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Abstract. In this study we used the ordinal logistic regression method to establish a prediction model, which estimates the

probability for each solar active region to produce X-, M- or C-class flares during the next 1-day time period. Three predictive

parameters are: (1) total unsigned magnetic fluxTflux, which is a measure of an active region’s size, (2) the length of strong-

gradient neutral lineLgnl, which describes the global non-potentiality of an active region, and (3) total magnetic dissipationEdiss,

which is another proxy measure of an active region’s non-potentiality. They are all derived from SOHO MDI magnetograms.

The ordinal response variable is the different level of solar flares magnitude. By analyzing 230 active regions,Lgnl is proved to

be the most powerful predictor, if only one predictor is chosen. Compared with the current predictions methods used by Solar

Mornitor at Solar Data Analysis Center (SDAC) and NOAA Space Environment Center (SEC), the ordinal logistic model using

Lgnl andTflux as predictors demonstrated its automaticity, simpleness and fairly high prediction accuracy. To our knowledge,

this is the first time the ordinal logistic regression model was used in solar physics to predict solar flares.

1. Introduction

Over the past decades, mankind has become more and more dependent on space systems, satellite-based

services, as well as various ground-based facilities. All these technologies are influenced by Sun-Earth

interaction phenomena. Therefore, one of the primary objectives in space weather research is to predict

the occurrence of solar flares and Coronal Mass Ejections (CMEs), which are believed to be the major

causes of geomagnetic disturbances (e.g., Brueckneret al., 1998; Caneet al., 2000; Gopalswamyet al.,

2000; Webbet al., 2000; Wang, et al., 2002; Zhang,et al., 2003).

It has long been known that solar flares tend to occur along magnetic polarity inversion lines where

the magnetic field lines are often highly sheared, with the transverse field directed nearly parallel to the

polarity inversion line (Svestka 1976; Hagyardet al. 1984; Sawyeret al. 1986). Canfieldet al. (1999)

showed that CMEs also tend to arise in connection with active regions (ARs) exhibiting strong sheared

and/or twisted coronal loops called sigmoid. The twisting, tangling and shearing of magnetic loops lead
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to magnetic topological complexities and build up a stressed flux system (and excess energy). Subse-

quent destabilizing events such as local emergence of new magnetic flux from below the photosphere or

changes in magnetic connectivity due to magnetic field reorganization elsewhere on the Sun may result

in the release of energy (Hess 1964; Svestka 1976; Priest and Forbes 2000).

To date, various observational studies have explored the connection between photospheric magnetic

fields and solar flares, supporting the hypothesis that solar flares are driven by the nonpotentiality of

magnetic fields (Moreton and Severny 1968; Abramenkoet al., 1991; Lekaet al., 1993; Wanget al.,

1994; Wanget al., 1996; Tianet al., 2002). Through five solar flares, Wang (2006a) found there are

obvious changes of the magnetic gradient occurred immediately and rapidly following the onset of each

flare. Falconeret al. (2001, 2003) measured the lengths of strong-sheared and strong-gradient magnetic

neutral line segments and found that they are strongly correlated with CME productivity of an active

region and both might be prospective predictors. In a study of 6 large (X5 or larger) flares, Wanget al.

(2006b) reported a positive linear relationship between the magnetic shear and the magnetic gradient and

that the latter seems to be a better tool to predict the occurrence of flares and CMEs in an active region.

According to Songet al.(2006), the length of strong gradient neutral line,Lgnl, was proved to be a viable

tool to locate source regions of either CMEs or flares. The overall accuracy of this method is about 75

% (55 out of 73 events). Jing et al. (2006) analyzed three magnetic parameters: i) mean spatial magnetic

field gradient at strong-gradient magnetic neutral line, Mgnl ; ii) length of a strong-gradient magnetic

neutral line,Lgnl; and iii) total magnetic energy dissipated in a unit layer in 1 second over the active

regions area,Ediss, and found that these parameters have a positive correlation with the overall flare

productivity of ARs. ARs with largerMgnl,Lgnl andEdiss generally show a higher incidence of flaring

activity.

The purpose of this study is to find out whether statistical methods that are conceptually simple,

algorithmically fast are able to provide a feasible way to evaluate the probability of an active region in

producing solar flares. The ordinal logistic regression model satisfies our criteria. The model describes

the relationship between an ordered response variable and a set of predictive variables. In our case, the

ordered response variable represents four different energy levels of solar flares. We assign numerical

values 3, 2, 1 and 0 to represent X-, M-, C- and B-class flares, respectively. The predictive variables so

far includeLgnl, Ediss, that were used in Jinget al. (2006) study and total unsigned magnetic flux,Tflux.

Mathematically, what the ordinal regression model describes is not the value of the response variable

itself, but the probability,Prob, that it assumes the certain response value (0, 1, 2 or 3). Thus, in this

study,Prob represents the probability of certain class of flare to occur. SinceProb ranges from 0 to 1,

traditional linear regression is inappropriate to predict its value directly.
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We will study if the ordinal logistic regression model is able to predict the occurrence of solar flares

in the next 1-day period. The reminder of this paper proceeds as follows. In Section 2 the data sets

used to perform the statistical analysis are described. Three magnetic measures are calculated based on

the full disk Michelson Doppler Imager (MDI) magnetograms. In Section 3, the ordinal logistic model

is specified and established. The results obtained from the statistical regression model are presented in

Section 4, and Section 5 concludes this paper with a discussion of key results.

2. Methods

2.1. DATA COLLECTION

Solar activity reports are available online from the US National Oceanic and Atmospheric Administration

(NOAA) space environment center (SEC)1. The reports include detailed information about solar flares,

such as the coordinated universal time (UTC) of the beginning, maximum and end of a flare, the X-ray

flux at the flare peak and the location of the flare, if available. Our study focuses on those flares occurred

between 1996 to 2005. The criteria for flares selection are: (1) the location of the flare is accurately

indicated in the reports and as close to disk center as possible (±40◦ in longitude and±30◦ in latitude),

so the project effects of magnetic fields can be avoided. In order to have enough events number of X-

class flares for our statistical study, the longitude was extended to±40◦; (2) Michelson Doppler Imager

(MDI) full disk magnetograms on board Solar and Heliospheric Observatory (SOHO) was available.

These magnetograms were used to analyze photospheric magnetic parameters. The reason that we use

only MDI magnetograms is primarily because these data are routinely obtained, extensively achieved

and free of the atmospheric seeing. Total 230 solar flare events were chosen to be analyzed.

2.2. DEFINITION OF THE PREDICTIVE AND RESPONSEVARIABLES

Detailed descriptions of how the photospheric magnetic parameters are calculated from the MDI magne-

tograms was presented in detail in Jinget al. (2006). Thus, we will only briefly list them here:

1. Total unsigned magnetic flux,Tflux, is a measure of the active region’s size.

1 http://www.sec.noaa.gov/ftpmenu/indices.html
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2. Length of the strong-gradient neutral line,Lgnl, describes the global non-potentiality of an active

region. The spatial gradient is calculated as

∇Bz =

[(
dBz

dx

)2

+
(

dBz

dy

)2
]1/2

(1)

whereBz is the line-of-sight components of the magnetic field measured in the plane (x,y). The

gradient threshold in this paper was chosen to be 50 G Mm−1 (Falconeret al., 2003; Songet al.,

2006).

