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Abstract. Interplanetary magnetic clouds (MCs) have been
identified for the first 8.6 years of the WIND mission, and
their magnetic field structures have been parameter-fitted by
a static, force free, cylindrically-symmetric model (Lepping
et al., 1990) with various levels of success. This paper sum-
marizes various aspects of the results of the model fitting
by providing: seven estimated model fit-parameter values
for each of the 82 MCs found, their objectively determined
quality estimates, closest approach vectors (in two coordinate
frames), fit-parametererrors for the cases of acceptable qual-
ity (50 cases, or 61%), axial magnetic fluxes, axial current
densities, and total axial current – as well as some examples
of MC profiles for various conditions and “categories” for
each case (e.g. Bz: N→S or S→N, etc.). MC quality is esti-
mated from a quantitative consideration of a large set of pa-
rameters, such as the chi-squared of the model fit, degree of
asymmetry of the B profile, and a comparison of two means
of estimating radius. This set of MCs was initially identi-
fied by visual inspection of relevant field and plasma data.
Each resulting MC candidate is then tested through the use
of the MC parameter model, for various adjusted durations
to determine the best fit, which helps to refine the boundary-
times. The resulting MC set is called Set 1. Another, larger,
set (Set 2) of MCs is identified through an automated pro-
gram whose criteria are based on general MC plasma and
field characteristics at 1 AU determined through past expe-
rience. Set 1 is almost fully contained within Set 2, whose
frequency of occurrence better matches that of the sunspot
cycle than Set 1. The difference-set (Set 2–Set 1) is referred
to as the magnetic cloud-like (MCL) set, whose members do
not very well represent good flux ropes through modeling.
We present a discussion of how a MC’s front boundary is
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specifically identified in terms of multi-parameter considera-
tions (i.e. any one or more of: increase in B, directional dis-
continuity, magnetic hole in B, drop in proton plasma beta,
B-fluctuation level change, proton temperature drop, etc.), as
well as through the application of the flux rope model. Also
presented are examples of unusual MCs, as well as some
commonly occurring relationships, such as the existence and
frequency (approx. 1/2 the time) of upstream interplanetary
shocks, and less frequent internal shocks.

Keywords. Interplanetary physics (Interplanetary magnetic
fields; Solar wind plasma) – Solar physics, astrophysics and
astronomy (Flares and mass ejections)

1 Introduction

This paper provides a comprehensive summary of the results
of a WIND magnetic cloud (MC) study covering 8.6 years
of interplanetary magnetic field (Lepping et al., 1995) and
solar wind plasma (Ogilvie et al., 1995) observations, start-
ing in early 1995. Except for a few cases, MCs are revealed
to be generally large magnetic flux ropes (e.g. Priest, 1990;
Gosling, 1990; Lepping et al., 1990; Burlaga, 1995; Ku-
mar and Rust, 1996) in the solar wind, i.e. plasma embed-
ded strong magnetic fields of approximately helical struc-
ture. A MC was originally defined empirically in terms of
in-situ spacecraft measurements of magnetic fields and par-
ticles in the interplanetary medium, viz., it is a region in
the solar wind having: 1) enhanced magnetic field strength,
2) a smooth change in field direction as observed by a space-
craft passing through the MC, and 3) low proton temperature
(and low proton plasma beta) compared to the ambient proton
temperature (Burlaga et al., 1981; Klein and Burlaga, 1982;
Burlaga, 1988, 1995).
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Fig. 1. Typical magnetic cloud (MC) field and plasma profiles in terms of magnetic field magnitude(B), latitude (θB ), and longitude (φB ),
BX,Y,Z(GSE) components, thermal speed (VT h), bulk speed (V), proton number density (NP ), and proton plasma beta (βP ) - in that order
from top to bottom. The vertical lines indicate start and end times of the MC, and the (red) dashed curves are model-fits to observations, to
be explained below. The regions shaded in yellow are where the observed Bz components are southward.(A) A case of a MC (starting on
10 October 1997 (Day 283) at 23.80 UT, with duration1T of 25.0 h) estimated to be closely aligned with the YGSE-axis within about 2E
(this is a S→N type, i.e. Category 11 MC as described in Table 3), (B) another MC (starting on 9 August 1999 (Day 221) at 10:45 UT, with
a duration of 29.0 h) estimated to be strongly inclined (positively) with respect to the ecliptic plane by 76◦, and finally a third(C) starting
on 8 November 1998{Day 312} at 23:45 UT, with a duration of 25.5 h) estimated to be strongly inclined (negatively) with respect to the
ecliptic plane by−71◦. All three of these MCs are classified as Q0=1 cases, to be described below. Notice that case (A) has a uniform proton
density, case (B) has an increase in density at the end of the MC, and case (C) has an increase in density in the early portion of the MC. This
irregularity of density generally in MCs is the reason for not including density in the definition of a MC.

