Lecture of Summer Solar Program, Haleakala, Maui, July , 72008

Solar Flares on All Scales and Coronal Heating Problerh

by Markus J. Aschwanden

1 Magnetic Reconnection Topologies

A fundamental aspect in the physical understanding of dtdaes is the geometric
topology and the dynamics of the magnetic field, which drivegnetic reconnection
processes during solar flares. There are three basic tapslofjmagnetic reconnec-
tion geometries between open and closed field lines: Thegm@Anection geometry
consists of a pair of (1) open-open, (2) open-closed, orl¢®ed-closed magnetic field
lines (Fig. 1). If these pairs of pre-reconnection magnid lines are coplanar, we
have a 2D model, as shown in Fig. 1 (top row, thick dashed)in€ke disjoint field
lines are brought into contact with each other during themeection process (dotted
lines in Fig. 1, top row), and then relax into the post-re@stion configuration (shown
with solid double lines in Fig. 1 top row).

A standard 2D flare model of the dipolar or open-open type ésG@armichael-
Sturrock-Hirayama-Kopp-Pneuman (CSHKP) reconnectiomleho It starts with a
helmet-streamer configuration with two antiparallel magrfeeld lines above the cusp
of the streamer, where a Y-type reconnection geometry sdnuhe cusp, as observed
in the famous “candle-flame” flare of 1992-Feb-21 (Tsunetd.€t992), which is sim-
ilar to the 1999-Mar-18 flare shown in Fig. 1 (bottom left). ¥ése that the end product
is one closed (postflare) loop (Fig. 1, top left). The obstéowns (Fig. 1, bottom left)
show only the lower part with a cusp and postflare loop, butvergically symmetric
X-type geometry we would expect also an upward reconne&gohent that escapes
into interplanetary space.

The tripolar type involves three magnetic poles (Fig. 1, nugdle), where mag-
netic reconnection is referred to &sterchange reconnection’Variants of this type
of magnetic reconnection in tripolar geometries were alsdgs@oned in the context
of emerging-flux models (Heyvaerts et al. 1977) and pawdidylafter the discovery
of soft X-ray plasma jets with Yohkoh (Shibata et al. 1992)eTobservation of long
straight soft X-ray jets (e.g., Fig. 1, bottom middle) weskédn as evidence of plasma
flows along open field lines, a fact that constitutes a fldtepirocess between a closed
and an open field line. The end product of tripolar (openaiyseconnection is one
closed post-reconnection (postflare) loop and one openliiiddFig. 1, top middle),
usually associated with a soft X-ray jet.

Isee also chapters 9 and 10 in textbd®ysics of the Solar Corona. An Introductioby Markus
J. Aschwanden (PRAXIS Publishing, Chichester, UK, and gy, New York), and references therein.
Electronic version at http://www.Imsal.com/ ~ aschwapditets/2004book/
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Figure 1:The topology of magnetic reconnection regions is classifieaithree combinations:
bipolar or open-open (left column), tripolar or open-cib$¢middle column), and quadrupolar or
closed-closed field line reconnection (right column). TBev2rsions are shown in the top row,
with the pre-reconnection field lines marked with dasheeédjmuring reconnection with dotted
lines, and post-reconnection field lines with double safiddtyle. The 3D versions are indicated
in the second row, where the pre-reconnection field linesatecoplanar, but located behind
each other. The third row indicates the acceleration reggiatched), the relative densities
(greyscale), and upward/sideward directed shocks (gres)i The bottom row shows flare
observations from Yohkoh SXT that correspond to the thréflerént reconnection topologies
(Aschwanden 2002, 2005).
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Figure 2: Left: TRACE 1600A image of the 2002 April 15, 23:11 UT, flare, overlaid with
RHESSI contours of thermal and nonthermal emission. Ri§ame image with contours of
RHESSI 10-15 keV emission. The symbols indicate the cgmtfahe coronal sources in the
energy bands of 6-8 keV, 10-12 keV, and 16-20 keV for the logvenal source, and 10-12 keV,
12-14 keV, and 14-16 keV for the upper coronal source. Naédritreasing separation of the
coronal hard X-ray sources towards lower thermal energi®si & Holman 2003).

The quadrupolar type (Fig. 1, top right) is also called iat¢ing-loop model and
has been theoretically modeled in terms of magnetic fluxstearbetween two current-
carrying loops (Melrose 1997). Classical examples hava bbéserved with Yohkoh
SXT by Hanaoka (1996), Nishio et al. (1997), and modeledrimseof 3D quadrupo-
lar geometries by Aschwanden et al. (1999). The initialagitbn as well as the end
product of quadrupolar reconnection are two closed loopsthe footpoint connec-
tivities between opposite polarities are switched duriegpnnection. The outcomes
are similar in 2D and 3D (Fig. 1, second row), except that twedoints and loops are
not lined up in a single plane in 3D, but can have arbitranaslamgles between the
pre-reconnection loops.

Observations usually do not make the pre-reconnectiongunaiion visible, but
display the post-reconnection field lines only, becausg tezome filled with dense
hot flare plasma by the chromospheric evaporation procdsshws easily to detect in
soft X-rays, as shown in the examples in Fig. 1 (bottom rowdshMsolar flare observa-
tions are interpreted in terms of one of these basic magtogtalogies, which provide
us the approximate location and geometry of particle acate regions (hatched ar-
eas in 3rd row of Fig. 1) and the likely propagation paths ckderated electrons along
the outgoing magnetic field lines.

1.1 Examples of Bipolar X-Point Reconnection

The standard (Carmichael-Sturrock-Hirayama-Kopp-Prarflare model envisions
two oppositely directed magnetic field regions that areciesd in the vertical direction
to form a current sheet where they reconnect. After recdarorethe newly-connected
field lines form a cusp beneath the X-type reconnection pemck relax into a semi-
circular, dipolar post-flare loop, which has two conjugaietpoints where the non-
thermal hard X-ray emission originates. In a recent unig&8SI observation (Sui
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Figure 3: Top: Magnetic topology inferred for the 1993 May 3, 23:05 {ldre, suggesting
reconnection at a 3D nullpoint where the spine field linerisgets the separatrix dome (Fletcher
etal. 2001) Bottom: A similar topology is observed in a flabserved with RHESSI and TRACE
(Krucker & Hudson 2004).

& Holman 2003), two coronal hard X-ray sources were obserssaametrically placed
below and above the putative X-point, at locations wheredibvgnward and upward
outflows from the reconnection region are expected (FigM®yeover, the separation
of the sources increased with lower energies in the theramae of~ 10 — 16 keV.
Since increasing temperatures affect higher photon eegrtiis particular configura-
tion indicates that thermal hard X-ray emission is obsetveitiest near the X-point,
and progressively cooler with increasing distance fromXkgoint. This result was
interpreted in terms of a current sheet formed above thelflafelocation, as expected
in the standard flare model. This observation can be coresides the first direct local-
ization of a current sheet in a flare, and thus provides stsupgort for the standard
model.

1.2 Examples of Tripolar Magnetic Reconnection

There is a class of magnetic topologies that involve recotiom between an open
field line and a closed field line, which in the simplest caseesponds to a “tripo-
lar” configuration. After reconnection, one footpoint ofthlosed loop becomes the
footpoint of the open field line. In more complex 3D topolagian isolated polarity
is surrounded by a region of opposite polarity, which createoronal nullpoint at the
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Figure 4: The concept of 3D magnetic reconnection in a quadrupolamgéy is visualized
for two semi-circular loops (1 and 2), with initial footpe&n(1+, 1—) and(2+, 2—). The three
stages of prereconnection (left column), main reconnegtibase with subsequent relaxation
process (middle column), and final postreconnection phést® column) are depicted for three
different views [i.e., side view (top row), top view (middiew), and perspective view (bottom
row)]. Note that all loop shapes in the initial and final phase represented by circular seg-
ments, while the intermediate stages of relaxing field limesrendered by linear interpolation
(Aschwanden et al. 1999c).

intersection of the separatrix dome and the vertical spaid fine (Fig. 3 top). Flares
that are consistent with such tripolar topologies (in a 2Bnp) have been observed
with TRACE (Fletcher et al. 2001) and with RHESSI (Krucker &dson 2004). A
by-product of such tripolar flares is the appearance of lijeta that are detectable in
soft X-rays and EUV, as well as escaping electron beams tioalupe radio type Il
bursts (Fig. 3 bottom).

1.3 Examples of Quadrupolar Magnetic Reconnection

Some flares clearly show an interaction between two flaresldopclosed-field sys-
tems), which can most simply be interpreted as the outcongeqefadrupolar recon-
nection process. The magnetic configuration corresponds3id reconnection case
(Fig. 1, bottom right) that can be represented by a singlejnaon, neutral line for
the two interacting flare loops, which is different from tHe @ase in Uchida’s model,
which has three neutral lines (Fig. 1, top right). The twoesked flare loops repre-
sent, of course, the postreconnection situation, but theeponnection topology can
be straightforwardly reconstructed by switching the pitikss according to the scheme
shown in Fig. 4. Thus, magnetic geometry is fully constrdifa this type of 3D re-
connection and can be reconstructed from the observedaresifiops. A number of



Figure 5: Scenario of the dynamic evolution during the Bastille-D&p@-Jul-14 flare:(a)
low-lying, highly sheared loops above the neutral line fiatome unstableb) after loss of
magnetic equilibrium the filament jumps upward and forms aesu sheet according to the
model by Forbes & Priest (1995). When the current sheet besatnetched, magnetic islands
form and coalescence of islands occurs at locations of esldaresistivity, initiating particle
acceleration and plasma heatirfg) the lowest lying loops relax after reconnection and become
filled due to chromospheric evaporation (loops with thicieBtyle);(d) reconnection proceeds
upward and involves higher lying, less sheared lo@githe arcade gradually fills up with filled
loops; (f) the last reconnecting loops have no shear and are orientpdmtcular to the neutral
line. At some point the filament disconnects completely ftbmflare arcade and escapes into
interplanetary space (Aschwanden 2002b).

flares was found to fit quadrupolar geometry (Hanaoka 1997 1Nishio et al. 1997,
Aschwanden et al. 1999c).

A theoretical model for this type of 3D quadrupolar recorimecwas developed
by Melrose (1997) in terms of two interacting current-cargyloops. A fundamental
assumption in Melrose’s (1997) model is the conservatiotheflarge-scale currents
that flow through coronal loops and close below the photagph& consequence of
this assumption is that magnetic reconnection procesdggediistribute the current
paths, while the net current flowing into and out of the conmmaains fixed.

Large flares, such as the Bastille-Day 2000-Jul-4 evendylgieeveal a compos-
ite structure of over 100 postflare loops, which all représiem remnants of discrete
individual reconnection processes. So, the building ldawkarge flares may consist
of bipolar, tripolar, or quadrupolar reconnection proessas shown in Fig. 5. Even



simple flares, which display only a single soft X-ray pos#lérop in images recorded
with low spatial resolution, may consist of multiple recextion processes.

2 Magnetic Reconnection Processes

The solar corona has dynamic boundary conditions: (1) The slynamo in the in-
terior of the Sun constantly generates new magnetic flux fiteerbottom of the con-
vection zone (i.e., the tachocline) which rises by buoyasny emerges through the
photosphere into the corona; (2) the differential rotasrwell as convective motion
at the solar surface continuously wrap up the coronal fiett ewery rotation; and (3)
the connectivity to the interplanetary field has constaatlyreak up to avoid excessive
magnetic stress. These three dynamic boundary conditientha essential reasons
why the coronal magnetic field is constantly stressed andohadgjust by restructuring
the large-scale magnetic field by topological changesedaitagnetic reconnection
processes. Of course, such magnetic restructuring prexessur wherever the mag-
netic stresses build up (e.qg., in the canopy-like diverdjeltt in the transition region,
in highly tangled coronal regions in active regions, or aboal hole boundaries). A
classical example is a transequatorial coronal hole thrattimes is observed to rotate
almost rigidly during several solar rotations, although timderlying photosphere dis-
plays the omnipresent differential rotation (in latitud&he shape of the coronal hole
can only be preserved quasi-statically, if the photosjgheagnetic field constantly dis-
connects and reconnects at the eastern and western bamdaopological changes
in the form of magnetic reconnection always liberate freeputential energy, which
is converted into heating of plasma, acceleration of pegjcand kinematic motion
of coronal plasma. Magnetic reconnection processes camr at@ slowly changing
quasi-steady way, which may contribute to coronal heating,more often happen
as sudden violent processes that are manifestdli@sand coronal mass ejections
These dynamic processes are the most fascinating plasmasges we can observe in
the universe, displaying an extreme richness of highly dyingphenomena observable
in all wavelengths.

