IMIP8 Observations of the Relative Onset Times of Relativistic Electrons and Protons
 in the January 20, 2005 Ground Level Event

William F. Dietrich
Consultant, US Naval Research Laboratory

Allain J. Tylka

U S Naval Research Laboratory, Washington DC
with thanks to
Tom Armstrong, Dennis Haggerty, Säm Krucker, Horst Kunow, Andreas Klassen, Bob Lin, Cliff Lopate, Jerry Manweiler, and Ed Roelof

Background: January 20, 2005 GLE

Largest GLE since 1956
Very fast rise time

Hard particle spectra:

- interplanetary
(ACE, SAMPEX, GOES)
- in solar atmosphere (RHESSI)

Relative onset times of electrons and relativistic protons constrain acceleration models

Estimated GLE Onset: 06:48:40 $\pm 10 \mathrm{~s}$

Cosmic Ray Nuclei Experiment (CRNE) on IMIP8
PIs: J.A. Simpson (U. Chicago, deceased) \& C. Lopate (UNH)
Garcia-Mrunoz, Mason, \& Simpson, ApJ 201, L145-L148 (1975)

	Logjic	Electrons (MeV)	Protons (MeV)
IID2	D1 $\mathrm{D} 2 \cdot \overline{\mathrm{DB}} \cdot \overline{\mathrm{DC}}$	0.7-2.0	10.8-19.5
IID3	D1 $D 2 \cdot \mathrm{D} 3 \cdot \overline{\mathrm{D} 4} \cdot \overline{\mathrm{DC}}$	$2.0-12$	19.5-27
IID4		$12-50$	27-95
IID5	D1 D2 D $4 \cdot \mathrm{D} 5 \cdot \overline{\mathrm{D}}$	>50	>95

CRNE: $2.05 \mathrm{~cm}^{2}$-sr
Instrument Axis in the Ecliptic
IMP8 Spin Rate: 24 rpm
IMP8 Spin Axis perpendicular to Ecliptic
CRNE Data: 8 spin-sectors

Cosmic Ray Nuclei Experiment (CRNE) on IMIP8

	Logic	Electrons (MeV)	Protons (MeV)
ID2		0,7-2,0	$10,8-19,5$
ID3		2,0-12	19,5-27
ID4	D1 \cdot D2 $\cdot \mathrm{D} 4 \cdot \overline{\mathrm{D5}} \cdot \overline{\mathrm{D6}}$	12-50	27-95
IID5	D1.D2 D4 D5 $\cdot \overline{\mathrm{D6}}$	>50	>95

In ID2 and ID3, protons start to arrive

D1 vs. D2 for particles with D1 • D2 • $\overline{\mathrm{D} 3} \cdot \overline{\mathrm{D} 6}$ (~0.7-2.0 MeV E'lectrons \& ~11-20 MeV Protons)

2005 January 20-21

Red: 20 Jan, 06:50-10:00 UT Blue: 21 Jan, 08:00-14:00 UT

2002 August 20

(A Very Large Impulsive Event)

$$
\mathrm{e} / \mathrm{p} \sim 30
$$

Note: PHA telemetry-limited to ~ 1.6 particles/s. We use counter rates for onset determinations.

IMP8/CRNE ID2 Arrival Distributions

(Sun located at the top of this page; arrows indicate nominal Parker Spiral)

Pre-Event: 06:30-06:39

During RHESSI gamma-rays: 06:44-06:49

ID2 and ID3 Onsets

>6.1 sigma increases seen at 06:51:48 ± 10 s
Increase observed right after an 82-s datagap
Real onset possibly as early as ~06:50

Count Rates in D1

Logic for D1 Counter:

$$
\begin{gathered}
\mathrm{D} 1 \cdot \overline{\mathrm{D} 2} \cdot \overline{\mathrm{D} 4} \cdot \overline{\mathrm{D6}} \\
(\overline{\mathrm{D} 4} \text { allows }<10 \mathrm{MeV})
\end{gathered}
$$

Wider angles gives GF ~ $20 \mathrm{~cm}^{2}$-sr
Electron Energy ~0.5 - ~ 11 MeV Relativistic protons vetoed at D6
-- D1 count rate provides a more sensitive way to look for the onset of relativistic electrons.

IMIP8/CRNE D1 Onset: Elections $>2 \mathrm{MeV}$

Electron Onset at 06:50:12 ± 5 seconds
1.5 ± 0.2 minute delay between the onsets of relativistic protons \& relativistic electrons near Earth

Wind/3DP and SOHO/COSIEP (Preliminary) Results

Electron channel at 127-225 keV
Onset at UT 06:53 $\pm 45 \mathrm{~s}$.
Corrected for speed difference, corresponds to ~06:49 ± 1 minute for $\sim M e V$ electrons.

Photon contamination evident starting at 06:44

Estimated electron onset in 2.6 10.4 MeV channel at ~06:50.

Another instrument on IMP8 (APL's CPME) also observed electron onset at ~06:50 UT (T. Armstrong, private communication).

