
during passage of an interplanetary shock [Cohen et al.,
2005]. These events would not have reached threshold
level if there were not an ESP component. These cases
also present a special space weather prediction problem,
since the physical processes depend primarily on proper-
ties of the shock and the nature of the ambient medium
through which the shock passes, and much less directly on
the characteristics of the associated solar event. Again, we
will treat these as a priori missed events with respect to
verification of the prediction model.
[22] Another special case was identified where two solar

sources combined to produce an SEP event. Analysis of
the timing of the solar activity and the proton flux profiles
showed that neither solar source could have independent-
ly produced an SEP event but that the SEP event was a
consequence of two proton enhancements occurring in
close time coincidence. Therefore these solar sources were
not considered to be proton producing events individually
and the SEP event was discarded from the analysis.
[23] For the remaining 127 events, analysis of the event

parameters showed that all were associated with an XRS
event with peak flux in the 1--8 Å band of greater than
2.44 � 10�6 Watts m�2, integrated X-ray flux greater than
9.93 � 10�3 Joules m�2, and background-subtracted inte-
grated X-ray flux greater than 5.95 � 10�3 Joules m�2. Thus
we consider these to be necessary conditions for a proton
event, with the qualification that this does not include
events generated from backside solar activity or the small
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ESP events we mentioned previously. We note that since
we have 38 discarded events it will not be possible to
detect more than 127 out of 165 events. This places an
upper limit on the probability of detection at 77%.
[24] In order to validate the probability prediction, we

supplemented the proton event data with a complete set
of XRS events which meet these necessary conditions but
did not produce a proton event (i.e., the control event
database). These data were derived in a similar manner as
described for the proton events. The GOES XRS 1-min
data for the same time period were carefully examined for
events meeting the criteria. In addition, archives of XRS
events from NGDC and SWPC were used to supplement
the analysis. For each XRS event, radio sweep (type II and
type IV) information and optical flare information were
derived from the same sources as mentioned previously.
The final result was a list of 3656 events from 1986 to 2004
which meet the necessary conditions but were not associ-
ated with a proton event. Of these, 20 events were asso-
ciated with an enhancement of 10 MeV proton flux, but
the flux did not reach event level criteria. These borderline
cases are retained for the verification analysis, but they
will be removed in future work when we analyze the data
to discriminate between proton producing events and
control events.

4. An Overview of Forecast Verification
Measures
[25] In this section we describe well-developed concepts

for forecast verification that are used in the context of
tropospheric weather forecasting. The interested reader
may want to refer to Jolliffe and Stephenson [2003] and
references therein for an in-depth review of this topic.
[26] Forecast verification seeks to evaluate the skill or

value of a forecast. Generally speaking, there are three
classes of users who need verification information, and the
interpretation of verification results will vary somewhat
with the needs of each user class. The first of these are
users who need to make operational or economic deci-
sions based on the forecast. In this case the user needs to
know the distribution of observations given the prediction
and can use this information to make a risk assessment to
determine an optimal operational strategy that will min-
imize losses. A second class of user has an administrative
or programmatic perspective; in this case the objective is
to track whether forecasts are getting better or worse. For
this user class the key is to be able to judge the forecast
skill in relative terms, that is, measure whether forecast
system A is better than forecast system B. Verification also
provides a means for an administrator to measure the
impact on forecasting skill due to a particular data stream,
a particular model, or a particular forecaster training
program and can guide prioritization of future resource
allocations to meet space weather objectives. A third class
consists of users who seek to improve scientific under-
standing through forecast verification. In particular, verifi-
cation analysis may help these users identify conditions

where themodel is doing poorly andmay help focus future
model development efforts or observational programs on
leveraged topics where increased understandingwill result
in major improvements to forecast performance.
[27] The accuracy of a forecasting system is defined to be

‘‘the average degree of correspondence between individ-
ual forecasts and observations’’ [Murphy and Daan, 1985].
The most common approach for measuring the accuracy
of probability forecasts, a key output of the SWPC model
proton prediction model, is to compare the prediction
vector f (which contains probabilities scaled between 0
and 1) with the corresponding observation vector o (where
oi = 0 if no event occurs but oi = 1 if an event does occur),
and to calculate the mean square error between the
predictions and the observations:

QR ¼ 1=Nð Þ
XN

i¼1
fi � oi

� �2
; ð4Þ

where N is the number of model predictions.
[28] The quantity QR is known as the quadratic score or

the Brier score [Brier, 1950]. Note that smaller Brier scores
indicate better accuracy and that a perfect Brier score of
0.0 would require a 0.0 probability forecast every time an
event did not occur and a 1.0 probability forecast every
time an event did occur.
[29] The accuracy can be compared with a reference

forecast to calculate a measure of relative skill. Typically,
the observed rate of occurrence of the events relative to
the total number of forecasts is used as a baseline. So, for
example, we can calculate the occurrence rate for SEP
events, o = number of proton events/number of forecast
runs. We then can calculate a reference quadratic
score, QR*, based on a constant forecast of o. The skill
score for the prediction model relative to this climato-
logical forecast can be calculated as follows:

SS ¼ QR*�QRð Þ=QR* ð5Þ

We can see from the formula that SS will approach zero
as QR approaches QR* (no skill), and SS will approach
one as QR approaches zero (perfect skill).
[30] In order to understand the forecast system perfor-

mance in greater depth, however, it is necessary to con-
sider the joint probability distribution of the observations
and forecasts [Murphy and Winkler, 1987]. Since for prob-
ability forecasts it is not possible to draw meaningful
conclusions from the comparison of an individual forecast
with an individual observation, it is necessary to use a
statistical approach, so that we compare the correspon-
dence between forecast probabilities and the observed
relative frequency of the event. (Reviews for verification
of probability forecasts may be found in the work of Toth et
al. [2003], Hsu and Murphy [1986], and Murphy and Daan
[1985]). So, for example, if we want to measure the
performance of the forecasts when a given probability is
predicted, say 60%, then we need a sufficient sample of
such forecasts from which we can calculate the proportion
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of occurrences of the event to see how close the occur-
rence frequency is to 60%. If the predicted probability and
the relative frequency occurrence are nearly the same, the
forecasts are statistically consistent with the observations;
if there is a significant difference between these quantities,
however, we can say that the forecasts are not statistically
consistent with the observations and that these forecasts
have a bias (i.e., the forecasting system is underforecasting
or overforecasting). This measure of consistency between
the forecasts and observations is commonly referred to as
forecast reliability, a term originally introduced by Murphy
[1973]. It should be noted here that if the biases of a forecast
system are well known, it is straightforward to apply bias
corrections which will improve model reliability.
[31] However, statistical reliability by itself does not

provide complete information about the usefulness of
the probability forecasts. For example, if we use the
statistical occurrence rate for an event over a period of
time (e.g., 1 year during solar maximum), as a probabilistic
forecast, we would expect the event occurrence frequency
to be consistent with the forecast probability and hence for
these forecasts to be highly reliable. However, this type of
prediction (a climatology forecast) does not provide any
ability to distinguish conditions when the event will occur
with higher or lower frequency than the climatological
rate. The degree to which a forecasting system can distin-
guish these circumstances is a measure of forecast reso-
lution [Hsu and Murphy, 1986; Murphy, 1973]. For a
perfectly resolved forecast system, the predictions divide
the sample into two or more subsamples such that all
forecasts fi < o would have an event occurrence rate of
0.0 and all forecasts fi > o would have an event
occurrence rate of 1.0. Unlike reliability, it is not
possible to apply the results of verification analysis to
make improvements in resolution. Instead, more fun-
damental changes are needed in the observations,
models, or forecaster training in order to better dis-
criminate conditions which produce events from con-
ditions which do not produce events.
[32] The analysis of Murphy [1973] and Hsu and Murphy

[1986] shows that there is a close relationship between
accuracy, reliability, and resolution, which can be
expressed as follows:

QR ¼ QR*þ REL� RES: ð6Þ

In this equation, REL is the reliability and RES is the
resolution, defined by the following formulae:

REL ¼ 1=Nð Þ
XT

i¼1
Ni hfii � hoii

� �2
; ð7Þ

RES ¼ 1=Nð Þ
XT

i¼1
Ni hoii � oð Þ2; ð8Þ

where T is the number of probability ranges. For each
forecast probability range, Ni is the number of model runs,
hfii is the mean forecast probability, and hoii is the
event occurrence frequency. Smaller values for REL
indicate better reliability and lower the overall mean
square error. Larger values for RES indicate better
resolution and also lower the overall mean square
error. Therefore by analyzing reliability and resolution
of probability forecasts, it is possible to identify model
deficiencies and identify pathways for future improve-
ment in overall accuracy. The specific application of
these concepts will be demonstrated in the results
section of the paper.
[33] The performance of probability forecasts can also be

analyzed using tools that are applied to verify categorical
(i.e., yes/no) forecasts. For categorical forecasts it is possi-
ble to evaluate performance in terms of false alarm rate
(FAR), probability of detection (POD), and other measures
we will define presently. In order to apply categorical
measures to probability forecasts, it is necessary to define
a probability threshold, pt. We then consider prediction
performance given that a warning is issued whenever the
forecast probability is greater than or equal to pt and such
that no warning is issued if the forecast probability is less
than pt. In this context we can analyze the forecasts and
observations in terms of a 2 � 2 contingency table, shown
in Table 1, where we define the following variables: A is
the number of hits, B is the number of false alarms, C is the
number of missed events, D is the number of correct nulls,
N is the total number of forecast model runs. The row
totals are nw, number of warnings issued, and nn, number
of cases for which a warning was not issued. The column
totals are np, the number of proton events, and nc, the
number of control events. The following statistical meas-
ures provide information about the quality of these cate-
gorical forecasts:

Probability of detection PODð Þ ¼ A= Aþ Cð Þ
False alarm rate FARð Þ ¼ B= Aþ Bð Þ
Percent correct PCð Þ ¼ AþDð Þ=N:

ð9Þ

[34] It is possible to adjust the Percent Correct statistic by
subtracting the number of forecasts that we would expect
to be correct by chance. This provides a skill corrected
verification measure known as the Heidke Skill Score
(HSS) [Heidke, 1926] (see also Wilks [1995]). The number

Table 1. Two-By-Two Contingency Table for Analyzing the
Quality of Categorical Forecasts

Event Observed

Event Forecast Yes No
Yes A B nw
No C D nn

np nc N
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of correct predictions by chance is derived according to
the following argument:

Probability event ¼ Yesð Þ ¼ Aþ Cð Þ=N;

Probability forecast ¼ Yesð Þ ¼ Aþ Bð Þ=N;
ð10Þ

and therefore the probability for a chance hit is

P event ¼ Yes and forecast ¼ Yesð Þ ¼ Aþ Cð Þ* Aþ Bð Þ=N2:

ð11Þ

The derivation for the probability of a chance correct null
is derived as follows:

Probability event ¼ Noð Þ ¼ BþDð Þ=N;

Probability forecast ¼ Noð Þ ¼ CþDð Þ=N;
ð12Þ

hence

P event ¼ No and forecast ¼ Noð Þ ¼ BþDð Þ* CþDð Þ=N2:

ð13Þ

The combined probability for a chance correct forecast
(hits and correct nulls) is

Aþ Bð Þ* Aþ Cð Þ þ BþDð Þ* CþDð Þ½ �=N2: ð14Þ

We therefore derive the number of correct forecasts by
chance to be

E ¼ Aþ Bð Þ* Aþ Cð Þ þ BþDð Þ* CþDð Þ½ �=N ð15Þ

This leads to the definition of the Heidke Skill Score:

HSS ¼ AþD� Eð Þ= N � Eð Þ: ð16Þ

[35] The Heidke skill score can range from �1 for no
correct forecasts (under certain conditions) up to +1 for all
correct forecasts. A value of zero is interpreted to mean
that the predictions that are no better than chance.
[36] For probability forecasts, we can consider the prob-

ability threshold, pt, to be an independent variable that
varies from 0.0 to 1.0 (or equivalently 0% to 100%). For
each fixed value of pt, the categorical statistics may be
calculated; therefore we can consider the categorical qual-
ity measures POD, FAR, and HSS to be functions of the
probability threshold pt. Typically, the false alarm rate will
decrease as the threshold level is increased. However, this
is usually at the expense of a decrease in the probability of
detection. In general we will be able to find an optimal
skill score (using HSS) for some value of the probability
threshold.