Magnetic clouds are also understood tacitly to be large
structures, so that their durations are long, usually between
about 7 and 48 h at 1 AU, averaging about 20 h in duration
for the better examples; this feature is to be part of our def-
inition of an interplanetary MC. MCs have been observed at
distances other than at 1 AU, for example by the Helios (e.g.
Bothmer and Schwenn, 1998) and Voyager spacecraft (e.g.
Skoug et al., 2000; Burlaga et al., 2001). See Fig. 1 for ex-
amples of field and plasma profiles of fairly typical MCs at
1 AU: (A) one (starting on 10 October 1997) whose axis is es-
timated to be closely aligned with the YGSE-axis, (B) another
(starting on 9 August 1999) estimated to be strongly inclined
(positively) with respect to the ecliptic plane, and (C) another
(starting on 8 November 1998) estimated to be strongly in-
clined (negatively) with respect to the ecliptic plane; in this

context positive and negative indicate the polarity of the field
along the MC axis where, for example, positive (negative)
means that the direction of the axial field is “northward”
(“southward”) in GSE coordinates. All three cases satisfy
the above definition of a MC but differ markedly with re-
gard to the profiles of the latitude of the magnetic fields (θB

profiles), or Bz profiles. Notice that the proton density (NP )

profiles in the three examples of Fig. 1 differ markedly: the
first (A) is uniform, the second (B) shows a distinct increase
at the end, shown to be not uncommon for MCs (e.g. Burlaga
et al., 1998; Lepping et al., 2003c), and the third (C) shows
an enhancement in the early part of the structure. The fact
of no apparent consistent pattern of the NP profile within a
MC is the reason that NP was not chosen to be part of the
definition of a MC (Burlaga, 1988). In some cases the NP
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profile is very irregular, as we will see later. Figure 2 shows
sketches of three examples of different flux rope orientations
and their associated IMF Bz profiles in GSE coordinates. In
this view the flux ropes are propagating toward the viewer.
The one on the left corresponds to case (A) of Fig. 1 and
the one in the center corresponds to example (C) of Fig. 1.
Notice that all three examples in Fig. 2 have the same hand-
edness, right-handed. (The red dashed curves shown in Fig. 1
(and in several other figures) are MC model parameter-fits to
the magnetic field observations and will be explained below.
They strictly hold only between the designated MC intervals,
but are shown extended outside of them for comparison, gen-
erally showing significant deviation from the observations in
one or more field components in the extended regions.)

MCs are among the largest transient structures in the in-
terplanetary medium, but are smaller in size when com-
pared to such very large solar wind structures as the im-
mense heliospheric current sheet, co-rotating interaction re-
gions (CIRs), and merged interaction regions (MIRs), all be-
ing quasi-periodic structures (see, e.g. Burlaga, 1995) at a
≈ 27 day period in an Earth-fixed frame. However, MCs are
so large that, even at 1 AU, it is very likely that they origi-
nate at the Sun, and many studies have confirmed that this is
indeed the case (see, e.g. Burlaga, 1995; Larson et al., 1997;
Marubashi, 1997; Berdichevsky et al., 2000, 2002; Webb et
al., 2000); also see Farrugia (1997) on large-scale modeling
of MCs in various possible field line topologies favoring the
flux rope structure. Many, but not all, examples of MCs have
been shown to be related to disappearing filaments (or solar
erupting prominences as seen on the limb) on the Sun’s sur-
face (Bothmer and Schwenn, 1994). It has been suggested
by Gosling (1990) that the initial stage of an interplanetary
flux rope results from magnetic reconnection within rising,
previously sheared, coronal magnetic loops, and Vrsnak et
al. (1991) have shown analytically that prominence fields
should have helical structure. And see Chen (1996) for a the-
oretical treatment associating expected erupting prominence
conditions with a typically observed magnetic field profile of
a MC at 1 AU.