3. Total magnetic energy dissipation ofBz in a unit layer per unit time,Ediss =
∫

ε(Bz)dA, where

the summation is done over the entire active region areaA. The ε(Bz) is defined according to the

following expression (Abramenko,et al.2003):

ε(Bz) =

(
4

[(
dBz

dx

)2

+
(

dBz

dy

)2
]

+2

(
dBz

dx
+

dBz

dy

)2
)

, (2)

According to Abramenkoet al. (2003), this measure indicates the energy dissipated at very small

scales (2-3 Mm) due to the turbulent motions of magnetic flux tubes in the photosphere. Due to the

gradient ofBz is also included inε(Bz), it could be another proxy measure of an active region’s

non-potentiality.

4. Overall flare productivityFidx of a given active region, which is quantified by the weighting the soft

X-ray (SXR) flares of X-, M-, C- and B-class as 100, 10, 1, and 0.1, respectively (Antalova, 1996;

Abramenko, 2005).

Fidx = (100×∑
τ

IX +10×∑
τ

IM +1×∑
τ

IC +0.1×∑
τ

IB)/τ (3)

whereτ is the length of time (measured in days) during which an active region is visible on the solar

disk,IX, IM, IC andIB are GOES peak intensities of X-, M-, C- and B-class flares produced by a given

active region for the durationτ . To evaluate the flare production of an active region in next 1-day

time interval,τ is selected to be 1.

As an example, in Figure 1 we present the calculation of these parameters for NOAA AR 9077 on

2000 July 14. The left panel shows the MDI line-of-sight magnetogram of this flare active region. The

overall Fidx is as high as 1256.40 (in units of10−6Wm−2), equivalent to a specific flare productivity

of one super X1.0 flare per day. The middle and right panels show the gradient distribution along the

magnetic neutral line and structures of magnetic energy dissipation, respectively. The values in each

pixel are indicated by the corresponding color scale bar. The quantityLgnl is the total length of the strong

gradient segments (>50 GMm−1) of the neutral line.
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The majority of selected ARs produced couple of flares with different intensities in the next 24 hours.

Based on the maximum magnitude of flares they produced, ARs were classified into 4 levels with ordinal

value 3, 2, 1 and 0. They are shown in Table I. First three columns show date, the AR number, and

the flare location. The next four columns show magnetic parametersLgnl, Tflux, Ediss andFidx, computed

based on the previous equations. The last column namedLevel is our response variable to indicate the

maximum magnitude of flares occurred in the next following 1-day period.

Tflux, Lgnl andEdiss parameters were proved earlier to be positively correlated with theFidx of the next

1-day (Jing,et al., 2006) and confirmed again in Figure 2. This figure has 16 scatter plots placed in 4

rows and 4 columns, each one corresponding to one of the four observed variables. Each plot in this

matrix shows a scatterplot of two variables. The matrix is symmetric about its diagonal. The correlation

coefficients (CCs) betweenLgnl, Tflux, Ediss andlog10(Fidx) CCs varies in the range of 0.60 to 0.65. The

CCs indicates that they could be used as predictive variables, either individually or combinationally, in

flare forecasting.

2.3. FLARES STATISTICAL CHARACTERISTICS

From 1998 to 2005, a total of 230 flare events analyzed. The descriptive data for the magnetic parameters

Lgnl, Tflux andEdissare summarized in Table II. Among the flare event list, 34 of them (Level=3) produced

X-class flares, 68 (Level=2) produced M-class flares, and 65 (Level=1) produced C-class flares. Only

small fraction of C-class events were randomly selected to match the sample size of larger flares. For

the left (Level=0), they either did not produce any flares or produced smaller flares under C-class in the

next 1-day period. According to eachLevel, the mean and standard deviations of each parameter are

calculated and displayed.

Mean value ofLgnl for events, associated with X-class flares, was found to be 81.18 Mm, much larger

than that associated with either M- (47.86 Mm) or C-class (36.62 Mm) flares and an order of magnitude

larger than the mean value found for those flare-quiet regions. The same trend is also present in the case

of Ediss. This further evidences that the extreme events such as X-class flares have higher tendency to

occur in the ARs with high concentration of free magnetic energy. As toTflux, the differences between

the mean values of X-, M- and C-class are only about 15%, not as large as forLgnl and Ediss. Flare

productivity is only weakly related to the active region size.
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3. Ordinal Logistic Regression Model

3.1. MODEL SPECIFICATION

There is a variety of statistical techniques that can be used to predict a response variableY from a

set of independent variables. Since the purpose of this paper is to estimate probabilities, the analytical

technique should somehow provide it. In addition, ifY is categorical, with more than two categories,

such a response variable essentially rules out usual regression analysis, including the variety of linear

models. The major problem with these techniques is that the linear function is inherently unbounded,

while probabilities are bounded by 0 and 1. This make the generalized (compared with binary) logistic

method the most obvious candidates for the regression analysis. It always returns values between 0 and 1.

Depending on the scale ofY (ordinal or nominal), the model is further classified into ordinal regression

and nominal regression model. In our study, we use ordinal regression model sinceY here indicates the

maximum magnitude of flares the given active region may produce.

SupposeY is the categorical response variable withk+1 ordered categories. For example

Y =





0 = weak

1 = moderately strong
... =

...

k = extremely strong

(4)

Let X denotes the vector of predictive variables{x1,x2, · · · ,xn}, andπ j(x) = Prob(Y = j|x = x) be the

probability for the realization ofY = j, givenX = x, j = 0,1, . . . ,k. The cumulative probabilities

γ j(x) = Prob(Y ≥ j|x = x)

= π j(x)+ · · ·+πk(x)

= 1/[1+exp(−(α j +xβ ))], j = 1, · · · ,k,
(5)

wherexβ stands forβ0+β1x1+ · · ·+βnxn. There arek intercepts (αs). The regression parametersα and

β are estimated by the method of maximum likelihood (Agresti, 1996), which works by finding the value

of β that returns the maximum value of the log-likelihood function. Expression

Prob= [1+exp(−x)]−1 (6)

is called the logistic function (logit). We can solve the above equation forα j +xβ

α j +xβ = log[
Prob

1−Prob
] = log[odds that Y≥ j occurs] = logit{Y ≥ j}. (7)

Thus the model becomes a linear regression model in the log odds that Y≥ j. This is the well-known

proportional odds (PO) model (McCullagh, 1980), also called ordinal logistic model (Scott,et al., 1997).
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The logistic model formulated here for the solar flares study, contains a four-state response variable.

Level= 0 means the active region only produce microflares (Lower than C-class flares) in the next 1-

day period.Level= 1 means the active region at most produce C-class flares.Level= 2 is for M- and

Level= 3 is for X-class flares. Therefore, the category number k = 3 and predictive variables are the

some or all of three magnetic parameters discussed earlier.

The model is computed with the statistical R software package (version 2.3.0 Linux system), using a

procedure that supports ordinal logistic regression model (lrm). For details on the estimation procedure

and the statistics in logistic regression models, see website2. Ordinal logistic regression is not part of the

standard R, but can be calculated via libraryDesign3 by using functionlrm (Alzola and Harrell, 2004).