2.1 Steady 2D Magnetic Reconnection

Quasi-steady reconnection of magnetic fields enables ttmmabplasma to dissipate
magnetic energy, a process that has been proposed to yieltt glasma heating of
the corona (e.g., Parker 1963a, 1972, 1979, 1983; Sturrodklgida 1981; Van Bal-
legooijen 1986) or to supply direct plasma heating in flaeeg.( Sweet 1958; Parker
1963a; Petschek 1964; Carmichael 1964; Sturrock 1966% ddricept represents one
of the most fundamental building blocks that has been usethimy theoretical models
of coronal heating and solar flares, which we outline in tHiefang.

When a new magnetic flux system is pushed towards a pre+existd magnetic
flux system (e.g., as the solar wind runs into the magnetepaushe Earth's bow
shock), or as a new emerging flux region pushes through tr@mrasphere upwards
into a pre-existing coronal magnetic field, a new dynamicrigtzuy is formed where
the magnetic field can be directed in opposite directiong#t bides of the boundary.
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Figure 6:Basic 2D model of a magnetic reconnection process, drivawbyppositely directed
inflows (in x-direction), which collide in the diffusion remn and create oppositely directed
outflows (in y-direction). The central zone with a plasph@arameter of3 > 1 is called the
diffusion region (grey box) (Schindler & Hornig 2001).

The magnetic field has then necessarily to drop to zero atdhedary to allow for
a continuous change from a positive to a negative magnetit §teength. Thus the
balance between the magnetic and thermal pressure aceassttral boundary layer

B% B§
1 N == 4+ py, 2.1
8 P1= Pni 8w b2 (2.1)

yields a higher thermal pressugg,f) in the neutral layer (wher8 = 0) than on both
sides with finite field strengthB; and B,. In a 1D model we would have an infinite
neutral boundary layer. In reality, however, the procesbrofging two oppositely
directed magnetic flux systems together will always haveitefarea of first contact,
which limits the extent of the neutral boundary layer andneteds outflows to both
sides, so that the simplest scenario is a 2D model as showg.i6 Fwhere the lateral
inflows (driven by external forces) will create outflows ajotihe neutral line in an
equilibrium situation. The plasméparametep = p;,/(B3/87) becomes larger than
unity in the central region (becaugy — 0), so that the plasma can flow across the
magnetic field lines, which is called thd@ffusion region and is channeled into the
outflow regions along the neutral boundary. Outside theusiifin region the plasma-
§ again drops below unity and the magnetic flux is frozen-in.e hiighly pointed
magnetic field lines in the outflow region experience a higtvature force that tries
to smooth out the cusps in the outflow region until a balandwéden the outward-
directed magnetic tension force and the inward-directedmatic pressure force plus
thermal pressure is achieved. This magnetic field line etlar process is also called
the sling shot effectwhich is the basic conversion mechanism of magnetic iretic
energy. The stationary outflows are sandwiched betweenstanding slow shocks
(which do not propagate). The end result is a thin diffusiegion with widths and
length A (Fig. 6). The whole process can evolve into a steady-stat#i@gum with
continuous inflows and outflows, driven by external forcemc& the Lorentz force
creates an electric field, in a direction perpendicular to the 2D-plane of the flows
(i.e. perpendicular to the image plane of Fig. 6), a curggpin the neutral layer is



associated with the electric field, according to Ohm’s law,

1 1 in.
EO = —VlBl = —V232 = ]—l y (22)
Cc c ag

which is termed theurrent sheefior the diffusion region. The finite resistivity re-
quires, strictly speaking, a treatment in the frameworkesistive MHD, although the
processes outside the diffusion region can be approximaied the ideal MHD equa-
tions.

2.2 Sweet-Parker Reconnection Model

There exists no full analytical solution for the steadytesgituation of the reconnection
geometry shown in Fig. 6 using the full set of resistive MHuatipns, but separate
analytical solutions for the external (ideal MHD) regiordaspecial solutions for the
(resistive MHD) diffusion region are available that can batched with some simpli-
fications. One such solution is tt&wveet- Parkermmodel (Sweet 1958; Parker 1963a),
where it is assumed that the diffusion region is much lonbenftt is wide,A > §.
For steady, compressible flows (v # 0), it was found that the outflows roughly have
Alfvén speeds,

Bs
Viarps
and that the outflow speed relates to the inflow speed, reciprocally to the cross
sections®) andA (according to the continuity equation),

(2.3)

Vo = Vyu =

p1V1A = ngg(s 5 (24)

and that thereconnection raté/,, defined as the Mach number ratio of the external
inflow speedv, to the (Alfvén) outflow speed 4, is (with the approximatio; ~ By,

V1 & Vg, andS; = Sp),

Vo 1
My= — = —_ . 2.5
0 va \/So ( )

The Lundquist numbe§ (or magnetic Reynolds numBes defined by
S=val/n, (2.6)

analogous to the Reynolds numbler= vL /5 defined for a general fluid velocity.
From Egs. (2.4-2.6) the following relation follows

Vo = S . (27)
So, for typical coronal conditions (with a large Lundquistmmber ofSy = R, =~
10% — 10'2) the reconnection rate is typicallMy ~ 10~* — 105, which yields inflow
speeds in the order afy ~ v4My ~ 1000 km s™' x10~° ~ 0.01 km s~ ! (using
Eq. 2.5) and yields extremely thin current sheets with &tiéss o = A(va/v1) =~
A x 107° (using Eq. 2.4). So, a current sheet with a lengti\of 1000 km would
have a thickness of only ~ 10 m. In typical flares, energies ef,; ~ 10?8 — 1032



Sweet-Parker model

Figure 7:Geometry of the SweetParker (top) and Petschek reconnection model (bottom). The
geometry of the diffusion region (grey box) is a long thineth@\ > §) in the Sweet Parker
model, but much more compaci\(= ¢) in the Petschek model. The Petschek model also
considers slow-mode MHD shocks in the outflow region.

erg are dissipated over flare durationsiof ~ 10 — 10? s, which imply much larger
dissipation rates than obtained with the Sweearker current sheet,

dey _ B*dV _B* 5 BLa o ( B L N\’( va
at  srdt st 0T 81 /S, 100G) \IMm/) \1Mm/s)"’
(2.8)

so the SweetParker reconnection rate is much too slow to explain the miggdissi-
pation in solar flare events.

2.3 Petschek Reconnection Model

A much faster reconnection model was proposed by Petscl®84),lwhich involved
reducing the size of the diffusion region to a very compaetéA ~ §) that is much
shorter than the SweeParker current sheet\( > §) (Fig. 7). Summaries of the
Petschek model can be found, see example in Priest (19851p, Jardine (1991),
Priest & Forbes (2000, p. 130), Treumann & Baumjohann (199148), and Tajima
& Shibata (2002, p. 225). Because the length of the currezgtsk much shorter, the
propagation time through the diffusion region is shortet ire reconnection process
becomes faster. However, in a given external area with Kizeomparable with the
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lengthAgp of the SweetParker current sheet, a much smaller fraction of the plasma
flows through the Petschek diffusion region with sixe, where finite resistivitys
exists and field lines reconnect. Most of the inflowing plagoras around outside
the small diffusion region andlow-mode shocksrise where the abrupt flow speed
changes fronv; to vq in the outflow region (Fig. 7, bottom). The shock waves rep-
resent an obstacle in the flow and thus are the main sites vilfés@ing magnetic
energy is converted into heat and kinetic energy. Simpleggneonsiderations show
that inflowing kinetic energy is split up roughly in equal fginto kinetic and thermal
energy in the outflowing plasma (Priest & Forbes 2000). Pels¢1964) estimated the
maximum flow speed. by assuming a magnetic potential field in the inflow region
and found that at large distande the external fieldBy(L.) scales logarithmically

with distanceL.,
By(L.) = By [1 _ Mo, (L—>] . (2.9)
s A

Petschek (1964) estimated the maximum reconnection\fgtat a distancd.. where

the internal magnetic field is half of the external value.(i&y(L.) = By/2), which
yields using Eq. (2.9),

o ™ - ™
T 8In(L/A) " 8In(Rme)

My (2.10)

So, the reconnection rafd, = vo/v4 depends only logarithmically on the magnetic
Reynolds numbeR,,. = L.va./n. Therefore, for coronal conditions, where the
magnetic Reynolds number is very high (i.&,,. ~ 10® — 10'2), the Petschek re-
connection rate i9/y =~ 0.01 — 0.02 according to Eq. (2.10), yielding an inflow speed
of vo = vaMy ~ 10 — 20 km s~! for typical coronal Alfvén speeds of4 ~ 1000
km s~1. Thus, the Petschek reconnection rate is about three avtigragnitude faster
than the SweetParker reconnection rate.

2.4 Unsteady/Bursty 2D Reconnection

When the diffusion region gets too long (such as in the SwBatker model), it be-
comes unstable teecondary tearin@Furth et al. 1963) and ampulsive bursty regime
of reconnection ensues (Priest 1986; Lee & Fu 1986; Kliemb1$9iest & Forbes
2000, 8§ 6-7). Such unsteady reconnection modes are very likely &vaip in solar
flares, because bursty and intermittent pulses (on timesazl seconds to subsec-
onds) have been observed in hard X-ray and radio signat@irgsrticle acceleration
during virtually all flares. In the folling we describe a fewtbose unsteady recon-
nection modes, such as tearing instabilgy2(5), coalescence instability €.6), and
their combined dynamics (i.e., the regimemirsty reconnectiagr§ 2.7). There are
also other unsteady reconnection types, such as X-typapsal(Dungey, 1953; Craig
& McClymont 1991, 1993; Craig & Watson 1992a; McClymont & @rd996; Priest
& Forbes, 2000, p. 205), resistive reconnection in 3D (eaputnacher et al. 2000;
Priest & Forbes, 2000, p. 230), or collisionless reconoecte.g. Drake et al. 1997,
Haruki & Sakai, 2001a, b). The latter has not yet been apptiesblar flares, but has
been discovered in the Earth’s magneto-tail (Jieroset @0411).

11
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Figure 8:Magnetic island formation by tearing-mode instability iietmagnetic reconnection
region. Magnetically neutral X and O points are formed atlitbendary between regions of an
oppositely directed magnetic field, with plasma flow in theediions indicated by the arrows
(after Furth et al. 1963).