There is a consensus developing that MCs are usually con-
tained within interplanetary coronal mass ejections (ICMEs)
(see, e.g. Gopalswamy et al., 1998), which are one form
of solar transient events, sometimes known as solar ejecta.
ICMEs are the interplanetary remnants of coronal mass ejec-
tions (CMEs); see a review by Schwenn (1996). An excel-
lent study of solar ejecta signatures at 1 AU was given by
Goldstein et al. (1998). Other reviews on CMEs/ICMEs are
by Gosling (1990, 2000), and more recently by Zurbuchen
and Richardson (2006). Frequently used indicators of solar
ejecta are average internal magnetic fields that are≥ 2 times
the strength of the background field, steady orientated (or
smoothly varying) fields over a relatively extended interval
of time (12 to 48 h or so), plasma composition abnormal-
ities, including enhanced plasma helium to hydrogen ratio
(Hirshberg et al., 1972), abnormally low proton temperatures
(Gosling et al., 1973), and energetic particle intensity depres-
sion (e.g. Barden, 1972; Cane et al., 1996). More detailed
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Fig. 2. The profile of the IMF Bz within a MC can be understood in
terms of the orientation of the MC as a flux rope. Here are sketches
of three examples of different flux rope orientations and their asso-
ciated IMF Bz (or θB ) profiles in GSE coordinates. The end-points
of the boxes represent the boundaries of the MCs, and the shaded
regions are where the Bz components are southward.

lists of indicators are given by Cane and Richardson (2003)
and Berdichevsky et al. (2002). Abnormal plasma signatures
and energetic particle shielding effects in the interplanetary
medium are often more pronounced in MCs than in other
less magnetically structured ejecta. The percentage of MCs
contained within ICMEs apparently depends on specific con-
ditions (e.g. Richardson and Cane (2006), who show a solar
cycle dependence). But details on the relationship of MCs to
ICMEs do not directly concern us here. For the most part we
restrict our studies to properties of MCsper seand in some
respects to their upstream shocks.

Roughly speaking, it is the reconfigurations of relatively
strong, twisted, magnetic field-lines in restricted regions on
the solar surface (or lower corona), with magnetic recon-
nection apparently participating (e.g. Antiochos and DeVore,
1999), that play a major role in the occasional expulsion of
large flux rope structures and their related “cool” plasmas in
the form of MCs. But thedetailsof the solar birth and expul-
sion mechanisms of MCs/CMEs are still not agreed upon; see
six proposed models for their origins listed by Rust (1999).
However, because of the strong magnetic fields and low pro-
ton temperatures within them, MCs are regions of low (pro-
ton) plasma betaβP (whereβP =thermal pressure/magnetic
field pressure=2πnkTP /B2). Often βP is very low (∼=0.12
on average and closer to∼=0.08 in the MC’s central region)
at 1 AU (e.g. Lepping and Berdichevsky, 2000) and, hence,
the dynamic behavior of MCs, at least out to 1 AU, and prob-
ably well beyond, is dominated primarily by their internal
magnetic fields. Typically a MC’s electron temperature is
much higher than the proton temperature, and it is also usu-
ally not markedly different from the electron temperature of
the normal solar wind. (But typically the electron and pro-
ton temperatures combined are not high enough to provide
a sufficiently high thermal pressure to compete dynamically
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with the strong internal “field pressure” (Burlaga et al., 1981;
Burlaga, 1995)). Therefore, the electron temperature is not
as useful in helping to identify these structures. Hence, the
net thermal pressure of a MC’s internal plasma (from protons
and electrons) is usually low compared to the magnetic field
pressure, and after equilibrium is achieved the poloidal and
toroidal magnetic field forces almost balance each other pro-
viding an approximately zero net force condition. This mini-
mum energy state is referred to as “static force-free”. In this
state, electrical currents flow only along the magnetic field
lines. This state is not unexpected for such structures in the
solar wind, provided sufficient time passes from the time of
their solar formation to the distant observing point/time for
it to be achieved. Such a configuration theoretically yields
a magnetic flux rope, which has a geometry that is almost
always consistent (to a good approximation) with what has
been ascertained from the actual magnetic field measure-
ments in space at 1 AU for most such events, i.e. those satis-
fying the (empirical) definition of a MC (Burlaga et al., 1981;
Burlaga, 1988). Various suggested magnetic field configura-
tions other than flux ropes, such as plasmoids, spheromaks,
etc., have been introduced to account for these large regions
of strong field intensity and “smoothly” changing field di-
rection, but with much less success, as pointed out by Os-
herovich and Burlaga (1997).