3.2. TESTING FORORDINALITY ASSUMPTION

A basic assumption of ordinal regression models is that the response variable behaves in an ordinal

fashion with respect to each predictive variable. Assuming that a predictorx is linearly related to the log

odds of some appropriate event, a simple way to check for ordinality is to plot the mean ofx stratified by

levels of y. These means should be in a consistent order. If for many of thexs, two adjacent categories of

Y do not distinguish the means, that is the evidence that those levels of Y should be pooled.

Figure 3 is such displays. Means of all three predictive variables are calculated for each ordinal class

of the response and plotted (solid) against it. In the ideal case, the dotted line (PO model) should be

superposed on the solid line if the PO assumptions hold. Ordinality is satisfactorily verified for all three

predictive variables (same monotonic trends).

Figure 4 shows another way to assess the PO assumption. Each predictive variable is categorized into

quartiles. Each quartile group is identified using the upper and lower endpoints within that quartile. The

logits of all proportions of the Level≥ j, j = 1,2,3. is computed. When proportional odds holds, the

difference in logits between different values of j should be the same at all levels of each parameter. This

is because the model dictates that logit(Level≥ j|x) - logit(Level≥ i|x) = α j - αi , for any constant x.

3.3. ESTIMATION PROCEDURES

Before presenting the obtained results, we first describe three groups of models that were used in our

analysis. Table III shows products of different data generating models used in the regression. In order to

investigate the effects of each predictive parameter, every possible combination is analyzed.

2 http://www.r-project.org/
3 http://biostat.mc.vanderbilt.edu/twiki/bin/view/main/design
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The models in group (a) contain only one predictive parameter. For prediction purpose, these pre-

liminary models may be too simple. However, their fitted results will help us to understand which

parameter may be more significant in producing solar flares. Models in group (b) have three terms. The

first two terms in each model are from our predictive parameters. The third one is called the interaction

term. It exists when the effect of one independent variable changes with different values of another

independent variable. It is also said that Variable 2 ”moderates” the effect of Variable 1. In regression

analysis, interaction term is quantitatively represented by the product of Variable 1 and 2. Theoretically,

interactions among more than two variables, especially when these variables are continuous, can be

exceedingly complex. This is because there are many different combinations of two-way interactions and

the possibility of the order of interaction effects may be higher than two, e.g. product of the square of one

predictor and other predictor. Therefore, a good approach is to test for all such prespecified interaction

effects with a single global test. Then, unless interactions involving only one of the predictive variables

is of special interest, we can either drop all interactions or retain all of them (Harrell, 2001). The models

in group (c) include all three predictive parameters, with and without corresponding interaction effect

terms.

The assumption of linearity in the logistic model need to be verified, especially when the continuous

predictive variables are presented. Often, however, the property of response variable, the probability

in our study, does not behave linearly in all the predictors. To test linearity, or to describe nonlinear

relationships, a general way is to expand predictive continuous variables with spline functions, which

are piecewise polynomials used in curve fitting. In our study, we used restricted cubic spline function

(also called natural splines) with 4 knots on every predictive variable (Stone and Koo, 1985). For many

datasets, 4 knots (k = 4) offers an adequate fit of the model and is a good compromise between flexi-

bility and loss of precision caused by overfitting a small sample (Harrell, 2001). The locations of knots

(quantiles) are fixed, whenk is fixed. Whenk = 4, the quantiles are 0.5, 0.35, 0.65 and 0.95.

4. Results

4.1. QUANTIFYING PREDICTIVE ABILITY OF FITTED MODELS

A commonly used measure of predictive ability for logistic models is the fraction of correctly classified

responses. One chooses a cutoff on the predicted probability of a positive response and then predicts that

a response will be positive if the predicted probability exceeds this cutoff. The drawback of this method is
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that it is highly dependent on the cutpoint chosen for a positive prediction. In addition, it is presumptions

to make one classification rule from a probability model.

The test statistics allow us to test whether a predictive variable, or set of variables, is related to

the response. The generalized indexR2
N (Nagelkerke, 1991; Cragg and Uhler, 1970) can be useful for

quantifying the predictive strength of a model. Let us assume that the log likelihood (L.L.) of a model is

represented by:

R2
N =

1−exp(−LR/n)
1−exp(−L0/n)

, (8)

whereL0 = −2× L.L, obtained under the null hypothesis that all regression coefficients except for

intercepts are zero. Likelihood ratio (LR) is thenL0− L, where L is -2×L.L, achieved from the fitted

model.n is the size of dataset. For large enough datasets, LR approximately followsχ2 distribution.

Index R2
N ranges from 0 to 1 and can be used to assess how well the model compares to a “perfect”

model.

A dimensionless indexc indicates probability of concordance between the predicted probability and

the response. It has been shown thatc is identical to a widely used measure of diagnostic discrimination,

which is the area under a “receiver operating characteristics” (ROC) curve. A value ofc 0.5 indicates ran-

dom predictions, while c=1 indicates perfect prediction. A model that hasc near 0.8 has some reliability

in predicting the responses of individual events.

Another widely used index is ’Somers’ index,Dxy, that ranks the correlation between predicted prob-

abilities and observed responses by the difference between concordance and discordance probabilities.

Dxy = 2(c−0.5). (9)

WhenDxy = 0, the model is making random predictions. WhenDxy = 1, the predictions are perfectly

discriminating.

Table IV displays these indexes for every model listed in Table III. For the models with only one pre-

dictive variable, they have comparable reliability in flare prediction (nearly same indexes). The indexes of

model (1) are slightly larger than that for model (2) and (3). The larger indexes implies that the length of

strong gradient neutral line is relative more significant in prediction than the other two parameters. When

we add one more parameter to each model, then model (4) and (6) have larger indexes, indicating the new

parameter may improve the predictive strength. The worst result is for model (5) and it confirms thatLgnl

plays the key role among three predictors. The nearly same results for model (7) and (8) show that the

ignorance of the interaction effects between predictors does not reduce the predictive ability. Moreover,

from the comparison of models (4) and (7), it follows that parameterEdiss may be the least effective in

flare prediction, while model (4), namely the combination ofLgnl andTflux as predictors, seems to be the

most effective tool for predictions. This conclusion is consistent with the result that major flares of class
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M or X are associated with pronounced high-gradient magnetic neutral line (Schrijver, 2007). According

to Schrijver (2007), the measure of unsigned magnetic flux near the neutral line is proved to be related

with the probability of a active region to produce major flares.

4.2. VALIDATING THE FITTED MODELS

Model validation is done to ascertain whether predicted values from the model are likely to accurately

predict responses on future events. The simplest validation method is one time data-splitting. A dataset is

split into training (model development) and test (validation) samples by a random process. The model’s

calibration are validated in the test dataset. One disadvantage of data-splitting is that it greatly reduces

the sample size for both model development and model testing. The situation will become even worse

when the original dateset is not large enough, like our case in X-class flares. Bootstrapping can be used

to obtain nearly unbiased estimates of model performance without sacrificing sample size (Efron, 1986;

Breiman, 1992). With bootstrapping, one repeatedly fits the model in a bootstrap sample and evaluates

the performance of the model on the original sample. The estimate of the likely performance of the final

model on future data is estimated by the average of all of the indexes computed on the original sample.