2.5 Tearing-Mode Instability and Magnetic Island Formation

In current sheet formations, resistive instabilities caous, where the magnetic field
lines can move independently of the plasma due to the nam+esistivity (opposed
to thefrozen-flux theorenfor zero resistivity). In magnetic reconnection regionghwi
high magnetic Reynolds number®,{, = 74/74), where the outward diffusion (on a
time scale ofry, = [?/n, with 2 the width of the current sheet amd= (vo)~! the
magnetic diffusivity) is much larger than the Alfvén trinisne 74 = [ /v4 (i.e.,7q >
T4), three different types of resistive instabilities can wrccgravitational, rippling
andtearing modéFurth et al. 1963). Essentially, an Alfvén disturbance tagger an
instability before it can be stabilized by magnetic diffusi whenr; > 74 (i.e., for
large Reynolds numbei®,, = 74/74). The tearing mode, which has a wavelength
greater than the width of the shééf < 1), has a growth time*" of

Tgar _ [(/fl)27'd37'31]1/5 ’ (2.11)

for wave numbers in the approximate rarige /74)'/* < kl < 1 (e.g., see derivations
in Furth et al. 1963; Priest 1982, p. 272; White 1983; andrStk1994, p. 272). Thus,
the mode with the longest wavelength has the fastest grateh r

tear

T min = [TaTal'/? . (2.12)

Tearing mode produces magneticislands in 2D (see Fig. 8agnetic fluxropes in
2.5D, respectively. These structures saturate in the meaiphase of the tearing mode
(if coalescence is not permitted) and their subsequenisidh at the diffusive time
scaler, is extremely slow (sinc&,,, > 1inthe corona). The energy release of tearing-
mode instability occurs during the process of island foramat Tearing modes have
been applied to solar flares in a number of theoretical stueig. Sturrock 1966; Hey-
vaerts et al. 1977; Spicer 1977a, b, 1981a; Somov & Vern&&9;1Kliem 1990), and
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Figure 9:MHD simulation of the coalescence instability for a Lundgfuiumber ofS = 1000
and a plasma? of 0.1. The magnetic field is shown in left-hand panels, tHeaity field in the
right-hand panels. Initial resistivity perturbation iogm shaded (Schumacher & Kliem 1997a).

numerical MHD simulations have been performed (Biskamp &t&vel989). Kliem
(1995) estimated the growth time of tearing mode for cor@oalditions ¢, = 10°
cm™3, T = 2.5 x 10° K, B = 200 G, with smallest current sheet half-widths of
I ~ 7 x 10% cm), which yieldsri?" ~ 0.4 s. This time scale is comparable with
the duration of elementary time structures observed indh@ of hard X-ray pulses
and radio type Il bursts. Because tearing mode has a thicesbirent density orders
of magnitude below the threshold of kinetic current-drivestabilities, it will occur
first. Continued shearing and tearing may reduce the widtheturrent sheet until
the threshold of kinetic instability is reached (Kliem 1995

2.6 Coalescence Instability

While tearing mode leads to filamentation of the current shike resulting filaments
are not stable in a dynamic environment. If two neighboritamients approach each
other and there is still non-zero resistivity, they enteother instability, thecoales-
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cence instabilitywhich merges the two magnetic islands into a single onectirit

& Wu 1979; Longcope & Strauss 1994; Haruki & Sakai 2001a, bh example of
an MHD simulation is shown in Fig. 9 (Schumacher & Kliem 1997&oalescence
instability completes the collapse in sections of the aqursheet, initiated by tearing-
mode instability, and thus releases the main part of thegneegy in the current sheet
(Leboef et al. 1982). There is no complete analytical dpsion of coalescence in-
stability, but numerical MHD simulations (Pritchett & Wu919; Biskamp & Welter
1979, 1989; Leboef et al. 1982; Tajima et al. 1982, 1987; 8aiuher & Kliem 1997a)
show that the evolution consists of two phases: first théngpof current filaments as
an ideal MHD process, and then a resistive phase of pair+wgizgnnection between
the approaching filaments. The characteristic time scaleeafleal phase is essentially
the Alfvén transit time through the distankg,; between the approaching current fila-
ments,

1 lcoal
Gcoal VA ’
whereu.,q; is the velocity of the approaching filaments. For coronalditons (say
ne = 10'° cm™3, B = 200 G, l.oa; = 1000 km) we estimate coalescence times of
Teoal = 0.2 — 2.0 s, which is again the typical time for the observed modutatid
hard-X ray pulses and type Ill electron beams in flares.

Tcoal =

Geoal = —22ab 0.1 -1 (2.13)
VA

2.7 Dynamic Current Sheet and Bursty Reconnection

In praxis, the two previously described processes of tganistability and coalescence
instability occur iteratively, leading to a scenariodyfnamic current sheet evolution
also known agmpulsive bursty reconnectidheboef et al. 1982; Priest 1985a; Tajima
et al. 1987; Kliem 1988, 1995). A long current sheet is firdtjsat to tearing that
creates many filaments, while rapid coalescence clustaetdheam combines groups
of closely spaced filaments, which are once again unstabdedondary tearing, to
secondary coalescence, and so forth. MHD simulations deypethis iterative chain
of successive tearing and coalescence events (Malara¥932; Kliem et al. 2000).
An example of such a numerical simulation from the study déil et al. (2000) is
shown in Fig. 9 (magnetic field evolution). Let us review thkey studies (Tajima et
al. 1987; Karpen et al. 1995; Kliem et al. 2000), where nuoaMHD simulations of
this process have been applied to solar flares.

Tajima et al. (1987) performed numerical MHD simulationghe# nonlinear coa-
lescence instability between current-carrying loops eeril/dd an analytical model of
the temporal evolution of electromagnetic fields [see alsodomprehensive reviews
on this subject by Sakai & Ohsawa (1987) and Sakai & De Ja@&6)1 and references
therein]. This nonlinear system evolves into an oscillatetaxation dynamics, driven
by the interplay of th¢x B force and the hydrodynamic pressure response, which was
modeled analytically by Sakai & Ohsawa (1987). The osdtyabehavior is very ap-
pealing, because it provides a possible explanation fontireerous quasi-periodic
time structures observed in radio and hard X-rays during$lafAn oscillatory regime
of fast reconnection has also been found from other theadetiork on current insta-
bilities in current sheets (Smith 1977) and X-point releat(Craig & McClymont
1991, 1993).
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Karpen et al. (1995) performed 2.5-dimensional numericedMsimulations of
shear-driven magnetic reconnection in a double arcade guiidrupolar magnetic
topology. For strong shear, the initial X-point was foundengthen upward into a
current sheet, that reconnects gradually for a while but theggins to undergo mul-
tiple tearing. Several magnetic islands develop in seqeiemove towards the ends
of the sheet, and disappear through reconnection with tieelydrg and underlying
field (Fig. 10). A second study with similar quadrupolar cgaofation was performed,
but with asymmetric shear in dipoles with markedly unequdifstrengths (Karpen et
al. 1998). Similar intermittency was found in the sheaxini magnetic reconnection
process, and the simulations moreover show that each disdimagnetic island leaves
a footprint in the form of fine filaments in the overlying seqiaix layer (Fig. 11).
This dynamic behavior is essentially identical to the patief repeated tearing and
coalescence first investigated by Leboef et al. (1982) abthedimpulsive bursty re-
connectiorby Priest (1985b). In Fig. 11 there are also some other dymprocesses
present: (a) a thin region along the slowly rising inner sapix is compressed; (b) a
downflow with v= 30 km s™1; (c) this is followed by an upflow along the same field
lines. Although these simulations by Karpen et al. (199%8)@re carried out using
parameters corresponding to chromospheric conditiodgnitonstrates that magnetic
reconnection in sheared flare arcades occurs in a burstyntardittent mode, and not
in a quasi-stationary SweeParker or Petschek mode. The physical origin of this in-
termittent reconnection dynamics is most essential to tataleding the rapidly varying
time structures of accelerated particles.

A recent work onmpulsive bursty reconnectiapplied to solar flares was carried
out by Kliem et al. (2000). Fig. 12 shows the evolution of tlegr magnetic island
formations, magnetic island coalescence, secondamntgand so forth. Tearing and
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Figure 11:Mass density difference ratio (greyscale) and projectiomagnetic field lines into
the image plane (dashed lines) at 800 s and 1000 s in thetyichthe reconnection region,
during an MHD simulation of a sheared arcade. The locatioorresponds to a thin compressed
region along the slowly rising inner separatitito a narrow downflow falling outside of the left
outer separatrix, andindicates a broader upflow that follows along the same fiakesliKarpen
et al. 1998).

coalescence in the bursty magnetic reconnection mode aldalates particle acceler-
ation on time scales that are observed in radio and hard X-ead is more consistent
with flare observations than steady reconnection scenarios iterative processes of
tearing and colaescence may repeat down to microscopiesslthe ion Larmor ra-
dius or the ion inertial length), producingfeactal current shedShibata & Tanuma
2001). A similar concept is that of MHD turbulent cascadimpich leads to similar
high fragmentation at the smallest spatial scales, caliebulent reconnectiofe.g.,
Kim & Diamond 2001; Matthaeus 2001b) and applied to flares qhcet al. 1995;
Somov & Oreshina 2000). The two concepts of fractal currbeess and turbulent
reconnection could possibly be discriminated observatigrirom the frequency dis-
tribution of time scales, since fractal processes are doa¢eand generally produce
powerlaw distributions, while turbulent processes ardradied by incoherent random
processes that generally produce exponential distribsi{iBig. 22).
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Figure 12:2D MHD simulation of dynamic magnetic reconnection, shaytine magnetic field
(left panels) and current density (right panels). Regioite anomalous resistivity are shown
shaded in the magnetic field plot (at y=0) (Kliem et al. 2000).

3 Flare/CME Models

In this section we discuss the most eminent physical moadelfigre and CME pro-
cesses, which all involve magnetic reconnection in sonmm fWhat distinguishes the
different flare models are mainly the initial magnetic tagpés, which are prone to
specific instabilities or drivers. This section covers rhathe theoretical aspects of
flare models, while supporting observations are compilsdvehere (e.g.§ 10.6 of
Aschwanden 2004). Theoretical reviews on flare/CME modatste found in Brown
& Smith (1980), Melrose (1993), Shibata (1998), Priest @0Borbes (2000b, 2001),
Klimchuk (2001), Low (1999b, 2001b), Priest & Forbes (2Q@R)n textbook chapters
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Figure 13: Temporal evolution of a flare according to the model of Hiraga(1974), which
starts from a rising prominence (a), triggers X-point rewxstion beneath an erupting promi-
nence (b), shown in sideview’fhand ends with the draining of chromospheric evaporatetl, h
plasma from the flare loops (c) (Hirayama 1974).

(Svestka 19765 6; Priest 1982§ 10; Priest & Forbes 200G, 11; Tajima & Shibata
2002,§ 3.3).

3.1 The Standard 2D Flare Model

Although not all flares can be explained by a single modes, jistified to establish a
standard model that fits most of the observations and haslamatrstood theoretical
foundation. The most widely accepted standard model foedlés the 2D magnetic
reconnection model that evolved from the concepts of Cdragt(1964), Sturrock
(1966), Hirayama (1974), Kopp & Pneuman (1976), called@$#1KP modehccord-
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Figure 14:Elaborate version of the standard 2D X-type reconnectiodehthat also includes
the slow and fast shocks in the outflow region, the upwardtejeplasmoid, and the locations
of the soft X-ray bright flare loops (Tsuneta 1997).

ing to the initials of these five authors. This has been furthaborated by Tsuneta
(19964a; 1997) and Shibata (1995) based on the modeling déofohbservations.