ACE/EPAM Results

G.M. Simnett, Astron. Astrophys, 445, 715-724 (2006)

After correcting for different particle speeds, Simnett (2006) reported that EPAM electrons departed the Sun ~ 6 minutes after the $\sim G e V$ protons observed by the neutron monitors.
-- contradicts the IMIP8, Wind, \& SOHO results.

EPAM Website Announcement
April 13, 2006:
"The EPAM team has identified a timing drift in the EPAM data. This small timing drift is ~1 minute/year [since the launch of ACE in 1997]..."

The 6-minute delay reported by Simnett (2006) is an artifact of this drift. After the EPAM data are corrected, they should agree well with the other satellites.

At the time of onset, the magnetic field had a very large component out of the ecliptic.

ACE/EPAM and Wind/3DP probably got a better view of the very firstarriving electrons than IMP8/CRNE.
(IMP8/CRNE had to wait for the pitch-angle distribution to broaden.)

When corrected for electron speed, ACE \& Wind may very well show an onset time even closer to that of the neutronmonitor protons.

We have found comparable electron delays in other GLES:
$\left.\begin{array}{|c|c|c|c|}\hline & \text { NM Onset } \\ \text { at Earth }\end{array} \begin{array}{c}\text { IMIP8/CRNE } \\ \text { Relativistic } \\ \text { Electron Onset } \\ \text { at Earth }\end{array} \quad \begin{array}{c}\text { Electron Delay } \\ \text { (min) }\end{array}\right]$

Cliver et alo, ApJ 260, 362-370 (1982)

-- compared neutron monitor and electron onsets in GLEs from 1966-1978.

They found, on average, that $\sim 1 \mathrm{MeV}$ electrons were delayed by >5 minutes with respect to the NMI onsets.

This is not what we are finding.

We believe that the longer delays reported by Cliver et al. probably reflected the limited sensitivity of the electron onset determinations.

Summary

IMP8/CRNE observed the onset of relativistic ($>1 \mathrm{MeV}$) electrons near Earth at 06:50:12 UT on 2005 January 20. This result implies that relativistic electrons departed the Sun 1.5 ± 0.2 minutes after the relativistic protons observed by NMs. This residual delay may simply reflect limited electron sensitivity (due to high preevent background and unfavorable viewing direction), rather than a real delay.
Preliminary examination of SOHO/COSTEP, Wind/3DP, and IMP8/CPME give a similar conclusion, after correcting for differences in electron speeds.

The Simnett (2006) report of $a \sim 6$ minute delay between the departures of relativistic protons and (near) relativistic electrons from the Sun is incorrect. This delay is the artifact of an ACE/EPAM data processing error, which is currently being rectified.
IMP8/CRNE sees comparable <2 minute proton/electron emission delays in other GLEs; the 2005 January 20 GLE is not unique in this regard. IMP8/CRNE electron delays are considerably smaller than the >5 minute delays reported by Cliver et al. (1982). We suggest that the Cliver et al. results were compromised by limited electron sensitivity.

The close correspondence in onset times makes it likely that the same acceleration mechanism is responsible for relativistic protons and relativistic electrons. (A quasiperp shock is a good candidate in this regard.)

A Special Session at the 2006 SHINE Workshop

$$
\text { July } 31 \text { - August 4, in Zermatt, Utah }
$$

The Historic Solar Event of January 20, 2005: A Challenge for Current Theories on the Origins of Solar Energetic Particles?

For more information, please see: http://creme96.nrl.navy.mil/20Jan05/

Or google:

> "solar event January 20"

Or follow the links at:
http://www.shinegroup.org

Backups

- Before the onset of the 2001 April 15 GLE Yohkoh observed 3 pealks in the time structure of gamma rays over a ~ 4 minute time period.
- Particle background levels were sufficiently low that IMIP8/CRNE detected these gamma rays in its D6 anticoincidence shield.
- The IMP8/CRNE and Yohkoh times for these three peaks agree to within less than 5 seconds.

Could photons or protons cause the D1 increase?
No!

REFESSI gammalarays alse allieady declinning when the D1 onset occulis ati ~06:50 UT'.

D1 rate is 100 -times langer thans the rate of relativistic protons.

IMIP8/CRNE Instirument Stability

- D6 anticoincidence shield registers Galactic cosmic ray proton above ~1 GeV.
- Comparison with Climax Neutron Monitor over 33 years indicates no significant degradation in sensitivity.

Satellite Locations on 2005 Januarry 20, ~0700 UI'

Looking down on the Ecliptic

Looking perpendicular to the Ecliptic

Magnetic Field Directions: at ~06:00 UI' at L1

- No magnetic field measurements on IMP8. But there are measurements from ACE \& Wind at L1.
- After convection in the solar-wind ($\sim 500 \mathrm{~km} / \mathrm{s}$), these are the fields at IMP8 at the time of particle onset at ~06:50 UT.
- $\varphi_{\text {GSE }}$ consistent with IMP8 onset in nominal Parker spiral sector. But the field has very large component perpendicular to the ecliptic.
- Electron PAD must be broad to get into IMP8 FOV at $\pm 30^{\circ}$ of the ecliptic.

Magnetic Field Directions: at ~07:00 UT

- Large component perpendicular to the ecliptic persists.
- Complicated field: $\varphi_{G S E}$ very different on Wind \& ACE.