5. Verification Results
[37] With the event data, it was straightforward to test

the model for performance during the past two solar

cycles. We begin the discussion by looking at the results
for the probability forecast.
[38] On the basis of the description of the model from

Balch [1999] the probability was calculated for 3783 events,
of which 127 were proton events and 3656 were control
events. The events were grouped according to T = 11
ranges of predicted probabilities (see Table 2). On the
basis of this grouping, we determine the accuracy, reli-
ability, resolution, and skill of the prediction model and
display this information using an attributes diagram as
described by Hsu and Murphy [1986] (see Figure 1). Shown
along the abscissa are values for average predicted prob-
abilities for each group and shown along the ordinate are
the corresponding observed occurrence rates. The numb-
ers labeling each point indicate the sample size for each
group, and the error bar is measure of uncertainty in the
estimated proportion, based on the size of the sample. The
REL = 0 dashed line indicates perfect reliability, the RES =
0 line indicates a forecasting system with no resolution
(i.e., a constant forecast using the climatological occur-
rence rate).
[39] Accuracy of the probability forecasts was measured

using the quadratic score, QR, which was found to be
0.0250. Since QR is simply the mean square error, the rms
error is QR1/2 = 0.158. This result is consistent with the
1999 paper where we found an rms error of 0.16.
[40] The accuracy was compared with a reference fore-

cast based on the average occurrence rate of SEPs. The
average occurrence rate (number of proton events/num-
ber of forecast runs) was found to be o = 127/3783 =
0.0336. A constant forecast of o has a quadratic score
QR* = 0.0324; therefore the sample skill score is calcu-
lated to be

SS ¼ QR*�QRð Þ=QR* ¼ 0:230: ð17Þ

We note for purposes of comparison that Hsu and
Murphy [1986] calculate a skill score of 0.32 for a sample
of experimental precipitation probability forecasts with
threshold amount of 0.01 inches and a skill score of 0.02
for similar forecasts for 0.25 inches.
[41] The terms from which reliability and resolution are

calculated are also shown in Table 2. For each forecast
probability range, Ni is the number of model runs, hfii is
the mean forecast probability, and hoii is the event
occurrence frequency. Note that QR ! QR* as REL !
RES, so we deduce that the skill score is zero when REL =
RES. Thus the line in Figure 1 midway between REL = 0
and RES = 0 represent forecasts with no skill and is
labeled in the figure with SSi = 0. The verification curve
lies above this line and shows positive skill for each of
the probability ranges.
[42] Referring to Figure 1, we can assess the reliability of

the model by comparison with the diagonally dashed line
defined by hfii = hoii. As discussed previously, this
dashed line defines perfect reliability where REL = 0.
Points above the line indicate underforecasting and
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points below the line indicate overforecasting. The
overall reliability is calculated to be 0.0007. Most of
the points show fairly good reliability, but one point in
the probability range 0.25--0.35 clearly shows a region
of significant underforecasting. In addition, there
appears to be a tendency toward overforecasting in
the 0.55--0.65 probability range. The reliability for each
range of predicted probability is shown in Table 2 and

confirms, quantitatively, the domains of relatively less
reliable forecasts.
[43] An analysis of the underforecast events with pre-

dicted probabilities in the 25--35% led to the identification
of a point in parameter space for which the original model
statistics were significantly different than what was
observed during the 1986--2004 interval. This point in
parameter space consisted of events with integrated flux
greater than 0.895 J m�2, X-ray maximum greater than or

Figure 1. Attributes diagram for Space Weather Prediction Center’s (SWPC) proton prediction
model, based on events observed between 1986 and 2004.