The initial driver of the flare process is a rising prominemat®ve the neutral
line in a flare-prone active region (Fig. 13a). The risingnfiemt stretches a current
sheet above the neutral line, which is prone to Swéetrker or Petschek reconnection
(Fig. 13b). In the model of Sturrock (1966), a helmet streacoafiguration was as-
sumed to exist at the beginning of a flare, where the tearindenmnstability (induced
by footpoint shearing) near the Y-type reconnection paigters a flare, accelerating
particles in a downward direction and producing shock wawebplasmoid ejection in
an upward direction. Hirayama (1974) explains the preflaoegss as a rising promi-
nence above a neutral line (between oppositely directed opegnetic field lines),
which carries an electric current parallel to the neutrad land induces a magnetic
collapse on both sides of the current sheet after eruptidimegprominence. The mag-
netic collapse is accompanied by lateral inflow of plasma ihé opposite sides of the
current sheets. The X-type reconnection region is assuaied the location of major
magnetic energy dissipation, which heats the local conglaaima and accelerates non-
thermal particles. These two processes produce thermduction fronts and precipi-
tating particles which both heat the chromospheric footfsodf the newly reconnected
field lines. As a result of this impulsive heating, chromasd plasma evaporates
(or ablates) and fills the newly reconnected field lines withrdense heated plasma,
which produces soft X-ray-emitting flare loops with temperas of7, ~ 10 —40 MK

19



and densities ofi, ~ 10 — 10'2 cm~3. Once the flare loops cool down by ther-
mal conduction and radiative loss, they also become ddtlecta EUV (T, ~ 1 — 2
MK) and Ha (T, ~ 10* — 10° K). Kopp & Pneuman (1976) refined this scenario
further and predicted a continuous rise of the Y-type reection point, due to the
rising prominence. As a consequence, the newly reconnéetedines beneath the
X or Y-type reconnection point have an increasingly larggght and wider footpoint
separation. Tsuneta (1996a; 1997) and Shibata (1995)reliloon the temperature
structure, upward-ejected plasmoids, slow shocks, andliasks in the outflow region
of the X-type reconnection geometry (Fig. 14). The heatedmph in the reconnection
outflow produces hot ridge§'(~ 15 — 20 MK) along the separatrices with the slow
shocks, sandwiching the denser soft X-ray flare loops thetime the newly recon-
nected relaxing field lines, which are filled with chromosphevaporated plasma.
The fast shocks in the reconnection outflows collide withgheviously reconnected
field lines and may produce hot thermal (as well as nonthrhaalbl X-ray sources
above the flare looptops. Numerical hydrodynamic simutetiof this model repro-
duce heat conduction fronts and slow-mode shocks (Yokoy&r8hibata 1997) and
chromospheric evaporation (Magara et al. 1996; Yokoyamai&a&a 1998; 2001)

This model is essentially a 2D model that describes the &eolin a vertical plane,
while evolution along the third dimension (in the directiointhe neutral line) can be
independently repeated for multiple flare loops (wheregdoiits extend to a double
ribbon) or can be stopped (in the case of a single-loop flére)likely that the exten-
sion in the third dimension is not continuous (in the form gfiant 2D Sweet Parker
current sheet), but rather highly fragmented into temponaagnetic islands (due to
tearing-mode and coalescence instabilities,§s2é and 2.6). Numerical simulations
of enhanced resistivity in the current sheet enables tliedasnnection regime (Ma-
gara & Shibata 1999) that is required to explain the obsefasd(subsecond) time
structures. This model fits a lot of the observational tundsard X-rays, soft X-rays,
Hq, and radio wavelengths, provides a physical mechanismdiaeself-consistently
the processes of filament eruption, magnetic reconnediwhcoronal mass ejection,
but does not specify what drives the initial magnetic systeilmecome unstable. This
model fits single-loop and double-ribbon arcade geometoigsis not appropriate for
quadrupolar flare loop interactions and 3D nullpoint togads.

3.2 The Emerging Flux Model

The most decisive criterion to judge the relevance of a galar flare model is the
driver mechanism that dictates the magnetic evolutionlase of stability, and subse-
guent magnetic reconnection process. While the driverisirgrfilament/prominence
in the Kopp & Pneuman (1976) model, the process of flux ememéas been con-
sidered as a driver in the model of Heyvaerts et al. (1977 fMiodel of Heyvaerts
et al. (1977) consists of three phases: (1) a preflare hepliage where a new mag-
netic flux emerges beneath the flare filament and continuogisbnnects and heats the
current sheet between the old and new flux; (2) the impulshase starts when the
heated current sheet loses equilibrium at a critical hedgltturbulent electrical resis-
tivity causes the current sheet rapidly to expand, acdaberaarticles and triggering
chromospheric evaporation; and (3) the main phase whereutinent sheet reaches a
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Figure 15:X-type reconnection scenarios for three different origate of the external mag-
netic field: horizontal (a), oblique (b), and vertical (c)hél'two versions (a) and (b) represent
geometries used in the emerging flux model of Heyvaerts €197.7), while version (c) corre-
sponds to the Kopp & Pneuman (1976) model (Yokoyama & Shibaésh).

new steady state with marginal reconnection [Fig. 15(a) @)d A requirement of
this model is the pre-existence of a stable current sheh (eiry low resistivity) for
periods of the order of a day or more. However, numerical Eitmans indicate that the
current sheets reconnect almost as quickly as they are tb(Ruwrbes & Priest 1984;
Shibata et al. 1990). Itis therefore believed that the Hegtgamodel can only apply to
small flares (Priest & Forbes 2000).

The geometry of the pre-existing magnetic field is assumekaiee a horizon-
tal or obligue angle. A consequence of this geometry is thmulsion of two op-
positely directed plasma jets during the impulsive phasedfhorizontal orientation
see Fig. 15(a)], or a single jet in the upward direction [forablique orientation see
Fig. 15(b)]. This model was further elaborated in terms ebreection outflow char-
acteristics by Shibata et al. (1996c¢), inspired by the nomeplasma jets that have
been observed with Yohkoh/SXT (e.g., Shibata et al. 1992844, 1996a, b). The
initial driver in Shibata’s emerging flux model is the nomar evolution of the mag-
netic buoyancy (Parker) instability simulated by Shibatal (1989b). This instability
was applied to the reconnection between the emerging flusttendverlying coronal
field, leading to formation and ejection of magnetic islandplasmoids (Shibata et
al. 1992b). Further numerical hydrodynamic simulationsceeded in modeling coro-
nal X-ray jets and k4 surges (Yokoyama & Shibata 1995, 1996). The locations of the
slow-mode and fast-mode shocks of reconnection outflowmdreated in Fig. 15(c).
Shibata et al. (1994a, 19964, b, c) distinguishes betwetartbcool jet structures,
where the hot jets emerge from the reconnection region,ewthié¢ cooler jets result
from chromospheric evaporation into open field lines. Yakog & Shibata (1995,
1996) pointed out that the hot jet ejected from the curree¢stegion is not the recon-
nection jet itself, but a secondary jet accelerated by ttaeced gas pressure behind
the fast shock, which prevents a direct escape of the prinre@gnnection jet.

There are other variants of reconnection-driven jet mod&lse model of Priest
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et al. (1994) also produces two-sided, soft X-ray jets, batdrivers are converging
flows at the footpoint, which is motivated by the observedaation with magnetic

flux cancellation, while the driver in the model of Shibatakt{1994b, 19964, b, c) is
flux emergence caused by the upward-pushing Parker ingfabihe model of Karpen

et al. (1995, 1998; Figs. 11) can also produce jets, butvediy shearing motion at
the footpoints, which drives magnetic reconnection in adgqupolar geometry. Thus,
the production of plasma jets is a common characteristicafynflare models, which
provides a useful diagnostic of the geometric orientatiod spatial location of the
involved magnetic reconnection regions (Fig. 15).

3.3 The Equilibrium Loss Model

The driver in the Kopp-Pneuman flare mode 8.1) is a rising filament, but the mag-
netic pre-evolution that leads up to flare instability is goantified in the various con-
cepts of the CSHKP models. The driver in the Heyvaerts maagetierging flux{ 3.2),
but the onset of flare instability is not quantified in termsiahagnetic field evolution.
Another criticism of the latter model is that stable currsiméets are unlikely to exist
over extended periods of time (as numerical simulationsahestnate), which implies
that free magnetic energy has to be stored in the form of &éfhed currents (i.e.,
force-free fields; Forbes 1996). An evolutionary model #tatts with a stable (force-
free) magnetic field configuration, then applies converfogs as a continuous driver,
and demonstrates how the (force-free) evolution passetiGtpoint where the sys-
tem becomes unstable and triggers the rise of a filament d@sdeveloped by Forbes
& Priest (1995) in 2D. The initial situation of the magnetildi is shown in Fig. 16(b),
where the magnetic field is quantified by the 2D equilibriumadiuxrope at a sta-
tionary height, described by the Gra8hafranov equation. The two footpoints of the
field lines that envelop the fluxrope are then driven closgetioer, while the system
evolves through a series of equilibrium solutions. The heigof the fluxrope as a
function of the separation half-distansés shown in Fig. 16(a), which monotonically
decreases while the source separation is made smallerXresd — 1. Once the
source separation passes the critical point at 1, the fluxrope enters a loss of equi-
librium and jumps in height (fronk = 1 to ~ ~ 5), while forming a current sheet
beneath [Fig. 16(d)]. lidealMHD, the rising fluxrope would stop at a higher equi-
librium position, because the tension force associatel thi¢ current sheet is always
strong enough to prevent the fluxrope from escaping (Lin &Eer2000). If there is
some resistivity, magnetic reconnection is enabled, aed evfairly small reconnec-
tion rate is sufficient to allow the fluxrope to escape (Lin &®s 2000). Magnetic
reconnection in the current sheet releases moesii%) of the magnetic energy that
has been built up from the initial force-free configurationthe converging motion
of the footpoints before the loss of equilibrium. This moieformulated fully ana-
lytically and yields reasonable amounts of released eesgyguitable to explain flares
and CMEs. Although this analytical model is restricted to @bth a fluxrope that
is not anchored at both ends), it demonstrates quantikatiev a loss of magnetic
equilibrium leads to a rapid energy release, which probalslg takes place in more
complex 3D configurations. The question is whether the diivéerms of converging
flows is realistic, because typically observed photosptkmivs are in the order of 1
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Figure 16:Flare dynamics in the model of Forbes & Priest (1995), irféfrom the ideal MHD
evolution of a 2D arcade containing an unshielded fluxrope (@. The fluxrope arcade jumps
upwards when the two photospheric field sources are pusloecldse to one another. (d) The
vertical current sheet is subject to magnetic reconnedtienhanced or anomalous resistivity
occurs (Forbes & Priest 1995).

km s, which could be too slow or may be randomly oriented. Als@zstlows with
subsequent tearing instability have been found to be imapbdrivers of flares, which
would require a generalization of Forbes’s model to 3D. Nuoa¢3D simulations of a
similar dipolar configuration driven by converging flows bdeen performed by Birn
et al. (2000).

The analytical model of Forbes & Priest (1995) predicts a#jgeheight evolution
of the fluxropeh(t), which grows initially ash(t) o« t°/2, orv(t)  t3/2, and reaches
an asymptotic constant speed of orater.,, ~ 1500 km s~!. The solutions of the
heighth(¢), velocity v(t), dissipated energyW (¢)/dt, electric field Ey(t), Alfvén
speedv 4(t), and reconnection speeg (¢) are shownin Fig. 17, calculated for a model
with initial half-separation\, = 50 Mm, fluxrope lengthL. = 100 Mm, fluxrope
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Figure 17:Evolution of heighth(t) (top left) and velocities’(¢) (bottom left) of fluxrope and
magnetic reconnection X-point in the equilibrium loss moafeForbes & Priest (1995). The
upper limit of the dissipated energifV’/dt in the current sheet and the generated electric field
E, at the X-point are shown (top right), as well as the recoriorapeed: r (t) and the ambient
Alfvén speed (bottom right). See parameters in text (P&dsorbes 2000).

radiusag = 0.4\, densityn, = 5 x 10'° cm~3, and magnetic field3, = 100 G.
This calculation represents an upper limit, in the case ofir@limited reconnection
rate, so that all magnetic energy goes into the kinetic gnefrthe upward-accelerated
fluxrope. The upward motion of the unstable fluxrope with agged reconnection
also predicts ashrinkageof flare loops, characterized by the height ratio of the cusp
at the beginning of reconnection to the height (of the redadipolar field line) in the
postflare phase, which was found to be 20% and 33% in two fl&@dés & Acton
1996).