Although there is not agreement as to the detailed nature
of the solar source of a MC, it is likely that in its coronal
stage (and probably even in earlier stages) it is in the form
of a small flux rope, which then expands into a large flux
rope of relatively cool protons, as it moves out into the inter-
planetary medium (Burlaga, 1995; Marubashi, 1997). But,
of course, few MCs are pristine examples of flux ropes, and
some considerably violate this structural form, because of
various reasons, such as likely anisotropic birth conditions
and subsequent expansion (common to most MCs), as well
as due to their interactions with the surrounding plasmas.
A MC expands until a near-equilibrium state with the sur-
rounding pressure is established, usually beyond the distance
of 1 AU from the Sun. Evidence of MC expansion is seen
clearly at 1 AU by the observations of a (usually) slow de-
crease in bulk speed of the internal plasma as the MC passes
the observing spacecraft; also see Gopalswamy et al. (2000)
on the small degree of MC acceleration in the solar wind.
Occasionally we observe a flat speed profile within a MC,
suggesting that internal pressure equilibrium was established
earlier than usual, somewherebetweenthe Sun and Earth.

Lepping and Berdichevsky (2000) reviewed their past MC
studies, using WIND data (for N=28 cases of MCs, a much
smaller sample than considered here) mainly for the solar
“quiet” period, and compared the results with a MC study
from an earlier “active period” of IMF data (spacecraft com-
prising mainly IMP-8 where there were N=18 cases). In
particular, they presented a preliminary summary and com-
parison of average MC characteristics for these two peri-
ods. Strictly speaking the spacecraft considered in the ear-
lier study (solar active period) were: IMP’s 1, 2, 5, 6, 7, and
8, ISEE 3, and Helios 1. This present study considerably

updates the WIND part of the study, where N=82 MCs are
now considered, and presents several new associated param-
eters.

The goals of this paper are: 1) to provide a quantita-
tive summary of the characteristics of the 82 MCs that have
been parameter fitted by a modified version of the Lepping
et al. (1990) MC fit program as applied to WIND data for
the years 1995 to August 2003 (8.6 years), 2) to describe
the modifications that have been added to the parameter fit-
program, 3) to describe the difficulties in identifying the
boundaries of MCs, 4) to provide a scheme to quantitatively
assess the “quality” of the model fitting, 5) to provide some
average MC profiles as functions of various categories (e.g.
by Bz orientation and flux rope handedness), 6) to estimate
the errors on the fit-parameters for most of the 82 MCs, i.e.
all but the ones considered of poor quality, to be quantita-
tively defined later, and finally 7) to briefly describe the re-
sults of a program that automatically identifies MC and mag-
netic cloud-like structures in the solar wind at 1 AU, with
comparisons to actual MCs. Parts 4) and 5) address two of
many ways of classifying MCs, i.e. by quality and field pro-
file (mainly IMF-Bz profile in this case), respectively. Recent
modifications to our MC-fit program were made to provide
the means of assessingobjectivelythe quality of each fit. In
the pastsubjectivejudgement of quality was made, guided
only by a few quantitative measures, such as the value of a
reducedχ2 of the fit, the degree of asymmetry, and whether
or not the specific event appeared to satisfy cylindrical sym-
metry based on the expected global nature of MCs (to be
clarified below). All of these measures are still applied, but
others have been added, one based on estimating the size of
the MC’s cross-section in terms of the duration of the cloud-
passage, and another based on considerations of the average
field within the MC in “cloud” coordinates (defined below).