In general, the major cause of unreliable models is overfitting the data. The amount of overfitting can be

quantified by the index of overoptimism. With bootstrapping we do not have a separate validation sample

for assessing calibration, but we can estimate the overoptimism in assuming that the final model needs

no calibration, that is, it has overall intercept and slope corrections of 0 and 1, respectively. Refitting the

model

Pc = Prob
{

Y = 1 | Xβ̂
}

= [1+exp− (γ0 + γ1Xβ̂ )]−1, (10)

wherePc denotes the actual calibrated probability, and the original predicted probability isP̂ = [1+

exp(−Xβ̂ )]−1 in the original dataset will always result inγ = (γ0,γ1) = (0,1), since a logistic model

will always fit when assessed overall. Thus, the bias-corrected estimates of the true calibration can be

obtained by the estimation of overoptimism in (0, 1). An index of unreliability,Emax, that represents

the maximum error in predicted probabilities over the rangea≤ P̂≤ b, follows immediately from this

calibration:

Emax(a,b) = max| P̂− P̂c | . (11)

As an example, we first validate model (4) shown in Table III. The optimism-corrected calibrations

are in Table V. The apparent Somers’Dxy is 0.579, while the bias-correctedDxy is 0.559. The slope

shrinkage factor is 0.933, indicating that this model will validate on new data about 6.7% worse than on

the current dataset. The maximum absolute error in predicted probability is estimated to be about 0.017.

A slight decrease inR2 suggests some overfitting. Table VI presents the validation results for all models.
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All estimates of the maximum calibration error,Emax, are small, and quite satisfactory. After the bias

correction, model (4) still has the highestDxy andR2.

The estimated calibration curves for model (4) are displayed in Figure 5. They are calculated as:

Prob{Level≥ j}=
1

1+exp[−(−0.009+0.933Lj)]
,

whereL j is the logit of the predicted probability ofLevel≥ j. The closeness of the calibration curves to

the bisector line demonstrates excellent validation on the absolute probability scale. The missing data in

panel (a) and (c) cast some doubt on the validity of predictions for C- and X-class flares. The shape of the

calibration curve in panel (b) (slope< 1) implies that overfitting is present in the M-class predictions.

4.3. DESCRIBING THEFITTED MODELS

Once the proper predictive variables have been modelled and all model assumptions have been met, it is

the time to present and interpret our fitted models. Equation (7) indicates that the logistic model becomes

a linear model in log odds. The parameterβ j then denotes the change in the log odds per unit change in

Xj , whereXj represents a single linear factor that does not interact with other variables, provided that all

other variables are held constant. Instead of writing this relationship in terms of log odds, it can also be

written in terms of the odds that Y≥ j:

odds{Y ≥ j | X}= exp(xβ +αj) = exp(xβ )exp(αj). (12)

The odds that Y≥ j, whenXj is increased byd, divided by the odds atXj is:

odds
{

Y ≥ j | x1,x2, · · · ,xj +d, · · · ,xk
}

odds
{

Y ≥ j | x1,x2, · · · ,xj , · · · ,xk
}

=
exp[βj(xj +d)]exp(αj)

exp(βjxj)exp(αj)

= exp(βjd)

(13)

Thus the effect of increasingXj by d is to increase the odds that Y≥ j by a factor of exp(β jd), or to

increase the log odds that Y≥ j by an increment ofβ jd.

Table VII contains such summary statistics for the model (4). The outer quartiles ofLgnl andTflux are

shown in the columns labelled with “Low” and “High”, respectively. So the half-sample odds ratio for

Lgnl is 5.18, with 0.95 confidence interval [2.22, 12.09], whenTflux is set to its median. The effect of

increasingLgnl from 7.190 (its lower quartile) to 53.190 (its upper quartile) is to increase the log odds by

1.64 or to increase the odds by a factor of 5.18. The value of odd ratio forTflux is nearly same asLgnl.

Instead of displaying the result in odds, Figure 6 directly shows the predicted probabilities versus each

predictive variables (models (1)-(3)). The probability curves for C-, M- and X-class flares are plotted in
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black, red and green color, respectively. The plot indicates that: (1) the occurrence probability for each

class of solar flares increases with the predictive parameters, (2) for C-class flare predictions, there is

a saturation value. The probabilities are nearly 100% when the measure values are larger than their

thresholds. For M- and X-class probabilities, whenLgnl, Ediss are used as predictors (panels (a) and (c)),

no such saturation value exists. The probabilities keep increasing as predictors increase. However, when

Tflux is used to predict the probability (panel (b)), the saturation of probabilities is present for all kinds of

flares. Further increase of the magnetic flux will not help to produce flares. (3) The maximum predicted

probability of X-class flares is only around 0.3∼ 0.6. This may suggest that each single magnetic variable

is not sufficient to predict X-class flares.

Finally our fitted regression expression of model (4) is shown as following:

Prob{level≥ j}=
1

1+exp[−(α j +Xβ )]
, where

α̂1 = −1.01,

α̂2 = −2.81,

α̂3 = −4.81,

and

Xβ̂ =

+5.13×10−2 Lgnl

+2.42×10−2Tflux +2.84×10−4(Tflux−5.23)3
+

−9.97×10−4(Tflux−16.73)3
+ +8.81×10−4(Tflux−26.7)3

+

−1.68×10−4(Tflux−49.6)3
+

+Lgnl[3.82×10−5 Tflux−3.73×10−6(Tflux−5.23)3
+

+1.14×10−5(Tflux−16.73)3
+−9.11×10−6(Tflux−26.7)3

+

+1.46×10−6(Tflux−49.6)3
+]

and(x)+ = x whenx > 0, (x)+ = 0 otherwise.

Lgnl andTf lux, measured for a given active region, are then put into the above equation to compute the

predicted probabilities.
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4.4. COMPARISON WITH NOAA/SEC AND NASA SOLAR MONITOR PREDICTIONS

The existing methods of prediction rely on the McIntosh classification scheme of active regions (McIn-

tosh, 1990; Bornmann and Shaw, 1994). The general expression of McIntosh classification isZpc, where

Z is the modified Zurich class,p is the type of principal spot, primarily describing the penumbra, andc

is the degree of compactness in the interior of the group. According to these three components, sunspots

can be classified into 60 distinct type of groups. The percentage probabilities are calculated based on the

historical rate of number of flares produced by a given sunspots group. This approach is the basis of the

prediction generated by NOAA/SEC4 and NASA Goddard Space Flight Center’s Solar Data Analysis

Center (SDAC). (Gallagher, Moon and Wang, 2002).5 In addition to the McIntosh classification scheme,

NOAA/SEC incorporates a lot of additional information, including dynamical properties of spot growth,

magnetic topology inferred from the sunspot structure, and previous flare activity to establish an expert

system. This system involves more than 500 decision rules including those provided by human experts.

Disadvantages of the classification-based approaches are that the variation in flare probability within

a class is unavoidably ignored. The classification process is possibly subjective because the McIntosh

scheme with three parameters is an arbitrary construction. Different observers may not agree with a given

classification. The similar problems arise with the additional information in the expert system since the

choice of properties is essentially arbitrary. Moreover, They might need human intervention, either in

classification or in prediction procedures, and therefore are not suitable for automated prediction.

In order to compare the predictability of the Logistic model and NASA/SDAC, NOAA/SEC schemes,

we studied our event list and found 55 events in the list were also predicted by NOAA/SEC and NASA/SDAC.