3.4 2D Quadrupolar Flare Model

Among 2D models, which we classified in Fig. 1 irtigpolar(e.g., Kopp-Pneuman
§ 3.1; Priest-Forbes§ 3.3), tripolar (e.g., Heyvaerts et al§ 3.2), andquadrupolar
ones, we describe here a representative of the latter egtégamely, thequadrupo-
lar photospheric source mojielvhich was first proposed by Uchida (1980), and later
developed further by Uchida et al. (1998a, b) and Hirose .e(2801). The initial
configuration consists of two parallel arcades (as shownidn F, top right), which
altogether requires three parallel neutral lines. Foromadf such double arcades with
current sheets inbetween have been inferred from neighdpastive regions (Sakurai
& Uchida 1977) and from polar crown filaments with arcadeshida et al. 1996). As
in the Forbes-Priest (1995) model, the principal driver is a converging/ffattern that
pushes the two arcades together. The X-point above the enidulitral line supports a
dark filament. The two flanking arcades that suspend the filamight be partially ob-
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Figure 18:Dynamical evolution of the plasma density (left) and curr@ensity (right) in the
guadrupolar magnetic reconnection model of Uchida (1986)julated with a 2.5D MHD code.
Note that the erupted dark filament transforms into a CME wiih slow-mode shocks at both
sides (Hirose et al. 2001).

servable as the “barbs” of the filament channel. While thedvwaades push together,
the dark filament transforms into a thin vertical currentethevhich at some point
becomes unstable due to tearing-mode instability, triggeanomalous resistivity and
fast reconnection. The dark filament with helical field lireaccelerated upward in the
expanding field structure with a rounded shape and transfortm a CME. The recon-
nected field lines below the X-point shrink and form the pastflarcade. Numerical
simulations of the driven reconnection in quadrupolar éesaor between interacting
loops have been performed by Rickard & Priest (1994), Satkal. €1995), Sakai &
De Jager (1996), and for the quadrupolar model of Uchidaifpaty by Hirose et
al. (2001), see Fig. 18 for an example.

There are several motivations for this 2D quadrupolar motet Kopp-Pneuman
(1976) model cannot explain the magnetic field in the darknfdats seen from the
side, because the direction of the magnetic field at the I@ider is opposite to what
is expected from the polarity of photospheric sources (Letal. 1984). A proposed
solution was to introduce a fluxrope (Kuperus & Raadu 197#jctvreverses the po-
larity at the lower dip of the prominence. Therefore, theolmement of a fluxrope-
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like filament is an essential element in a flare model, whidiinadly evolves in the

Forbes-Priest (1995) and quadrupolar model of Uchida (1980). Feurihis argued

that the 2D quadrupolar model of Uchida (1980) solves theggnaroblem to open up
the field and to accelerate the filament to escape velocithifldcet al. 1996; 1998a,
b). In Sturrock’s (1966) model, the erupting filament is rieed to have an energy
equal to or greater than that of the flare itself, since thedjmd configuration (which

is the final state in Sturrock’s 1966 model) is conjecturedddhe state of maximum
energy (Aly 1984, Sturrock 1991). In the numerical simwatof Hirose et al. (2001)
it is actually found that the major part of the stored magnetiergy is converted into
kinetic energy carried away by the CME (containing the exdtark filament), while

only a minor part is left for heating of the associated ardéate.

3.5 The Magnetic Breakout Model

A further development of the 2D quadrupolar model of Uchiti@80Q) is the so-called
magnetic breakoumodel of Antiochos et al. (1999b) and Aulanier et al. (2000lich
involves the same initial quadrupolar magnetic configorgtbut undergoes an asym-
metric evolution with the opening up of the magnetic field oe side. The asymmetric
evolution is driven by footpoint shearing of one side arcadeere reconnection be-
tween the sheared arcade and the neighboring (unsheared)yfitems triggers an
eruption. In this magnetic breakout model, reconnectiomoees the unsheared field
above the low-lying, sheared core flux near the neutralVifgch then allows the field
above the core flux to open up (Antiochos et al. 1999b). Ths,mhodel addresses
the same energy problem as Uchida’s model: How very lowgiyimagnetic field lines
can open up (down to the photospheric level) into an oped-@iehfiguration during
the eruption. Moreover, the eruption is solely driven byefreagnetic energy stored
in a closed, sheared arcade. It circumvents the-Afurrock energy limit by allow-
ing external, disconnected magnetic flux from a neighbosimgared arcade (which is
not accounted for in the “closed-topology” model of Aly anmii®ock) to assist in the
opening-up process. Thus, a key point of the magnetic brdakodel is the interac-
tion of a multi-flux system (e.qg., in a quadrupolar doubleade). It has the same initial
configuration as Uchida’s model, but is driven by asymmesiniear.

The magnetic topology of the magnetic breakout model has beplied to the
Bastille-Day flare by Aulanier et al. (2000b), who found a moomplex 3D topology
than the 2D quadrupolar model of Antiochos et al. (1999b)laAier et al. (2000b)
actually identified a magnetic nullpoint in the corona abthesflare arcade which was
connected with a “spine” field line to a photospheric locatiehere the flare bright-
ens up first. The other side of the coronal nullpoint sits olometlike “fan” surface,
which encloses the main flare arcade. This topology can bsidered as one of the
many possible 3D reconnection scenarios in which the maghetakout model can
be realized. Aulanier et al. (2000b) suggest a more genefalition: “A magnetic
breakout is the opening of initially low-lying sheared figlériggered by reconnection
at a nullpoint that is located high in the corona and that @sfim separatrix enclos-
ing the sheared fieldsThis represents a generalization of the 2.5D version (3.
into 3D reconnection topologies. Obviously, observatiarescrucial to pinning down
the involved magnetic configurations, which are now becgnaivailable increasingly
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Figure 19:2.5D version of the magnetic breakout model: (a) The ingizdrupolar potential
state, with shear applied on both sides of the neutral lifRBXb) the shear triggers some weak
reconnection at the coronal nullpoint; (c) fast reconmactt the nullpoint leads to opening up
of the field; (d) relaxation reconnection in the opening filsets, forming footpoint ribbons
and flare loops; (e) ongoing formation of postflare loops ambmnection at the null. The
Kopp—Pneuman (1976) model is a special case in which the magneti&dut does not occur
[eliminating phase (c)] (Aulanier et al. 2000b).

clearly from TRACE postflare loop observations. The recmmsion of the preflare
configuration, which is necessary to track down the recatimeprocess, however, is
hampered by the unavailability of high-resolution obsgores at the much higher flare
temperaturesi{ ~ 10 — 40 MK) during the impulsive flare phase. Nevertheless, the
3D reconnection topology could be reconstructed for sorsegalearly showing evi-
dence for 3D reconnection involving a separatrix dome (E@g Fletcher et al. 2001).
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Figure 20:Magnetic field topology inferred in the 1993-May-3, 23:05,{i@&re by Fletcher et
al. (2001). The sequence shows a 2D representation of tbamection process via a separator
dome (Fletcher et al. 2001)

3.6 3D Quadrupolar Flare Models

Some flares clearly show an interaction between two flaresldopclosed-field sys-
tems), which can most simply be interpreted as the outcongeqefadrupolar recon-
nection process. The magnetic configuration corresponds3i® reconnection case
(Fig. 1, bottom right) that can be represented by a singlejnaon, neutral line for
the two interacting flare loops, which is different from tHe @ase in Uchida’s model,
which has three neutral lines (Fig. 1, top right). The twoesked flare loops repre-
sent, of course, the postreconnection situation, but theeponnection topology can
be straightforwardly reconstructed by switching the pitis according to the scheme
shown in Fig. 4. Thus, magnetic geometry is fully constrdifa this type of 3D re-
connection and can be reconstructed from the observedaresifiops. A number of
flares was found to fit quadrupolar geometry (Hanaoka 1997 1Nishio et al. 1997,
Aschwanden et al. 1999c).

This 3D quadrupolar reconnection model only describesrkeraction between
two closed loops, which was found to match closely the olesktopology of some
flares. Obviously the model does not include any open fielesliand thus cannot
explain the simultaneous rise of a filament and expulsion@fH4e, which may occur
in a detached magnetic field domain above the interacting system. However, a
key aspect of this model is that it relates the currents ofpife@econnection to the
postreconnection field lines in a highly sheared configamatilt also quantifies the
efficiency of the reconnection rate as a function of sheatesngnterestingly, most
of the relevant observations indicate shear angles bettheereconnecting field lines
which range from near-parallel to near-perpendicular fisanden et al. 1999b), rather
than being anti-parallel as expected in the standard Képpreuman flare scenario.
This observational fact, however, does not violate thedPets reconnection model,
since the reconnection rate can still operate at small afigigith efficiency scaling as
o [sin (6/2)]'/? (Soward 1982).

Similar 3D quadrupolar reconnection models are also desdrin Somov et al.
(1998), Somov (20005 16.5.2), and Kusano (2002), where loops that are sheared
along the central neutral line of a flare arcade reconnebttivé overlying less sheared
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Table 1: Classification of flare/CME Models according to the drivercimenisms and dimen-
sionality of magnetic reconnection geometry.

Driver mechanism: 2D models: 3D models:

Rising filament X-type reconnection

or prominence (Hirayama 1974)

vz(h > hpp) (Kopp & Pneuman 1976)

Photospheric Emerging flux model Quadrupolar flux transfer
flux emergence (Heyvaerts et al. 1977) (Melrose 1995)

Vz(h = hPh)

Photospheric Equilibrium loss model

converging flows | (Forbes & Priest 1995)
+Vg,—ve L NL Quadrupolar double-arcade

(Uchida 1980)
Photospheric Tearing-mode instability
shear motion (Sturrock 1966)
+vy,—vy || NL Magnetic breakout model

(Antiochos et al. 1999b)
Sheared loops inside arcade
(Somov et al. 1998)

arcade. Alternatively, 3D quadrupolar reconnection igéditares could also be driven
by emerging current loops (Mandrini et al. 1993). Such 3Ddyupolar configurations
are particularly suitable to explain double-ribbon flakasg, it could not yet be decided
observationally whether the primary driver of this type @éonnection is a rising fila-
ment (Kopp-Pneuman 1976) or the shear along the neutral line (Sturi@8&;1Somov
etal. 1998).

3.7 Unification of Flare Models

In Table 1 we sort the previously discussed flare/CME modatsraing to the driver
mechanisms and dimensionality of magnetic reconnectiomgéry. There are essen-
tially two locations of drivers: (1) above the flare site (retform of a rising filament,
prominence, or plasmoid); and (2) below the flare site (inftren of photospheric
emergence, convergence flows, or shear flows). The threegptatric drivers can es-
sentially be discriminated by their directions: (1) flux egence corresponds to a flow
in the vertical directionx.); (2) convergence flows are counter-directed perpendicula
to the neutral line{v,, —v, L NL); and (3) shear flows are counter-directed parallel
to the neutral line-¢v,, —v, || NL). The classification in Table 1 also shows that 2D
models can only be constructed when the driver force is irRibglane of the loops
(e.g., converging flows in the the x-direction or emergencddé z-direction), while a
driver force perpendicular to the 2D loop plane (e.g., sivetre y-direction) requires
3D models. Table 1 is by no means a complete list of flare/CMBet® in principle
there could be for every type of driver at least one 3D modwa, moreover multiple
models could be conceived for any combination of multiptep® (open or closed, and
arcades). The 2D models are probably all idealized appratiéms, but more accurate
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Figure 21: Time evolution of energy build-up interrupted by randomesn linear (top),
guadratic (middle), and exponential growth (bottom). Niitat linear growth produces ex-
ponential distributions of saturation energies, whilelim@ar growth produces powerlaw-like
distributions, see Fig. 22.

future observations might require generalizations of eawhto a 3D version. Never-
theless, the classification in Table 1 indicates that at leaslels with the same driver
mechanism could be unified into a 3D model. In future we miglehedistill a single
unified flare/CME model by combining all the important driszer

4 Flare Statistics and Frequency Distributions

4.1 Theory of Frequency Distributions

The statistics of energies in the form of frequency distidns became an important
tool for studying nonlinear dissipative events. filequency distributiorns a function
that describes the occurrence rate of events as a functithrenfsize, usually plotted
as a histogram of the logarithmic numbey(N) versus the logarithmic sizieg(.S),
where the siz& could be a length scalean aread, a spatial volumé/, or a volume-
integrated energy’. The two most common functional forms of such frequency dis-
tributions are the exponential and the powerlaw functiore WMl demonstrate that
an exponential distribution results from linear or incat@mprocesses, while a power-
law distribution results from nonlinear or coherent praess The latter function has
therefore been established as the hallmark of nonlineaipdive systems. A power-
law function has no characteristic spatial scale, in cabti@an exponential function,
which has an e-folding scale length. The size range overlwaipowerlaw function
applies is called thénertial range We will see that this inertial range extends over
more than 8 orders of magnitude in energy for solar flares amdftares. Nonlinear
dissipative systems, which are constantly driven by somdam energy input evolve
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Figure 22:Theoretical frequency distributions (Ws) for 4 different ratios of the mean sat-
uration timests. to the growth timerg: (@) tse/7¢ = 1.0 (linear case), (b}ys./7¢ = 2.0,

(€) tse/T¢ = 5.0, (d) tse/7¢ = 10.0 (nonlinear cases). Note that the frequency distribution
evolves from an exponential to a powerlaw distribution tighbr the nonlinear saturation time
is (Aschwanden et al. 1998a).

into a critical state that is maintained as a powerlaw digtion. The fluctuations of the
input does not change the powerlaw slope of the dissipatedjgevents that make up
the output, but are just adjusted by a scale-invariant nurialetor and by a slow shift
of the upper cutoff of the distribution. The maintenancerofravariant powerlaw slope
is also calledself-organized criticalittand is a property that is inherent to nonlinear
dissipative systems. The principle of self-organizedaality has been first applied to
solar flare phenomena by Lu & Hamilton (1991).