Table 2. Attributes Table for Space Weather Prediction Center’s Proton Prediction Modela

Forecast Probability Ntot Nsep Nctrl hfii hoii RELi (� 10�2) RESi (� 10�2) SSi QRi

0.00--0.05 3475 38 3437 0.005 0.011 0.004 0.05 0.01 0.01
0.05--0.15 38 4 34 0.088 0.105 0.029 0.51 0.15 0.09
0.15--0.25 109 13 96 0.184 0.119 0.418 0.73 0.10 0.11
0.25--0.35 28 15 13 0.300 0.536 5.556 25.21 6.06 0.30
0.35--0.45 44 16 28 0.379 0.364 0.024 10.89 3.35 0.23
0.45--0.55 40 17 23 0.457 0.425 0.099 15.32 4.69 0.25
0.55--0.65 49 24 25 0.596 0.490 1.126 20.81 6.07 0.26
0.65--0.75 0 0 0 - - - - - -
0.75--0.85 0 0 0 - - - - - -
0.85--0.95 0 0 0 - - - - - -
0.95--1.00 0 0 0 - - - - - -
All 3783 127 3656 0.030 0.034 0.07 0.82 0.230 0.0250

aHere 127 proton events and 3656 control events were used to produce 3783 model runs. Predictions from the model were grouped into
probability ranges as indicated by the first column. The second, third, and fourth columns provide a count of the total number of events, the
number of proton events, and the number of control events that fall into each probability range. Here hfii is the average probability forecast each
interval and hoii is the occurrence frequency of proton events, Nsep/Ntot, for each interval. RELi is the measure of reliability for each interval,
defined as (hfii � hoii)2, and the overall reliability is the weighted average of the RELi using the number of events in each interval. Smaller values
indicate higher reliability. The RESi is a measure of resolution for each interval, defined as (hoii � o)2, where o is the overall occurrence
frequency, Nsep/Ntot = 127/3783 = 0.034. Higher values indicate better resolution. SSi is the sample skill score for each interval and QRi is the
quadratic score (Brier score) for each interval. Higher values of SSi indicate better skill, and lower values of QRi indicate better accuracy. The skill
is calculated using QRi relative to the quadratic score that results using the occurrence frequency, oi. The overall skill score and quadratic scores
are weighted averages over all of the intervals. The overall rms error is

ffiffiffiffiffiffiffiffi
QR

p
= 0.158.
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equal to X7, and association of type II and type IV radio
bursts. In the 1999 study, 3 out of 10 such events produced
an SEP, suggesting a probability of 30%. However, the
event data from 1986 to 2004 show that 10 out of 12 such
events produced an SEP, suggesting a much higher prob-
ability of 83%. The discrepancy is an indication of a
problem in using relatively small samples to estimate
these probabilities. As was stated in the original 1999
paper, a 68% confidence interval for this category was
15.6--44.4%, but clearly this still leaves a 16% chance for a
probability in excess of 44.4%. With the large number of
proton event occurrence rates being made as a basis for
the model, it certainly was likely that one or more of the
estimated probabilities would be outside the 68% confi-
dence interval.
[44] An analysis of the overforecast events with pre-

dicted probabilities in the 55--65% range shows a similar
problem. In this case we find a point in parameter space
(events with integrated flux 0.085--0.275 J m�2, M3--M8,
Type IV only) for which the SEP occurrence rate differs
significantly. In the 1999 study the probability was esti-
mated to be 58% (derived from 7 out of 12 such events),
but for the 1986--2004 event data we find 7 out of 23 such
events produce an SEP, an occurrence rate of 30%. Again
we see that the relatively small sample size led to an
inaccurate probability estimate that was incorporated in
the model.
[45] The overall resolution of the forecasts is found to be

0.0082. An examination of the terms of the weighted sum
for equation (8) shows that the smallest contributions to
resolution (which detract from model accuracy) are from
the 0.00 -- 0.05, 0.05 -- 0.15, and 0.15 -- 0.25 probability
ranges. This makes apparent a key weakness of the model:

a significant fraction of the proton events fall in the lower
probability ranges: for example, we see from Table 2 that
38/127 = 30% of the proton events are given a probability
between 0.00 and 0.05. This indicates that more work is
needed to find ways to distinguish the proton events from
the control events under conditions for which the model
produces such forecasts.
[46] This result is further strengthened by examining the