It is hoped that the information in this paper will be helpful
to researchers in solar, interplanetary, and magnetospheric
physics. In the past there have been many studies relat-
ing MCs to solar events, mostly with respect to timing or
field chirality-matching, but with the extensive MC (i.e. in-
terplanetary) results provided here, many more detailed con-
nections should become available in relating a solar event
to a specific MC. Also, it is well known that strong, usu-
ally long-lasting, negative IMF-Bz fields (in GSE, or strictly
GSM coordinates), among other quantities, play an impor-
tant role in geomagnetic storm generation (e.g. Kamide et
al., 1997). As first pointed out by Burlaga et al. (1981; also
see Burlaga et al., 1990), a MC is a natural candidate for trig-
gering of such a storm, because MCs always have intense in-
ternal fields (which is often also true for the region just ahead
of the MC), and they almost always have extensive regions of
strong negative Bz fields somewhere within their extent (see,
e.g. Wilson (1990), Tsurutani and Gonzalez (1997), and Wu
and Lepping (2002a,b (and references therein), 2005), Wu et
al. (2004). Also see Burlaga et al. (1987), who discuss the
importance of MCs in generating historically large magnetic
storms, and Farrugia et al. (1997), who discuss the role of
MCs in causing geomagnetic storms and various associated
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aspects, including how they facilitate the entry of solar en-
ergetic particles into the Earths magnetosphere. Webb et
al. (2001) discuss the solar sources of both kinds of major
geoeffective solar wind structures, i.e.transient, such as MCs
and ICMEs, andrecurring, such as corotating interaction re-
gions.

2 Magnetic cloud identification and parameter fitting
model

The MC fit-parameter values for a much smaller number
of WIND MCs than are included here have appeared in an
earlier publication in only a summary form (Lepping and
Berdichevsky, 2000). These parameters (among others) are
presented here in detail and for completeness.

2.1 Identifying magnetic clouds and their boundaries from
plasma and field measurements

Shimazu and Marubashi (2000) have developed a means of
detecting MCs in an automatic mode, which depends on cer-
tain characteristics of the variation of the magnetic field be-
fore checking the candidate structure with modeling. Their
model also takes into consideration expansion of the MC.
They find that flux ropes can be classified into two types,
high and low density. In our studies we do not discrimi-
nate according to density, since we contend that it is an un-
reliable parameter for defining a MC (e.g. Lepping et. al.,
2003c), and it was not part of the original empirical definition
(Burlaga, 1988). Recently an automatic program providing
a means of identifying MCs has been developed (Lepping et
al., 2005) based on objective criteria following the empirical
definition of a MC. Upon application it was recognized that
this program provided what we refer to as many “magnetic
cloud-like” structures (as well as both poor and high quality
bona fideMCs, the quality of which was measured by the
ability to fit them as flux ropes according to the model of
Lepping et al., 1990). Hence, because of this, the automatic
means of identification of MCs was not the means used to
provide the more restricted set of MCs principally studied
here; we say more on this in Sect. 6.

This section briefly discusses the usual difficulties in MC
identification and in particular difficulty in ascertaining their
exact boundary times; Sect. 6.0 extends discussion on MC
identification in general. The plasma-field quantities com-
monly used in MC identification, and in particular MC
boundaryidentifications, are proton plasma beta (βp), pro-
ton temperature (TP), central or average speed (V), inter-
planetary magnetic field (IMF) intensity, IMF-longitude and
latitude angles, and sometimes the speed profile. In partic-
ular, the front boundary is easily determined if a directional
discontinuity occurs in the magnetic field. This is also true
for the rear boundary, but less commonly. Magnetic “holes”
may appear in the B-profile at the boundaries, as pointed
out by Burlaga (1995) (also see Farrugia et al. (2000), who
used the presence of magnetic holes at the boundaries of the
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Fig. 3. An example of a MC starting on 3 October (Day 277), 2000
at hour 17.1 given in the same format as that of Fig. 1, where the
magnetic field profile (and related (red dashed) model fitting curves)
seems to demand one set of MC-boundaries, and the plasma quanti-
ties, especially proton temperature and proton plasma beta, require
a slightly different set. We point out two forward shocks (shock1
and later shock2). The vertical arrows (on three of the bottom four
panels) at about mid-day of 3 October indicate where VTh, β, and V
show noticeable change; in the case of V it is where the speed starts
to drop smoothly, and somewhat slowly, at least until the start of the
MC. From the time of the arrows to near shock2 may be a region
of ejected material (as denoted), delineated best by VTh, and whose
earliest part reaches outside of the front of the MC. MCL refers to
a magnetic cloud-like region. The region shaded in yellow is where
the observed Bz component is southward.