We can build a simple mathematical model of a nonlinear pisie system just
by two rules: (1) energy is dissipated in random time intlsrvand (2) energy builds
up with a nonlinear power as a function of time. So, let us m@Erdinear and nonlin-
ear time evolutions (e.g., a quadratic and an exponentigition) for the build-up of
energylW (), see Fig. 21,

(t/7q) linear
W) =Wy xS (t/7q)? quadratic , (4.1)
exp (t/7g) exponential

wherer¢ represents an exponential growth time. If we let each psogesw to ran-
domly distributed saturation times= tg, we will obtain a distribution of saturation
energiedVs = W (t = ts). The distribution of random times; obeys Poisson statis-
tics and can be approximated with an exponential distdiouvith an e-folding time
constantg, (in the tailtg 2 tse),

t
N(ts)dts = Ny exp (—t—s>dt5 (4.2)
Se
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where Ny is a normalization constant. With these two definitions (Eq$—4.2) we
can derive the frequency distribution of dissipated eresdyi(WWs) by substituting the
saturation timegg with the energy variablél’s(¢s) in the distribution of saturation
timesN(tg) in Eq. (4.2),

dtg

N(Ws)dWs = N[ts(Ws)] ’—

AWy . 4.
awg |0 (4.3)

So we have to invert the energy evolution time profile (ts) (Eq. 4.1),

(Ws/Wh) linear
ts(Ws) =71 x § (Ws/W1)Y/? quadratic (4.4)
In (Ws/W1) exponential

and to calculate the derivatives of the inversiaits,/dWg,

dt (1/W1) linear
(dﬂf ) =76 % (1/2W1)(W1/Ws)'/?  quadratic (4.5)
s (1/Ws) exponential

which then can be plugged into Eq. (4.3) to yield the freqyatistributions of ener-
gies:

exp [—(1q/tse) (Ws /W1)) linear
N(Ws) o< ¢ exp[—(1q/tse)(Ws/W1)'/?] x W§1/2 quadratic . (4.6)

WS—(l—s-Tc/tsC) exponential

The resulting frequency distribution for linear growth isexponential distribution,
similar to the exponential distribution of saturation tenérhis is trivial, because the
energyWy is proportional to the saturation tinte for linear growth. For exponential
growth, however, the resulting frequency distributiondrees a powerlaw (Eq. 4.6;

Fig. 22) with an index
aw = (1 + T—G> : (4.7)
tSe

(Rosner & Vaiana 1978; Aschwanden et al. 1998a). So the paweslope is deter-
mined by the ratio of the exponential growth time of the nonlinear energy evolution
and by the e-folding saturation timeg, of the random distribution of saturation times,
with the limit of ayy > 1 for tg. > 7¢ (Fig. 23). The linear growth case can also be
mimicked by the exponential model fog. < 7. We illustrate the relation between
the time profiles of the energy evolutid¥i(¢s) and the distribution of saturation ener-
gies in Figs. 21 to 23. The theoretical relation (4.7) for plogverlaw slope gives us a
diagnostic as to whether the underlying nonlinear dissipagtrocess is incoherent (if
aw > 1) or coherent with a high amplification factor @fy 2 1).

4.2 Frequency Distributions of Flare Parameters

We started out to specify the relation between differentspdat parameters in flares
(ne, Te, €11) as a function of the spatial scdleTherefore, once we have measured the
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Figure 23:Dependence of the powerlaw indexy of the frequency distributions’(Ws) oc
W4 © on the ratio of the saturation timg. to the exponential growth timez (amplification
factor). Note that the distribution becomes the flatter tighdr the amplification factor (As-
chwanden et al. 1998a).

distribution of spatial scales, which might be charactatiby a powerlaw distribution,

NdlocI™™dl 1< <3, (4.8)

and know the relation of a parametgi) as a function of this independent variable
for example,

V() o IPs volume
ne(l) o< {Pr densit

y(l) oc1” T, El; o [Pr tempe};ature (4.9)
en(l) o< [PE = [PntDr+Ds thermal energy

we can predict the frequency distributioNgy) of these parameters in the same way
as we did in Egs. (4-:34.6). We need only to calculate the inversionygf) and its
derivative, which for powerlaw functions is straightfomda

dl B
I(y) < y'/? d—ycxyl/D ! (4.10)

and yields the desired frequency distributions,

N(y) dy = N[l(y)]g—ldy =I(y)~™ %dy =y~ (=D Plgy (4.11)
Y
So we obtain again powerlaw distributions with the follog/slopes,
N(y)dy x y~vdy, oy, = <1 + O”l; 1) : (4.12)

33



For the RTV model§ « i3, T o %) we predict the following powerlaw slopes, of
the frequency distributiond’(y) of various physical parameteys

RTV model Volume model

ap=251+0.5 ap=251+0.5

D3 =254+0.5 D3 =25+0.5

D, =3.0 D, =0.0

Dr =20 Dr =0.0
Dp=Dn+Dy+D3=75+05 Dp=25+05 - (4.13)

ay =1+ al,ﬁj =1.67+0.33 ay = 1.674+0.30
a, =1+ O‘b——l =1.50+0.17
ap =14 22 = 1.75+0.25
ap=1+9%1=121+0.08 ap =1.67+0.33

E

Thus we predict a powerlaw distribution of energies withapslofar = 1.21 £ 0.08
for the RTV model, where the error bars include only the pgap@n errors of the
fractal dimensionD3; = 2.5 £+ 0.5 and the length distribution;; = 2.5 + 0.5. Let
us define also an alternative model, the so-calletiime model where the thermal
energy is directly proportional to the volume, without argpendence on the density
and temperature. Such a model may be representative gtgtatis done in a subset
of the data, say in a narrowband filter with a small tempeeatange and with a flux
threshold (which restricts the range of detected denkitibs such a restricted data
subset we would predict a slope®f;, = 1.6740.33. Real data with some temperature
range and some moderate flux range, of course, could prodyeahie between these
two casesl.21 < ap < 1.67. Powerlaw indices in the range @fl — 1.64 have
also been derived from magnetic braiding and twisting mogirker & Cleveland
1993a,b).

4.3 Energy Budget of Flare-like Events

The frequency distributions specify the number of eve¥i{dV;) in an energy bin
[W;, Wi1]. If we want to know the total energy budget over some rangaghaack-
eted by the minimuniV; and maximumi¥,, we have to integrate the energy powerlaw
distribution,

Wo Wy W l—aw
Wit = N(W) W dW = N Wy (—) AW =

W, W, Wi
2—aw
1 W- :
= NW2{ Taw) (W) - 1} ifas 72, (4.14)
[hl (Wg/Wl)] if Qo = 2 5

From this expression we see immediately that the integrébiminated by the upper
limit W> for flat powerlaw indicesyyy < 2, and by the lower limiti; in the case
of steep powerlaw indicesy, > 2. This implies that nanoflares are important for
coronal heating if the frequency distribution of their e;yehas a slope steeper than 2,
a necessary condition that was pointed out by Hudson (1991a)
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Figure 24: Predicted frequency distributions that fulfill the coroaating requirement, for
quiet Sun regionsK = 3 x 10° erg cnm? s™!) and active regionsH = 107 erg cni 2 s71),
according to the RTV model (with a powerlaw slope@f = 1.21 and the volume model
(g = 1.67), see text.

Let us calculate some practical cases that are relevaritdardronal heating prob-
lem. The energy requirements for coronal heating are ginérable 3. For the quiet
Sun we need a heating rate s ~ 3 x 10° erg cnm2 s~1, and for active re-
gions we need”4r ~ 107 erg cnT2 s~!. We know that flares occur only in ac-
tive regions and could have a maximum energy upito r ~ 103? erg (Fig. 24),
while the largest microflares occurring in the quiet Sun heesp-called X-ray bright
points, which have energies up W, os ~ 10%° erg. For the lower energy limit
we take the smallest nanoflares that have been observed, sehfah have energies
of Wi,gs ~ Wi ar ~ 10%* erg. With these values we obtain with (Eq. 4.14) the
following rates,

4.3 x10° QS : (RTV model)
N Wiot 1 1 _J 1.0x10* QS: (Volume model)
' WE @ —aw) (Wz2ew —1 | 14x10° AR:(RTV model)
3.5 x 10* AR : (Volume model)
(4.15)

We visualize these four distributions in Fig. 24. Becausepibwerlaw slopes are all
below the critical value ofvy = 2, the total energy is dominated by the upper energy
cutoff W5, so that the lower energy cutoff has almost no effect, siige < Ws.
Consequently, the integrated total energy is also not vamgisive to the exact value of
the powerlaw slope. In essence, the occurrence rate atgheshiergy cutoffv (175)
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Figure 25:Compilation of frequency distributions of thermal enesgiom nanoflare statistics
in the quiet Sun, active region transient brightenings, bal X-ray flares. The labels indi-
cate the following studies: K=Krucker & Benz (1998), Benz &ugker (2002); P=Parnell &
Jupp (2000) (corrected for an erroneous factor of 100 in tiggnal paper); A=Aschwanden et
al. (2000c); S=Shimizu (1995); C=Crosby et al. (1993), antl, 195=Aschwanden & Parnell
(2002). The overall slope of the synthesized nanoflareibligton, N(E) o« E~1-54+0:03 g
similar to that of transient brightenings and hard X-rayeffarThe grey area indicates the coro-
nal heating requirement df = 3 x 10° erg cnm 2 s ! for quiet Sun regions. Note that the
observed distribution of nanoflares falls short of the te&oal requirement by a factor of 10 in
occurrence rate or a factor ef 3 in energy.

is the most decisive parameter determining the energy udge

4.4 Measurements of Frequency Distributions

A compilation of some recent frequency distributions of oftare energies is shown in
Fig. 25, which all have a powerlaw slope of approximately ~ 1.55. In the same
figure we also show the energy distribution of the coronatihgaequirement for the
quiet Sun (grey area in Fig. 25), for the same powerlaw sloplze parameters? =
Wit = 3 x 10° erg enm2 571, W, = 10%* erg, W, = 10%° erg,az = 1.55. We see
that the observed nanoflare distribution lies about a faaftd0 below the theoretical
occurrence rate, or shifted to the left by about a factes &fin energy. Now we have to
be aware that the thermal energy is calculated based ondtatiom we detect in EUV
and soft X-rays, so it characterizes only the energy egeitab the radiative losses,
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Table 2:Frequency distributions of small-scale phenomena obdenvguiet Sun regions.

Phenomenon Number  Powerlaw Energy Total

of events  slope range flux

N ap Ei, Ey F

10% [erg] [ergcnT? s7!]