Their prediction results were plotted together and shown in Figure 7. Every event (flare) is indexed in

x-axis. Y axis represents the predicted probability. The results from different prediction approach are

indicated by different shapes of points. For comparison, the actual results (1 means occurred, 0 means

not) are also presented (green dots). We then used a contingency table, which has been widely used in

the meteorological forecasting literature, to evaluate the prediction capability of these approaches. This

table can provide us with information on the success or failure of the forecasting experience in real time

(Kim et al., 2005). We thus defined the probability of>50% to be the “yes predicted”, as shown by

the points above horizontal dotted line. The vertical dotted line indicates the actual start point of flare

happening. Each graph in Figure 7 is divided into four regions (a-d). Region “a” contains the events with

“yes predicted” and “yes observed”. The region “b” represents the number of false alarms that means

4 http://www.sec.noaa.gov/ftpdir/latest/daypre.txt
5 http://www.solarmonitor.org
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“yes predicted” but not observed. Similarly, “c” is the number of misses that means not predicted but

“yes observed”, and “d” is the number of correct nulls that means not predicted or observed.

The indexes used by NOAA National Weather Service (NWS) were computed and listed in Table VIII.

POD is the percentage of all flare events which are predicted ( a/(a+c). A perfect score would be 100%).

FAR measures how often we issue false alarm, or in other words, a measure of ’crying wolf’ (b/(a+b)).

Ideally we want this number to be 0.0%. CSI is the ratio of predicted eventsa to the total number of

(a+ b+ c). In C-class flare prediction, the predicted probabilities computed from NASA/SDAC only

distribute in the range of 0 and 55%. The “yes predicted” is not as obvious as those from other two

methods. Meanwhile, the minimum probabilities predicted by Logistic method are larger than the results

from both NASA/SDAC and NOAA/SEC. This is probably due to the threshold (50 GMm−1 in this

study) for the gradient neutral lines. ThoseLgnl with small values might still have enough nonpotential

energy to product weaker flares. For M- and X-class flares, such a problem is eliminated. In M-class

prediction, NASA/SDAC approach is no doubt incapable to satisfy the prediction requirement. For X-

class prediction, the results from all current methods are not satisfactory. Thus, the indexes show that the

method used by NOAA/SEC provide the best prediction results. The low predictability in forecasting X

class flares perhaps indicates that the predictive parameters we applied so far may not have close enough

correlation in triggering stronger flares. The other possible reason for the incapability in prediction of X

class flares may be due to the insufficient data samples in logistic regression model.

The gap between NOAA/SEC and logistic regression model become smaller when forecasting major

solar flares. In Figure 7 the probabilities of X class flares prediction obtained from ordinal logistic

method and NOAA/SEC are higher in those active regions producing flares. We therefore lower the

cutoff probability to 25% and recount the value ofa,b,c, andd. The resulted indexes are displayed in the

last two columns of Table VIII. Every index of logistic method is better that the one from NOAA/SEC.

We propose that Ordinal logistic method is more promising in forecast major flares, especially as we

have enough data samples, and even more predictive parameters in the future.

5. Conclusions

In this paper we proposed a statistical ordinal logistic regression model to solar flare prediction. For

this, we have selected 230 active regions from 1996 to 2005, computed their corresponding magnetic

parametersLgnl, Tflux and Ediss measured from SOHO MDI magnetograms and then applied logistic

model to them. Our main results can be summarized as follows.

ms.tex; 26/03/2007; 15:04; p.14



15

1. The ordinal logistic regression model is proved to be a viable approach to the automated flare pre-

diction. The results are much better than those data published in NASA/SDAC service, and comparable

to the data provided by NOAA/SEC complicated expert system. To our knowledge, this is the first time

that logistic regression model is applied in solar physics to predict flare occurrence. And this is the first

time that the occurrence probability of flares is quantified into math expression.

2. Each magnetic parameters on photospheric layersLgnl, Tflux andEdiss has a positive correlation

with the predicted probability. Among them the most significant variable isLgnl, followed by theTflux

andEdiss.

3. Considering the interaction effects between predictive parameters, statistical analysis demonstrates

the combination ofLgnl andTflux might be enough to be included in the prediction model.

4. According to the results from contingency table, we found that all three approaches can get good

results in forecasting C-class flares (CSI is between 0.64∼ 0.75). In the M-class prediction, only Logistic

and expert system approach are feasible (0.61 and 0.66, respectively). For X-class flare prediction,

the 50% cutoff is too strict to all methods to achieve. It perhaps implies that the current parameters

used in prediction are not sufficient enough to forecast these super flares. After we changed the cutoff

probability to 25%, both methods might be acceptable. However, ordinal logistic method provided better

performance and is more promising in X class prediction.

So far our prediction model is limited to those magnetic parameters obtained only through SOHO

MDI magnetograms. There are several physical parameters which are considered to improve the forecast

capability of solar flares. These parameters need to be derived from the vector magnetograms. It has been

suggested that the occurrence of flares is related to (1) length of strong-sheared magnetic neutral line

(Falconer et al., 2003); (2) total unsigned vertical current
∫

JzdA, whereJz is the vertical current density,

and (3) photospheric excess magnetic energy
∫

ρedA, whereρe is the density of the excess magnetic

energy (Wang, et al, 1996, Leka and Barnes, 2003a,b). More extensive investigation is in preparation as

these parameters become readily available in the near future.
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Table I.: List of Active Regions Associated with Flares

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20050117 0721 S04E03 0.00 4.00 2.41 0.01 0

20050123 0726 N01W00 0.00 6.94 4.40 0.01 0

20050202 0729 S10W09 0.00 5.30 3.86 1.63 0

20050208 0731 S02W01 0.00 3.94 2.04 0.01 0

20050302 0739 S03W03 0.00 4.65 2.66 0.84 0

20050315 0743 S08W03 5.75 13.80 7.64 14.58 0

20050402 0747 S06W04 0.00 7.19 6.07 6.84 0

20050408 0749 S05E11 0.00 5.98 4.27 0.01 0

20050411 0750 S07E08 4.31 11.90 9.53 1.25 0

20050508 0758 S07E08 18.69 21.90 21.40 140.88 0

20050604 0769 S06E01 0.00 12.30 8.70 0.80 0

20050610 0775 N10E06 48.87 17.30 13.30 65.48 0

20050804 0796 S07W01 0.00 5.21 3.11 0.17 0

20050818 0798 S09E08 0.00 5.26 3.32 120.27 0

20051007 0813 S08E01 10.06 10.30 8.76 1.40 0

20051020 0815 N08E07 0.00 5.39 2.74 0.01 0

20051102 0819 S09W05 0.00 6.64 3.37 1.71 0

20051103 0818 S08W04 0.00 6.14 2.99 0.20 0

20051126 0825 S06E01 0.00 4.66 2.04 0.01 0

20051215 0834 S07W01 0.00 12.20 6.92 2.76 0

20051229 0840 S03E02 0.00 9.70 5.59 0.01 0

19980113 8131 S24W12 35.94 13.20 10.40 36.44 0

19990811 8662 S16E08 20.12 21.90 19.00 35.64 0

20010219 9354 S09W07 8.62 13.80 8.40 12.49 0

20010710 9531 S06E05 10.06 12.40 7.05 13.40 0

20010718 9545 N09E03 2.87 8.61 4.24 11.26 0

20010720 9542 N08E07 0.00 6.69 3.08 0.49 0

20010731 9557 S21E25 0.00 10.90 7.11 135.02 0

20020508 9937 S09E13 10.06 12.60 10.00 37.63 0

20020613 9991 S20E05 0.00 14.00 8.67 5.44 0

20020618 0000 N18E15 0.00 14.40 10.70 341.48 0

20021204 0208 N09E03 31.62 16.70 14.00 27.48 0

20030305 0296 N12E05 10.06 23.50 15.70 13.12 0

20030312 0306 N05E06 8.62 21.80 12.20 8.25 0

20030415 0334 S08E12 0.00 10.80 7.30 0.55 0

20030517 0357 S17E07 10.06 6.16 4.49 0.85 0

20030525 0365 S09E21 7.19 10.70 9.20 599.27 0

20030620 0388 S03E04 4.31 8.31 7.22 10.67 0

20030909 0456 S09E10 0.00 8.64 6.76 15.26 0

20031006 0471 S08E07 8.62 23.30 19.90 48.83 0

20040112 0537 N04W04 25.87 15.00 10.00 271.55 0

Continued on next page
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Table I – continued from previous page