“Christmas 1996” MC, to help in its identification). The field
and plasma profiles are not always in agreement with regard
to boundary identification, especially when considering the
basic magnetic field profile based on the fundamental def-
inition of a MC, on the one hand, and proton plasma beta
and/or proton temperature, on the other. And we must stress
that the model itself is used to help constrain the estimated
location of the MC boundaries, in the sense that the full set of
magnetic field samples (in the form of reasonably chosen av-
erages) throughout the MC participates in choosing the MC
interval, along with the resulting model parameter-fit “qual-
ity” (defined below). In Fig. 3, we show an example of a MC
(starting on 3 October 2000 at hour 17.1 and lasting 21.1 h)
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Fig. 4. Magnetic field and plasma profiles in the same format as that
of Fig. 1 (but without the BX,Y,Z components) for the case of the 24
December 1996 MC, where again the dashed curves are model-fits.
Especially noticeable are: the nearly symmetrical magnetic field
intensity within the MC, the magnetic holes at the MC boundaries
(seen in the B-profile), and the irregular patterns in thermal speed
and density. For example, the density profile differs dramatically
from those in A and B of Fig. 1, and is somewhat different from that
in C of that figure. Notice that this MC is in the N→S Category (in
contrast to the MC in Fig. 1A which is a S→N type – see Table 3).
For an N→S type there is the possibility of predicting the point
where Bz is min. (usually a southward field), based on the early
part of the MC, forDst forecasting. Holes (when they exist) and
directional discontinuities are very helpful in choosing the proper
MC boundaries. The brief region shaded in yellow is where the
observed Bz component is southward.

where the field seems to demand one set of boundaries and
the plasma quantities another, especially at the front bound-
ary. The MC’s front boundary is probably well determined,
because of the sharp directional discontinuity in the field oc-
curring there. This situation might arise because the MC is
either or both expanding and interacting with the surround-
ing plasma, and we stress that we are presently using a static
model, so expansion is not yet considered. Other inadequa-
cies of the MC model used are also apparently responsible
for such incompatibilities; the model is highly idealized, as
we will see. It is interesting that in the case of the 3 Octo-
ber 2000 MC there is modest expansion, as seen by the very
gradual drop in the speed V (which is somewhat irregular
compared to most expanding MCs), but there is not a very
strong front-side interaction in this case, as indicated by the
absence of field compression in the early part of the MC. But
notice that there is a driven shock (shock1) just after the start
of 3 October (DOY=277) at about 16 h before the start of the
MC. We point out another forward shock (shock2) following
the MC. Between the end of the MC and this second shock
there appears to be another possible MC (labeled MCL here),

but after attempted MC fitting it does not show a good force
free flux rope structure, so we refer to it as magnetic cloud-
like. From the time of the vertical arrows (in three of the
bottom four panels) to the second shock the proton thermal
speed (VTh) is low, typical for MCs but also typical for ejecta
generally (and for ICMEs). Hence, a possible interpretation
for this region, besides those given above, may be that simply
two MCs exist within a larger region of ejecta.