contributions to the quadratic score from each of the
probability ranges. Quadratic scores for each range are
shown in Table 2, and the overall score QR is simply the
weighted sum of the scores for each range, QRi, where
the weights are the fraction of events in each range. The
contribution from the 0.00--0.05 range is (3475/3783)� 0.01 =
0.0092 which therefore contributes 0.0092/0.0250 = 37% of
the mean square error.
[47] We consider next the performance categorical quality

measures for probability of detection (POD), false alarm
rate (FAR), and Heidke skill score (HSS), which, as dis-
cussed earlier, are functions of a probability decision
threshold pt. Using the proton prediction model and the
data, these quality measures were calculated and are
shown in Figure 2. An examination of the graph shows
that the false alarm rate decreases as the threshold level is
increased. As expected, we see that this decrease is at the
expense of the probability of detection which also
decreases with increasing threshold. We see that the
optimal skill score (using HSS) is achieved for the range
of probabilities from 20 to 30%. We also note that at the
optimal point, the probability of detection is 57% (72/127),
the false alarm rate is 55% (89/161), the percent correct is
96% (3639/3783), and the Heidke skill score is 0.48. This
illustrates that even at the point of optimal skill, the

Figure 2. Categorical performance statistics for the proton prediction model as a function of
probability thresholds.
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number of false alarms and missed events is significant,
and there is clearly a need for improvement.
[48] A possible weakness in this analysis is that the

model being verified was constructed from some of the
events included in the verification data set. Proton events
and controls from 1988 to 1997 were used in the earlier
study and many of those events overlap with our 1986--
2004 analysis interval. In order to address this issue, we
divided the 1986--2004 events into two approximately
equal groups. One group was used to construct new
statistics for the model, using the same discrete structure
for input parameter space, and the other group was used
to verify the newly constructed model. The selection of
events was done randomly. The process of event selection,
model construction, and model verification was repeated
for 30 independent trails. For each trail the rms error and
the optimal Heidke skill score were calculated. Shown in
Figure 3 are the results for rms error and optimal Heidke
skill score for each of the trails. The mean rms error is
found to be 0.156 ± 0.007, with the minimum value of 0.142
and a maximum value of 0.174. This provides a good
estimate of the uncertainty in the rms error of 0.157 that
was stated earlier. The mean value for HSS is found to be
0.47 ± 0.04, with a minimum value of 0.39 and a maximum
of 0.54.
[49] Although it is beyond the scope of this paper, it

should be pointed out that the HSS is only one alternative
among various ways to optimize the utility of the forecasts.
For some applications it may be more important not to
miss any events than it is to experience occasional false

alarms. On the other hand, a different application may be
sufficiently affected by false alarms such that it is a better
strategy to risk missing some of the events in order to
lower the false alarm rate. The analysis can be quantified
by comparing the cost of preventive action with the cost
of a loss when an event occurs in the absence of preven-
tive action. See Weigel et al. [2006] for a comprehensive
discussion.
[50] The model predicted peak flux at �10 MeV for the

127 SEP events was compared with the observed peak flux
and the result is shown in Figure 4. There continues to be
a weak correlation between the logarithms of the pre-
dicted and observed peak flux: the current data show a
correlation coefficient of 0.524 (c.f. with 0.489 from the
previous study). We also find a significant scatter of the
points about the perfect prediction line: the standard error
is found to be 0.870 (c.f. with 0.764 from the previous
study), so most of the time the predictions are within an
order of magnitude of the observations but not always.
This is similar to the result that was shown in the previous
study [Balch, 1999].
[51] For the same SEP events we show the scatter of rise

times as a function of longitude in comparison to the
model formula, see Figure 5. The standard error in rise
times is found to be 12.6 h, somewhat smaller than the
18.9 h that was reported in the previous study. Figure 6
shows a comparison of the predicted rise times with the
observed rise times. The plot does show a correlation
between the two quantities, but clearly there is significant
scatter as we would expect, given the size of the standard
error.