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20040224 0564 N14E00 18.69 22.50 20.00 238.04 0

20040518 0617 S12E08 0.00 6.42 4.84 3.24 0

20040525 0618 S10E12 10.06 27.70 21.90 107.47 0

20040603 0621 S14E13 8.62 18.40 12.80 6.35 0

20040606 0624 S08E10 0.00 7.54 4.62 0.34 0

20040804 0655 S09E14 12.94 15.90 13.20 10.98 0

20041002 0675 S10W06 0.00 9.78 7.03 0.65 0

20041023 0684 S03W00 7.19 12.20 10.50 0.61 0

20041125 0704 N13W18 7.19 14.70 11.60 2.12 0

20041201 0706 S08W16 0.00 13.40 11.20 27.57 0

20050215 0735 S08E07 4.31 9.71 7.83 13.93 0

20050312 0742 S05E03 7.19 23.60 19.50 25.79 0

20050418 0754 S08E06 2.87 6.58 4.84 0.40 0

20050507 0758 S09E26 31.62 19.00 17.40 140.88 0

20050611 0776 S06E04 8.62 22.30 15.50 37.30 0

20050726 0791 N14E23 7.19 10.90 9.07 7.81 0

20050815 0797 S13E12 10.06 12.30 9.80 0.89 0

20051102 0818 S08E09 0.00 5.66 3.11 0.20 0

20051126 0824 S14W09 0.00 10.10 5.73 10.09 0

20051204 0828 S04E04 0.00 7.19 3.95 1.34 0

20051215 0835 N19W03 7.19 9.63 5.22 7.13 0

20051219 0837 S10W10 0.00 10.60 7.36 2.04 0

19981104 8375 N19W08 61.81 23.20 14.50 220.89 1

19990602 8562 S16E07 54.62 17.10 15.20 21.70 1

19990626 8598 N23E09 0.00 30.10 24.80 71.20 1

19990629 8603 S15E16 0.00 23.40 18.00 77.20 1

19990701 8611 S25E18 0.00 17.70 15.70 160.70 1

19990802 8651 N24E08 47.44 45.40 30.40 153.10 1

19990803 8651 N25W04 47.44 42.70 29.80 153.10 1

19990826 8674 S22E09 43.12 47.10 36.70 346.70 1

19991111 8759 N09E14 138.00 35.30 26.70 113.50 1

19991125 8778 S15E06 14.37 18.60 15.70 138.90 1

19991127 8778 S14W17 35.94 20.60 15.40 138.90 1

20000316 8910 N11E18 12.94 22.90 16.10 437.51 1

20000410 8948 S15E03 64.69 27.90 21.10 216.10 1

20000418 8963 N16E18 0.00 14.60 8.77 54.70 1

20000419 8963 N14E09 23.00 14.00 10.10 54.70 1

20000517 8996 S20E16 48.87 43.10 33.60 129.40 1

20000608 9026 N20W06 56.06 31.70 31.50 945.23 1

20000707 9070 N20E14 46.00 23.10 24.00 186.80 1

20000708 9070 N17W01 43.12 24.80 26.60 186.80 1

20000905 9154 S20E06 24.44 19.00 18.50 55.56 1

Continued on next page
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Table I – continued from previous page

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20000930 9173 S12E13 34.50 19.20 14.40 50.30 1

20001009 9182 N02W04 0.00 12.70 5.57 69.50 1

20001031 9209 S23W06 20.12 17.20 11.70 81.20 1

20001122 9236 N20E12 10.06 17.60 9.50 1326.30 1

20010306 9368 N26W08 0.00 21.20 15.20 167.00 1

20010327 9393 N18E08 155.25 57.20 47.30 2954.50 1

20010521 9461 N22E08 0.00 16.90 11.30 18.36 1

20010715 9539 S17W01 28.75 11.40 8.46 60.60 1

20010910 9608 S23E14 44.56 37.40 24.90 498.24 1

20010911 9608 S29E10 125.06 35.60 23.90 498.24 1

20010913 9610 S13W08 35.94 36.00 19.10 31.60 1

20010924 9628 S18E07 70.44 38.90 22.80 274.00 1

20010930 9636 N12W05 69.00 27.20 19.20 100.30 1

20011024 9672 S17E00 47.44 28.80 17.00 475.10 1

20011027 9678 N07E05 7.19 28.60 16.60 103.10 1

20011030 9682 N12E02 76.19 41.90 25.10 269.70 1

20011103 9684 N05W17 56.06 24.40 14.80 145.00 1

20011120 9704 S17W09 51.75 26.90 14.70 283.60 1

20020106 9767 S21W14 7.19 31.80 15.60 61.50 1

20020108 9773 N14E05 24.44 26.30 17.30 290.56 1

20020110 9773 N14W17 40.25 34.70 24.40 290.56 1

20020716 0030 N21E01 73.31 44.60 38.70 793.73 1

20020727 0039 S17E17 132.25 55.20 51.10 733.80 1

20020729 0050 S07E06 11.50 21.50 19.30 60.20 1

20020802 0057 S09E05 8.62 9.96 8.25 72.70 1

20020905 0096 N08W01 23.00 27.60 19.80 23.80 1

20021002 0137 S20E18 46.00 15.00 14.90 174.64 1

20021105 0177 N16W09 43.12 23.70 20.00 80.30 1

20021106 0180 S09W07 56.06 25.10 22.80 259.50 1

20030222 0290 N17W06 8.62 15.70 11.80 36.06 1

20030315 0314 S15W13 30.19 14.50 16.60 529.20 1

20030501 0349 S13E07 8.62 34.80 22.50 86.37 1

20030607 0375 N11E09 30.19 26.30 25.30 1358.62 1

20030608 0375 N11W03 43.12 31.80 29.70 1358.62 1

20030718 0410 S12E09 0.00 2.27 0.70 91.71 1

20030815 0431 S13W02 0.00 4.34 2.10 124.65 1

20031028 0488 N09W05 92.00 38.50 46.60 881.80 1

20040225 0564 N14W13 0.00 2.61 0.90 238.04 1

20040329 0582 N13E18 0.00 2.25 0.65 144.65 1

20040331 0582 N13W14 8.62 20.60 13.80 144.65 1

20040719 0649 S09W00 0.00 4.10 2.12 1381.59 1

20040811 0656 S14E13 0.00 3.49 1.54 1260.24 1

Continued on next page
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Table I – continued from previous page