EUV transients, EIT, 171+195 233 2.45+0.15 10— 300 0.7 x 10°
EUV transients, EIT 195 228 1.354+0.20 1—100
EUV transients, EIT 195 277 1.45+£0.20 10— 100
Nanoflares, TRACE, 171+195 5131 2484+0.11 0.3 —60 0.2 x 10°
Nanoflares, TRACE+SXT 281 1.53+0.02 10—10° 0.5 x 10°
Blinkers, CDS, O V¥ 790 1.3440.08 0.01-0.3 ...
Explosive ev., SUMER C il 3403 2.8+0.1 0.05 — 2 0.45 x 10°
Explosive ev., SUMER Ne IV 2505 2.8+0.1 0.6 —10 0.16 x 10°
Explosive ev., SUMER O VI 5531 3.3+04 0.1-2 0.79 x 10°
Explosive ev., SUMER Ne VIii 2907 2.8+0.5 0.06 — 1 0.03 x 10°

! Krucker & Benz (1998)2 Berghmans et al. (1998; Berghmans & Clette (1999}, Parnell
& Jupp (2000) [corrected for a factor of 100 in original pgp&rAschwanden et al. (2000bj;
Brkovic et al. (2001)7 Winebarger et al. (2002).

while it does not include energy losses due to conductiohéachromosphere or the
solar wind flux. The radiative losses in the quiet Sun alomeirdeed about a factor
of 3 lower than the total coronal energy losses (Fe= 1 x 10° erg cnT2 s71). So
we can conclude that the detected radiation of the EUV and Saioflares roughly
corresponds to a third of the total coronal heating requém@nn quiet Sun regions,
which covers approximately the radiative losses. Becawm® tare many uncertainties
involved in the quantification of observed frequency disttions, this result still needs
to be corroborated. If this result holds up, it has the imgairconsequence that we
have localized the coronal heating sources in the form afadable nanoflares in EUV
and soft X-rays with a sufficient rate, and thus we do not neethtoke invisible
energy sources such as heating by Alfvén waves to explainattiation of the heated
plasma, at least not in quiet Sun regions. In coronal hotestdtal energy losses are
much higher due to the solar wind fluxes, where heating by&kfwaves is probably
required in addition to nanoflare heating.

In Table 2 we compile frequency distributions of small-sgahenomena that have
been reported from the quiet Sun and calculate their towdggnflux 7' based on the
observed energy rang84/,, W], powerlaw slopesz, and rateN, = N(W;). EUV
transients, nanoflares and microflares generally are fautiteienergy range ot/ ~
10%* — 1025 erg and the integrated flux over the entire frequency digtiob lies in the
range ofF’ ~ (0.540.2)10° erg~* cm~2 s~1, which makes up about one to two-thirds
of the total heating requirement of the quiet corona, rougioivering the radiative
losses in the quiet Sun corona. This corroborates our finigirigjg. 25. A similar
flux was also measured for explosive events in C IlI, Ne IV, @ndl (Winebarger et
al. 2002), which fits into the picture that explosive evemid aanoflares are probably
controlled by the same physical process as a magnetic rectan process in the
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transition region, which is manifested with comparable ants of thermal plasma
inside the transition region (as detected in the cooler Eld®slin C IlI, Ne 1V, and

O VI) as well as in the lower corona (in the hotter EUV lines & KX/X and Fe
XIl). Other phenomena such as blinkers carry several omfargagnitude less energy
(een =~ 10?2 — 3 x 10%3; Brkovic et al. 2001), and thus seem to be energetically less
important for coronal heating.

There are some significant variations in the powerlaw sldpleeofrequency distri-
butions, ranging from as low asg ~ 1.34 up toag < 2.6 (Table 2). Our theoretical
RTV model predicts a slope in the rangeld?l < ag < 1.67 (Fig. 24), depending on
the sampling over a broad or narrow temperature and flux rafilgere are a number
of systematic effects in the data analysis and modelingefttarmal energy that affect
the resulting powerlaw slope, such as: (1) event definitrmhdiscrimination, (2) sam-
pling completeness, (3) observing cadence and exposues,ti#) pattern recognition
algorithm, (5) geometric, density, and thermal energy rho@ line-of-sight inte-
gration, (7) extrapolation in undetected energy ranggswé®elength and filter bias,
(9) fitting procedure of frequency distributions, and (10peestimates of powerlaw
slopes. Technical details about these issues are discasdesbmpared in a number of
papers (e.g., Aschwanden & Parnell 2002; Aschwanden & Gimerbau 2002; Benz
& Krucker 2002; Parnell 2002a, 2002b; Berghmans 2002). Tamesson is that ex-
trapolation of the powerlaw to unobserved energies thatremey orders of magnitude
smaller than the observed energy ranges remains quedgoridie integrated energy
flux over the observed energy range is less susceptible foaterlaw slope, because
the total flux of the sum of all measured events is consenaghrdless how the fine
structure is subdivided into discret subevents. Fortupegimce the total energy of the
observed nanoflare distributions is commensurable withatiiative losses, there is no
need to extrapolate the distribution to unobserved enengges, and thus the question
whether the powerlaw slope is below or above the criticall@alf 2 is not decisive
for the heating budget. Another lesson is the completene&sperature coverage,
which generally requires coordinated multi-wavelengtkeaslations. For instance, a
statistical analysis of coronal bright points with EIT 1A5evealed that bright points
cover only about 1.4% of the quiet Sun area, and their ragiaccounts for about 5%
of the quiet Sun radiation (Zhang et al. 2001), while the mwi#velength data sets
reproduce almost all of the quiet Sun flux.

5 The Coronal Heating Problem

When Bengt Edlén and Walter Grotrian identified Fe IX and @d bhes in the solar
spectrum (Edlén 1943), a coronal temperaturd’ok 1 MK was inferred from the
formation temperature of these highly ionized atoms, fer fibst time. A profound
consequence of this measurement is the implication thatdhena then consists of a
fully ionized hydrogen plasma. Comparing this coronal teragure with the photo-
spheric temperature of 6000 K (or down to 4800 K in sunspets)are confronted
with the puzzle of how the 200 times hotter coronal tempeeatan be maintained, the
so-calledcoronal heating problemOf course, there is also @iromospheric heating
problemand asolar wind heating problerfHollweg 1985). If only thermal conduc-
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tion was at work, the temperature in the corona should dieddbp down from the
chromospheric value with increasing distance, accordinthé second law of ther-
modynamics. Moreover, since we have radiative losses by Eldigsion, the corona
would just cool off in matter of hours to days, if the plasmmperature could not
be maintained continuously by some heating source. In #ita we will specify
the energy requirement for coronal heating, review a famber of theoretical mod-
els that provide coronal heating mechanisms, and scratihigm with observational
tests if possible. However, all we have available for obstéownal testing are mostly
measurements of basic physical parameters, such as deasifyeratures, and flow
speeds, while theoretical heating models are expresseatameters that are often not
directly measurable in the corona, such as the magneticdieddgth, azimuthal field
components, nonpotential fields, currents, resistiviggosity, turbulence, waves, etc.
However, the detection of MHD waves in the corona by TRACE BH the spectro-
scopic measurements of line widths by SUMER, and the ion &satpre anisotropy
measurements with UVCS opened up powerful new tools thahiseto narrow down
the number of viable coronal heating mechanisms in the nearef.

The coronal heating problem has been narrowed down by siuladtprogress in
theoretical modeling with MHD codes, new high-resolutiomging with the SXT,
EIT and TRACE telescopes, and with more sophisticated daédysis using auto-
mated pattern recognition codes. The total energy losgegisolar corona range from
F =3x10%ergcnt? st in quiet Sun regions té” ~ 107 erg cnm 2 s~ in active re-
gions. Theoretical models of coronal heating mechanisaisdte the two main groups
of DC and AC models, which involve as a primary energy souhtermospheric foot-
point motion or upward leaking Alfvén waves, which are giased in the corona by
magnetic reconnection, current cascades, MHD turbuléxib&n resonance, resonant
absorption, or phase mixing. There is also strong obsemaltevidence for solar wind
heating by cyclotron resonance, while velocity filtrati@@ss not to be consistent with
EUV data. Progress in theoretical models has mainly beerinpdbandoning homo-
geneous fluxtubes, but instead including gravitationdksleaights and more realistic
models of the transition region, and taking advantage oferigal simulations with 3D
MHD codes. From the observational side we can now unify mangreal small-scale
phenomena with flare-like characteristics, subdivided mtcroflares (in soft X-rays)
and nanoflares (in EUV) solely by their energy content. 8galaws of the physical
parameters corroborate the unification of nanoflares, iitéces, and flares; they pro-
vide a physical basis to understand the frequency distobsiof their parameters and
allow estimation of their energy budget for coronal heatignthesized data sets of
microflares and nanoflares in EUV and soft X-rays have estadui that these impul-
sive small-scale phenomena match the radiative loss ofvii@ge quiet Sun corona,
which points to small-scale magnetic reconnection pra®sgsthe transition region
and lower corona as primary heating sources of the corona.

5.1 Heating Energy Requirement

We start to analyze the coronal heating problem by inquifireg about the energy
requirements. A coronal heating soui€g has to balance at least the two major loss
terms of radiative los&r and thermal conductiof, as we specified in the energy
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equation for a hydrostatic corona,
Ey(x) — Er(x) — Ec(x) =0, (5.1)

where each of the terms represents an energy rate per vohalrtérae unit (erg cm?
s™1), and depends on the spatial location Because the corona is very inhomoge-
neous, the heating requirement varies by several ordergghitude depending on the
location. Because of the highly organized structuring leyrttagnetic field (due to the
low plasmag parameter in the corona), neighboring structures are fsdilated and
can have large gradients in the heating rate requiremerife Wibld-aligned conduc-
tion will smooth out temperature differences so that an gynéalance is warranted
along magnetic field lines. We can therefore specify theihgaequirement for each
magnetically isolated structure separately (e.g., a lo@mmpen fluxtube in a coronal
hole), and consider only the field-aligned space coordin#@teesach energy equation,
as we did for the energy equation of a single loop,

Er(s) — Er(s) — Ec(s) = 0. (5.2)

Parameterizing the dependence of the heating rate on the spardinate with an ex-
ponential function (i.e., with a base heating ratg, and heating scale length;), we
derived scaling laws for coronal loops in hydrostatic egdrglance, which are known
as RTV lawsfor the special case of uniform heating without gravity, drade been
generalized by Serio et al. (1981) for nonuniform heatind gravity. It is instruc-
tional to express the RTV law as a function of the loop densitand loop half length
L, which we obtain by inserting the pressure from the ideal@aspy = 2neksTmaz,

Trnaw ~ 1073 (n L)'/? (5.3)

Emo~2x 107 1Tp7/4L-1/4 (5.4)

This form of the RTV law tells us that the heating rate depandst strongly on the
density, Egg nZ“, and very weakly on the loop length. Actually, we can re-
trieve essentially the same scaling law using a much singrigument, considering
only radiative loss, which is essentially proportionaltie squared density,

Emo ~ Eg = n?A(T) ~ 107 %n? (ergcm 3 s7!) (5.5)

where the radiative loss function can be approximated bynatentA (7)) ~ 10~22
[erg cnT 3 s71]in the temperature range @f ~ 0.5 — 3 MK that characterizes most
parts of the corona. This gives us a very simple guiding rtile:coronal heating rate
requirement is essentially determined by the squared yefisie rule (Eq. 5.5) gives
us the following estimates: in coronal holes the base deisitypically n, ~ 10%
cm~3 and the heating rate requirement is ttiig, ~ 10~° (erg cnT3 s71).

Since the heating flux is quickly distributed along a magnééld line, we can
just specify a heating rate per unit area at the coronal tgsietegrating the volume
heating rate in the vertical direction. For hydrostaticistures, we can integrate the
heating rate in the vertical direction simply by multiplgiit with the density scale
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Table 3: Chromospheric and coronal energy losses, in units of (erg’csn’) (Withbroe &
Noyes 1977).

Parameter Coronal hole Quiet Sun Active region
Transition layer pressure [dyn cr] 7 x 1072 2x 1071 2
Coronal temperature [K], at~ 1.1Rs 106 1.5 x 10° 2.5 x 10°
Coronal energy losses [erg crhs™!]