6. Summary
[52] The development of understanding and physical

models to improve prediction of SEP events is an area of
active research. However, at this time none of these
appear to be sufficiently developed to be applied to real-
time space weather operations, and there are still signif-
icant gaps in the knowledge and understanding of these
events. Thus today’s working prediction models are
empirical and are based on statistical analysis of the
characteristics of events that are associated with SEPs. In
this paper we have evaluated the performance of one such
model, the empirical proton prediction model currently
being used at NOAA’s Space Weather Prediction Center.
[53] To carry out this evaluation, we constructed a

database of 127 proton events and associated flare signa-
tures from 1986 to 2004. An analysis of the event data led
us to find the following necessary conditions for a proton
event: peak soft X-ray flux greater than 2.44 � 10�6 W m�2,
integrated X-ray flux greater than 9.93 � 10�3 J m�2, and
background subtracted integrated X-ray flux greater than
5.95 � 10�3 J m�2. These conditions were then applied to
construct a list of X-ray events over the same time period,
and it was found that there were 3656 X-ray events that
met the necessary conditions but were not associated with
a proton event. The proton event and control event data

Figure 3. RMS error and Heidke skill scores for
different versions of SWPC’s proton prediction models.
The structure of the input parameter space is the same
for all of the versions, but for each version a different
collection of proton events and control events has been
used to derive the model probabilities. The mean rms
error is found to be 0.156 ± 0.007, with the minimum
value of 0.142 and a maximum value of 0.174. The mean
HSS is found to be 0.47 ± 0.04, with a minimum value of
0.39 and a maximum of 0.54.
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were used to verify the performance of the model’s
probability predictions. We find that the accuracy (mean
square error) is 0.0250; hence the rms error is 0.158. The
skill score relative to sample climatology is found to be
0.230. The accuracy statistic is shown to be composed of
three components: climatology (contributes 0.0324), reli-
ability (contributes 0.0007), and the resolution (contributes
�0.0082). These results are depicted graphically with an
attributes diagram. We find two conditions where the
model probability is systematically inaccurate (poor reli-
ability). Further analysis shows that the inaccuracy
resulted from small sample sizes that were originally used
to construct the model probabilities for these conditions.

An additional problem is found concerning the resolution
of the model. It is shown that 92% (3475/3783) of the model
runs result in a probability prediction of 0--5%, of which
�1% end up as proton events. Unfortunately, this also
means that the model predicts this probability range for
38 of the 127 proton events (�30%) SEP events.
[54] The probability results are also considered in the

context of categorical forecast performance measures. The
optimal Heidke skill score is achieved using a probability
threshold in the 20--30% range and has a value of 0.48 ±
0.04.We find that at this optimal probability threshold the
false alarm rate is 55% and the probability of detection is
57%.

Figure 5. A plot of event rise times as a function of
longitude. The smooth curve is the rise time prediction
model.

Figure 6. Comparison of predicted rise time with
observed rise time.

Figure 4. Comparison of predicted peak flux with observed peak flux for 127 SEP events from
1986 to 2004.
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[55] We also show results of peak flux prediction and
rise time prediction. Both quantities show a correlation
between the predicted and observed values but they also
show considerable scatter and room for improvement.
[56] It should also be remembered that the above results

do not include 28 SEP events that originated from activity
behind the solar limb nor do they include nine events that
were the result of energetic storm particles (ESP) only.
Thus the current operational techniques necessarily suffer
from lower probability of detection than described above.
It may be possible to address the problem of behind-limb
events by making use of observations from new, strategi-
cally placed spacecraft in the heliosphere (e.g., STEREO).
Concerning the ESP events we note that they tend to have
softer spectra and relatively small fluxes and may be
negligible for some applications. Nonetheless, their occur-
rence does lower the overall SEP probability of detection
and there is a need to develop predictive techniques for
these particular events.
[57] Now that the database has been improved, extended,

andupdated, we have the opportunity to develop improved
probability models. It is hoped that by including additional
observational input such as CME speed, direction, and size
it will be possible to reduce the current inaccuracies and
improve the usefulness of the predictions. In addition, it is
now possible to investigate other probabilistic questions,
for example, probability for events at higher flux levels or
at different energies. We can also look at probabilities for a
variety of fluence levels at various energies.
[58] There continues to be a need to provide better

predictions for peak flux, onset time, rise time, event
duration, and spectral properties of SEPs. All of these
need to be studied to discern how effective an empirical
approach can be. Ultimately, space weather forecasters
look forward to the day when physics-based models can
surpass the limitations of what can be done empirically.
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