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20050604 0772 S18E09 7.19 10.90 11.10 98.41 1

20050702 0785 S17E04 0.00 3.87 1.86 15.56 1

20050914 0808 S11E02 92.00 44.70 45.60 4886.56 1

19980315 8179 S24W04 53.19 31.40 20.60 100.32 2

19980326 8185 S24E04 17.25 18.20 12.90 48.46 2

19980501 8210 S17E05 7.19 20.00 9.37 422.59 2

19990630 8603 S14W01 18.69 19.10 17.00 77.20 2

19990702 8611 S26E08 33.06 22.60 20.40 160.70 2

19990724 8636 N20W06 33.06 35.00 26.40 94.99 2

19990819 8672 N16W02 10.06 15.10 10.70 10.00 2

19990827 8674 S21W04 74.75 49.60 38.40 346.70 2

19991112 8759 N10E05 90.56 42.90 32.50 113.50 2

19991126 8778 S14W06 21.56 20.20 15.30 138.90 2

19991222 8806 N19E09 24.44 37.40 25.70 259.78 2

20000118 8831 S17E00 7.19 24.90 14.80 49.00 2

20000217 8872 S28E05 0.00 11.30 6.86 13.80 2

20000313 8906 S17E02 107.81 46.30 28.80 284.10 2

20000720 9087 S12W02 34.50 36.70 30.20 443.60 2

20000725 9097 N06W02 30.19 25.60 13.90 149.80 2

20000916 9165 N15E00 27.31 21.70 14.60 259.60 2

20001109 9221 S12E08 0.00 13.70 8.49 10.00 2

20001118 9231 S21E00 15.81 22.10 17.30 99.01 2

20001123 9236 N22E04 58.94 26.30 17.50 1326.30 2

20010110 9302 N19W00 21.56 20.40 10.90 56.10 2

20010328 9393 N17W04 161.00 62.10 56.80 2954.50 2

20010409 9415 S21E04 50.31 33.80 31.30 2811.82 2

20010425 9433 N19E04 35.94 38.60 35.60 541.09 2

20010505 9445 N25W02 57.50 26.70 20.90 70.80 2

20010513 9455 S17E01 48.87 16.10 17.60 161.04 2

20010604 9484 S06E05 20.12 13.20 7.55 37.00 2

20010903 9601 N13E02 73.31 39.20 22.30 327.31 2

20010925 9628 S20E00 120.75 46.60 31.00 274.00 2

20010929 9636 N16E07 17.25 25.90 15.90 100.30 2

20011106 9687 S20E01 37.37 25.40 14.60 333.10 2

20011110 9690 S17E05 156.68 54.10 34.00 518.83 2

20011111 9690 S17W07 136.56 46.00 25.90 518.83 2

20011129 9715 N04E03 69.00 36.40 22.10 262.60 2

20020109 9773 N14W04 38.81 34.60 26.00 290.56 2

20020314 9866 S09E06 11.50 32.50 22.10 163.70 2

20020315 9866 S09W06 15.81 32.10 24.50 163.70 2

20020410 9893 N19W08 10.06 19.40 14.20 248.70 2

20020415 9906 S14W04 51.75 30.40 20.80 215.82 2

Continued on next page
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Table I – continued from previous page

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20020728 0039 S16E08 143.75 52.40 46.70 733.80 2

20020728 0044 S18E01 70.44 48.40 41.60 309.70 2

20020815 0066 N13E03 8.62 17.50 14.10 22.40 2

20020817 0069 S08E08 169.62 56.60 47.70 1100.00 2

20020818 0069 S08W07 173.93 59.90 46.00 1100.00 2

20020823 0083 S18W05 50.31 16.00 17.30 135.80 2

20021003 0137 S19E08 44.56 17.90 17.40 174.64 2

20021004 0137 S19W05 14.37 18.90 18.20 174.64 2

20021025 0162 N27W03 44.56 33.80 26.00 246.48 2

20021216 0227 N06W06 8.62 9.31 10.40 28.30 2

20021217 0226 S27W02 48.87 27.80 28.50 231.60 2

20021219 0229 N19W02 0.00 25.90 20.50 42.30 2

20030107 0244 S21W01 0.00 14.40 11.00 40.17 2

20030123 0266 N13W04 12.94 8.28 7.51 65.81 2

20030421 0338 N18E06 0.00 8.66 6.13 399.41 2

20031024 0484 N02E01 81.94 49.60 34.60 696.70 2

20031118 0501 N01E08 64.69 22.30 16.00 404.78 2

20031119 0501 N01W03 47.44 21.20 15.00 404.78 2

20040118 0540 S14E01 38.81 26.60 19.90 179.69 2

20040723 0652 N08E04 66.12 57.10 42.40 670.64 2

20040812 0656 S13E02 27.31 39.60 36.80 1260.24 2

20041105 0696 N09E06 84.81 26.20 22.70 1120.55 2

20041106 0696 N09W08 80.50 30.10 31.30 1120.55 2

20041202 0708 N09E01 0.00 13.10 9.24 31.34 2

20050114 0718 S07W08 40.25 19.20 19.60 87.67 2

20050517 0763 S17E06 41.69 14.00 16.80 130.91 2

20050707 0786 N11E08 51.75 20.70 22.50 612.87 2

20051118 0822 S08W01 17.25 23.60 10.90 255.59 2

20051202 0826 S04E06 21.56 22.70 16.80 221.05 2

19980502 8210 S17W12 37.37 23.10 12.40 422.59 3

20000606 9026 N21E18 51.75 30.50 26.20 945.23 3

20000607 9026 N20E05 53.19 29.80 31.00 945.23 3

20000711 9077 N17E45 109.25 27.70 19.50 1256.40 3

20000712 9077 N18E27 92.00 35.80 27.60 1256.40 3

20000714 9077 N17E02 76.19 37.30 38.00 1256.40 3

20001124 9236 N21W10 74.75 27.80 17.50 1326.30 3

20001125 9236 N21W24 37.37 26.70 16.20 1326.30 3

20010329 9393 N17W18 182.56 59.40 59.50 2954.50 3

20010406 9415 S21E42 100.62 21.90 19.20 2811.82 3

20010410 9415 S22W12 84.81 32.00 30.10 2811.82 3

20010623 9511 N10E23 15.81 9.74 7.14 276.79 3

20010825 9591 S18E40 80.50 25.10 17.20 872.30 3

Continued on next page
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Table I – continued from previous page