— Conductive fluxFc 6 x 10* 2 x 10° 10° — 107
— Radiative fluxFr 10* 10° 5 x 10°
— Solar wind fluxFy 7 x 10° <5 x 10* (< 10%)
— Total corona los¥c + Fr + Fiw 8 x 10° 3 % 10° 107
Chromospheric radiative losses [erg ths ]

— Low chromosphere 2 x 10° 2 x 10° > 107
— Middle chromosphere 2 x 108 2 x 108 107
— Upper chromosphere 3 x 10° 3 x 10° 2 x 106
— Total chromospheric loss 4 x 10° 4 x 10° 2 x 107
Solar wind mass loss [g ¢n? s71] 2x10710  <2x107" (<4 x107'h

height A\, which is proportional to the temperature. We denote théimgdux per
unit area with the symbdf'y (also calledPoynting fluy,

2
Fro = Egolr ~ 5 x 103 (1022m) (1 1\7/;K> [erg cm ™2 7] (5.6)
Thus for a coronal hole, with, = 10% cm™3 andT = 1.0 MK, we estimate a required
heating flux ofF o = 5 x 103 erg cnm2 s~1, and in an active region with a typical loop
base density af, = 2.0x10° cm~3 andT = 2.5 MK, we estimateF';o ~ 5x 10° (erg
cm~2 s71). Thus the heating rate requirement varies by about 3 oafermgnitude
between the two places.

Another conclusion we can immediately draw about the hgdtinction is that the
height dependence of the heating has roughly to follow thdrdstatic equilibrium.
The heating scale heighty required in hydrostatic equilibrium is therefore half of
the density scale heighty, because the radiative loss scales with the squared density
Eg(h) = Eggexp (—h/sy) < Er(h) o< ne(h)? = [ng exp (—h/Ar)]?,

Ar T
SH N N23(1MK) [Mm] . (5.7)
This simple theoretical prediction, assuming that radéatoss is the dominant loss
component in the coronal part of loops, is also confirmed bgrdstatic modeling
of 40 loops observed with TRACE, where including the effdah@rmal conduction
yielded only slightly smaller values (i.e; = 17+ 6 Mm, Aschwanden et al. 2000d).
The spatial variation of the coronal heating requiremeriliustrated in Fig. 26,
where we deconvolved the mean coronal base densifyand differential emission
measure distributiod EM (T') /dT in 36 different sectors of the corona from Yohkoh
SXT two-filter measurements (Aschwanden & Acton 2001), agteticinined the heat-
ing requirementy, for these 36 different sectors, finditigx 103 < Fro < 1 x 10%

41



107

10°

10°

Heating requirement F,, [erg cm? s

0 100 200 300
Azimuth [deg]

Figure 26:Composite soft X-ray image of the Sun observed on 1992 Augif6Yehkoh (top
pane). The histogram shows the heating rate requirembott¢m panglin the 36 azimuthal
sectors around the Sun. The labels indicate the locatioastive regions (AR; dark grey), quiet
Sun regions (QS; light grey), and coronal holes (CH; whigeschwanden 2001b).

(erg cnT2 s71) in coronal holes] x 10* £ Fyg < 2 x 10° (erg cnm2 s71) in quiet
Sun regions, and x 10° < Fyo < 2 x 10% (erg cnm2 s71) in active regions. These
measurements agree with the radiative losses found in obisarvations (e.g., Jordan
1976; Withbroe & Noyes 1977; see Table 9.1).

So, we have a quite specific perception of the heating reapeingé in the solar
corona. The simplest rule is the dependence on the squaeidoel densityF o o n2,
which is also proportional to the optically thin emissionasere in EUV and soft X-
rays, and thus to the observed flux. This sounds trivial, tti@heating rate is directly
proportional to the observed brightness, if we associad@tian as the major loss,
but it would not be true for optically thick radiation, whettee observed brightness
temperature is lower than the actual electron temperafudirect consequence of the
squared density dependence is that most of the heatingusredgn the lowest half
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Figure 27: The process of coronal heating can be broken down into 8 subgses (ah).
Theoretical models include different subsets of thesemagsses, but only models that include
the last step and can parameterize the physical paramétbesteeated plasma can be compared
with observations. The right side of the diagram shows a floartfor the major heating models
(with a typical representative listed at the top). Boxeskahysical steps that are part of the
model, arrows mark transport processes between diffeoeatibns, and dotted lines mark co-
spatial locations. The boxes are colored in grey if the platgirocess takes place in a high-
density region (Ph=photosphere, Ch=chromosphere, avsedeoronal loops) and appear white
for low-density regions (C=coronal background plasmaxfignden 2001b).

density scale height. When we ask what the dependence okttag rate is on the
temperature, the RTV law (Egs. 5.3 and 5.4) predicts a deperedwith the three-and-
a-half power,Fyo o< T35, Thus a soft X-ray-bright loop with a typical temperature
of T'= 3 MK needs about 50 times more heating flux than an EUV-brighp lvith

T =1MK.

In Table 3 we list the energy losses in the corona and chrohewegor comparison,
given separately for coronal holes, quiet Sun regions, atidearegions. We see that
the radiative losses are fully comparable with the condadtsses (within a factor of
2) in the quiet Sun and active regions. Only in coronal hakegiative loss is substan-
tially less than the losses by thermal conduction and thar seind flux, because of
the low density. So, we can summarize that the minimum hgaéguirement at any
place on the solar surfacef%;o = 3 x 10° erg cn 2 s~1, mostly needed in the lowest
half density scale height, and the heating requirementasas up to two orders of
magnitude in dense loops in active regions, roughly scaliitiy the squared density.
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Table 4:Coronal heating models (adapted from Mandrini et al. 2000).

Physical process References
1. DC stressing and reconnection models:
— Stress-induced reconnection Sturrock & Uchida (1981)

— Stress-induced current cascade

— Stress-induced turbulence

Parker (1983, 1988); Berger (1991, 1993)
Galsgaard & Nordlund (1997)
Van Ballegooijen (1986)
Hendrix et al. (1996)
Galsgaard & Nordlund (1996)
Gudiksen & Nordlund (2002)
Heyvaerts & Priest (1992)
Einaudi et al. (1996a,b)
Inverarity & Priest (1995a)
Dmitruk & Gomez (1997)
Milano et al. (1997, 1999); Aly & Amari (1997)

2. AC wave heating models:
— Alfvénic resonance
— Resonant absorption

— Phase mixing

— Current layers
— MHD turbulence

— Cyclotron resonance

Hollweg (1985, 1991)

lonson (1978, 1982, 1983), Mok (1987))
Davila (1987), Poedts et al. (1989)
Goossens et al. (1992, 1995)

Steinolfson & Davila (1993)

Ofman & Davila (1994); Ofman et al. (1994, 1995)

Erdélyi & Goossens (1994, 1995, 1996)

Halberstadt & Goedbloed (1995a,b)

Ruderman et al. (1997)

Bélien et al. (1999)

Heyvaerts & Priest (1983)

Parker (1991); Poedts et al. (1997)

De Moortel et al. (1999, 2000a)
Galsgaard & Nordlund (1996)
Inverarity & Priest (1995b)

Matthaeus et al. (1999)

Dmitruk et al. (2001, 2002)

Hollweg (1986), Hollweg & Johnson @)98
Isenberg (1990), Cranmer et al. (1999a)
Tu & Marsch (1997, 2001a,b)

Marsch & Tu (1997a,b,2001)

3. Acoustic heating:
— Acoustic waves

Schatzman (1949)
Kuperus, lonson, & Spicer (1981)

4. Chromospheric reconnection:

Litvinenko (1999a)

Longcope & Kankelborg (1999)
Furusawa & Sakai (2000)
Sakai et al. (2000a,b, 2001a,b)
Brown et al. (2000)

Tarbell et al. (1999)

Ryutova et al. (2001)

Sturrock (1999)

5. Velocity filtration:

Scudder (1992a,b; 1994)
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Figure 28:Categories of DC (left panels) and AC models (right pansl#)divided into coronal
(top row) and chromospheric versions (bottom row). The gmeys demarcate high-density
regions (chromosphere and transition region) (Aschwa2062b).

5.2 Overview of Coronal Heating Models

In Table 4 we categorize theoretical models of coronal hgairocesses into 5 groups,
according to the main underlying or driving physical preesss It became custom-
ary to classify coronal heating models inteC (Direct Currentand AC (Alternating
Current)types, which characterize the electromechanic coronpbrese to the photo-
spheric driver that provides the ultimate energy sourcen&ating. Magnetic distur-
bances propagate from the photosphere to the corona withifien speedv 4. If the
photospheric driver, say random motion of magnetic field fimotpoints, changes the
boundary condition on time scales much longer than theeMftransit time along a
coronal loop, the loop can adjust to the changing boundangdition in a quasi-static
way, and thus the coronal currents are almost direct ondshvdefines thedC mod-
els On the other hand, if the photospheric driver changesrféisés a coronal loop
can adjust to (e.g., by damping and dissipation of inciddfuéh waves), the coronal
loop sees an alternating current, which is the charadtedsAC models For each of
the two model groups there are a number of variants of howulrewts are dissipated,
either by Ohmic dissipation, magnetic reconnection, auroascading, and viscous
turbulence in the case of DC models, or by Alfvénic resoeanesonance absorption,
phase mixing, current layer formation, and turbulence endhse of AC models. As
an alternative to current dissipation, some heating coldd be produced by com-
pressional waves (i.e., by acoustic waves or shocks). Igjirmcompletely different
physical mechanism is that of velocity filtration, which iaded on the influence of
the gravitational potential field in the corona on a posedaton-Maxwellian chromo-
spheric velocity distribution.

Let us have a look at the compatibility and completenessafrea heating models.
In most of the theoretical models, coronal heating is a rutétge process, which can
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be conceptually organized in a scheme with 8 steps, agdhast in Fig. 27: the initial
energy comes from a mechanical driver (a), which has anrelaetgnetic coupling (b)
to the location of magnetic energy storage (c). At some paimhagnetic instability
and loss of equilibrium (d) occurs, with possible energysgort (e), before plasma
heating (f) starts. The resulting overpressure forcesnpdaiiows (g), which become
trapped (h) in coronal loops, where they are eventually iesk Various coronal
heating models cover only an incomplete subset of thess,stepthat these concepts
first have to be combined with specific geometric and phylsicpiantified models
of coronal structures before they can be applied or fittedbseovations. Therefore,
observational tests of theoretical heating models afdrstiheir infancy.

An aspect of over-riding importance for modeling coronatireg is the treat-
ment of a realistic chromospheric and transition regionrigiawy. This is visualized
in Fig. 28 for some standard models. Early versions of cdrieaating models usually
approximate a coronal loop with a uniform fluxtube (Fig. 2 tow), which produces
a more or less uniform energy dissipation for stressing ajmetc field lines and has
rather large dissipation lengths for Alfvén waves. In otlverds, these highly idealized
models produce an almost uniform heating function thatdstam stark contrast to the
observations. Recent, more realistic, models includeityrand the density and tem-
perature structure of the chromosphere/transition regfitime lower boundary (Fig. 28,
bottom row), which changes the resulting heating functicastically. Typically, the
heating rate is much more concentrated near the footpbietsuse of stronger stress-
ing in the canopy-like magnetic field in the transition regior due to vertical gradients
in the density and Alfvén velocity caused by gravitatiostahtification.

The consideration of the transition region in coronal hreptnodels also plays a
crucial role for all models that involve magnetic reconimtt Essentially, the tran-
sition region is a dividing line between collisional (chrogpheric) and collisionless
(coronal) regimes, as illustrated in Fig. 1. Magnetic rewmiion in collisionless
regimes leads, besides plasma heating, to particle aatielerwhich in turn, can ef-
ficiently contribute to chromospheric plasma heating (dog.chromospheric evapo-
ration or thermal conduction fronts, as known for flares).e Tlery same process is
also believed to be responsible for heating of the quietrtato some extent, as the
nonthermal signatures of nanoflares in the quiet Sun suggtstever, if the same
magnetic reconnection process happens inside the chrdwiaspo particles can be
accelerated because their collision time is shorter thair #tscape time out of the
chromosphere. So, no secondary heating via acceleratédigmis possible for re-
connection processes in collisional plasmas. Therefbeeldcation of the magnetic
reconnection region with respect to the transition regayoge or below) is extremely
decisive for the efficiency of coronal plasma heating.
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