Date AR Location Lgnl (Mm) Tf lux(1021 Mx) Ediss(105Jm−1s−1) Fidx Level

20010924 9632 S18E28 51.75 31.00 18.90 322.40 3

20011022 9672 S19E23 44.56 28.00 16.80 475.10 3

20011025 9672 S19W16 58.94 35.90 18.30 475.10 3

20011104 9684 N05W29 12.94 22.90 12.50 145.00 3

20020715 0030 N19E11 86.25 39.50 36.60 793.73 3

20030527 0365 S06W08 51.75 23.00 21.10 599.27 3

20031026 0486 S16E41 182.56 44.30 33.20 6829.50 3

20031028 0486 S18E04 240.06 70.60 68.60 6829.50 3

20031029 0486 S17W09 222.81 69.30 58.10 6829.50 3

20040226 0564 N14W28 34.50 28.50 22.90 238.04 3

20040715 0649 S10E48 79.06 24.20 18.80 1381.59 3

20040716 0649 S08E38 63.25 26.50 23.00 1381.59 3

20040717 0649 S08E24 38.81 28.80 26.30 1381.59 3

20040813 0656 S13W12 58.94 43.30 35.60 1260.24 3

20041030 0691 N13W14 24.44 17.70 17.20 454.48 3

20041107 0696 N08W21 64.69 27.90 27.50 1120.55 3

20050101 0715 N04E22 15.81 13.50 12.40 158.56 3

20050115 0720 N13W03 119.31 45.90 36.50 2379.42 3

20050117 0720 N13W29 100.62 39.10 28.70 2379.42 3

20050913 0808 S11E17 130.81 41.60 39.80 4886.56 3

20050915 0808 S11W13 81.94 41.60 41.50 4886.56 3

Table II. Descriptive statistics of solar flares data

X-class (n=34) M-class (n=68) C-class (n=65) N-class (n=63)

Label Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Lgnl(Mm) 81.18 55.62 47.86 43.72 36.62 36.35 6.75 10.03

Tf lux(1021Mx) 33.23 13.55 29.05 13.63 24.89 13.06 11.91 5.93

Ediss(105J m−1s−1) 27.52 14.03 22.20 11.12 19.07 11.47 8.69 5.27
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Table III. Regression models for different combination of predictive parameters

Parameters Formula

(1)Lgnl Level∼ Lgnl

Group (a) (2)Tf lux Level∼ Tf lux

(3)Ediss Level∼ Ediss

(4)Lgnl,Tf lux Level∼ Lgnl +Tf lux +Lgnl ∗Tf lux

Group (b) (5)Tf lux,Ediss Level∼ Tf lux +Ediss+Tf lux ∗Ediss

(6)Lgnl,Ediss Level∼ Lgnl +Ediss+Lgnl ∗Ediss

Group (c) (7)Lgnl,Tf lux,Ediss Level∼ Lgnl +Ediss+Tf lux

(8)Lgnl,Tf lux,Ediss Level∼ Lgnl +Tf lux +Ediss+Lgnl ∗Tf lux +Tf lux ∗Ediss+Lgnl ∗Ediss+Lgnl ∗Tf lux ∗Ediss

Table IV. Indexes to evaluate the pre-

dictive ability of models

Models R2
N c Dxy

(1) 0.382 0.771 0.543

(2) 0.341 0.748 0.496

(3) 0.333 0.749 0.497

(4) 0.432 0.791 0.582

(5) 0.353 0.758 0.516

(6) 0.400 0.782 0.564

(7) 0.430 0.792 0.584

(8) 0.423 0.785 0.569
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Table V. Validation of Model With Predictive VariablesLgnl

andTf lux

index.orig optimism index.corrected

Dxy 0.579 0.020 0.559

R2 0.432 0.033 0.399

Intercept 0.000 −0.009 0.009

Slope 1.000 0.067 0.933

Emax 0.000 0.017 0.017

Table VI. Validation Results of All Models

Models Bias-correctedDxy Bias-correctedR2 Intercept Slope Emax

(1) 0.538 0.365 −0.011 0.969 0.009

(2) 0.490 0.325 0.001 0.970 0.007

(3) 0.501 0.326 0.002 0.984 0.004

(4) 0.559 0.399 0.009 0.933 0.017

(5) 0.489 0.309 0.021 0.899 0.027

(6) 0.533 0.362 0.000 0.924 0.018

(7) 0.557 0.382 −0.022 0.898 0.028

(8) 0.551 0.389 0.000 0.928 0.017

Table VII. Effects ofLgnl, Tf lux on response variableLevel

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

Lgnl 7.190 53.190 46.00 1.64 0.43 0.80 2.49

Odds Ratio 7.190 53.190 46.00 5.18 2.22 12.09

Tf lux 13.125 31.775 18.65 1.61 0.51 0.61 2.62

Odds Ratio 13.125 31.775 18.65 5.03 1.85 13.68
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Table VIII. Comparison between three prediction approaches

C-class flares prediction M-class flares prediction X-class flares prediction1

Logistic NOAA/SEC NASA/SDAC Logistic NOAA/SEC NASA/SDAC Logistic NOAA/SEC

a: yes predicted 16 18 14 11 12 2 5 4

b: false alarms 5 5 2 2 2 1 2 2

c: misses 4 1 6 5 4 14 2 3

d: correct nulls 30 31 33 37 37 38 46 46

POD: a/(a+c) 0.80 0.95 0.70 0.69 0.75 0.13 0.71 0.57

FAR: b/(a+b) 0.24 0.22 0.13 0.15 0.14 0.33 0.29 0.33

CSI: a/(a+b+c) 0.64 0.75 0.64 0.61 0.67 0.12 0.56 0.44

1In X-class flares prediction,a,b,c,d are redefined by the new cutoff probability> 25%.

-100 -50 0 50 100

100

150

200

250

 S
-N

 [
a

rc
se

c]

 MDI Magnetogram

-1500 -900 -300 300 900 1500

[G]

-100 -50 0 50 100
 E-W [arcsec]

100

150

200

250

 Magnetic Gradient in NL

0 60 120 180 240 300

[ G Mm-1 ]

-100 -50 0 50 100

100

150

200

250

Magnetic Energy Dissipaton Map

0 1 2 3 4 5

[ 103J m-1s-1 ]

Figure 1. Le f t : line-of-sight magnetogram of NOAA AR 9077 taken on 2000 July 14.Middle: Gradient distribution along the

neutral line.Right : Map of the energy dissipation. The magnitude of parameters in each pixel is indicated by the corresponding

color scale bar.
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Figure 2. Scatterplots Matrix forLgnl, Tflux,Ediss andFidx. The best correlation is betweenTflux andEdiss (CC is up to 0.95).

Ediss is the most correlated with flare index among three parameters.
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Figure 3. Examination of the ordinality ofLevelfor every magnetic parameter by accessing howLevelrelate to the mean value

of each predictor, and whether the trend in each plot is monotonic. Solid lines connect the simple stratified means, and dashed

lines connect the estimated expected value of X|Y=j given that PO holds. The extend of closeness of two curves indicates the

perfect condition to hold ordinal condition.
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Figure 5. Estimated logistic calibration curves obtained by bootstrapping using the corrected intercept and slope. The logistic

calibration modelPc = [1+exp(−(γ0 + γ1L))], wherePc is the bias-corrected probability.L is logit(P̂), andP̂ is the predicted

probabilities (labelled with ’Apparent’). The bisector line demonstrates excellent validation on an absolute probability scale.
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Figure 6. Distribution of predicted occurrence probability of solar flares. Panel (a), (b) and (c) show the results when onlyLgnl,

Tflux andEdiss as the predictive parameter, respectively. The probabilities for C, M and X class flares are displayed by the black

dots, red circles and green squares.
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Figure 7. Comparison of three predictive methods for each level of solar flares. The results from Ordinal logistic method,

NASA/SDAC and NOAA/SEC are indicated by black diamonds, red squares and blue circles, respectively. For comparison

reasons, the actual probabilities of producing flares are shown by green dots. The horizontal dot line is the probability of 50%

(One more 25% in X class panel). Vertical dot line represents the turning point of flare occurrence.
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