In Fig. 4 we show magnetic field and plasma profiles for
the MC starting on 24 December 1996, in order to make a few
important points. First, the field intensity B is nearly sym-
metrical within the MC, which is somewhat unusual (com-
pare to typical Bs seen in Fig. 1), and, second, magnetic
“holes” are seen at the MC boundaries in the B-profile, a
not uncommon feature of MCs. Third, the speed (V) profile,
although showing a distinct gradient, is not smoothly chang-
ing in this case, which contrasts to uniformly dropping speed
profiles commonly seen within most MCs, as we saw in ex-
amples B and C of Fig. 1. Fourth, the V-gradient is of only
moderate strength, which is consistent with the MC having a
symmetric B-profile, in the sense that B is usually distorted
to more intense values in the front of many MCs (see ex-
amples A and C in Fig. 1). This occurs when the plasma is
relatively fast in the MC’s front with respect to upstream so-
lar wind speeds. Fifth, typically this speed-differential (i.e.
the speed between the MC’s front and the upstream speed)
appears to play a more prominent role in the MC’s B-profile
distortion (from a temporally-symmetric profile) than the ef-
fect due to MC expansion (Lepping et al., 2002). Expansion
is responsible for shifting the static model’s central peak in B
to earlier times (e.g. Osherovich, et al., 1993b). Hence, most
MCs have higher B values in their fronts than in the central
or rear regions.

2.2 The cloud-fitting model and recent modifications

As mentioned, MCs at 1 AU are approximately force-free
structures (Goldstein, 1983; Marubashi, 1986; Burlaga,
1995). The MC’s geometry is ideally that of helical mag-
netic field (B) lines confined to a flux tube, which is curved
on a scale of about 1 AU at 1 AU when considered globally
(see bottom of Fig. 5). When examined locally, the struc-
ture is approximately cylindrically symmetric, and the pitch
angle of the helical field lines increases with increasing dis-
tance from the axis of the MC, such that the field is aligned
with the axis of symmetry at the position of the axis and per-
pendicular to it on the MC’s boundary. See the top of Fig. 5
(top) where a spacecraft is shown moving through the local
representation of the MC at some oblique angle. This is to
be envisioned in the context of the ideal representation of the
global MC (Fig. 5, bottom). A useful analytical approxima-
tion for this field configuration is the static, constant-alpha,
force-free, cylindrically symmetric configuration (Burlaga,
1988), given by the Lundquist solution of

∇
2B = −α2B, (1)
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Fig. 5. (Top) A sketch of a cylindrically symmetric flux rope repre-
senting a MC locally, relative to the observing spacecrafts trajectory
through it. Four model fit-parameters (R0, B0, t0, and closest ap-
proach distance (C.A.D.)) of the total of seven are shown;φA ,θA ,
(the MCs axial longitude and latitude, respectively) are two others,
and handedness (H) is the last. In this case, if the thumb of the right
hand is along theB0-direction and the fingers of that hand are par-
allel to the direction of the tangential field at the boundary, then the
MCs handedness is right-handed. If it took the left hand to satisfy
these alignments with the fields, the MC is left-handed. (Bottom)
A global representation of a MC and its relationship to the local
spacecraft passage (after Marabashi, 1997; also see Burlaga et al.,
1990).

which results from assumingJ=α B and the use of Maxwell’s
equations (Lundquist, 1950), which we express in the In-
ternational System (SI) of units. More accurate MC mod-
els have considered the possibility that MCs expand as they
move away from the Sun (Burlaga et al., 1981; Farrugia et
al., 1992; Osherovich et al., 1993b, 1995; Marubashi, 1997;
Berdichevsky et al., 2003) and/or the possibility of a viola-
tion of cylindrical symmetry (Lepping et al., 1998; Vandas et
al., 2005a). We fit the Lundquist (1950) solution of Eq. (1) to
averages ofB (in GSE coordinates) using a modified method
of Lepping et al. (1990). The Lundquist (Bessel function)
solution is:

BA(axial) = B0J0(αr), BT (tangential) = B0HJ1(αr),

and BR(radial) = 0, (2)

where for any given MC the values for B0, α, and H are to be
determined, along with four other parameters described be-
low. See Fig. 6 (left) for a representation of the Bessel func-
tion curves and how the full vectors are envisioned (right of
the figure) in the typical case, where the radius is R0 (single
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Fig. 6. (Left) The Bessel function curves resulting from the Lepping
et al. (1990) model and (right) a sketch of the resulting vector fields.
BA is the axial field, BT is the tangential field, and BR=0 is the
radial field (with respect to the flux ropes axis). The BT field (shown
in the plane of the figure on the right) is in actuality normal to it.
Normally the MCs radius is determined to be R0, but occasionally
is shown to be RNEW (see text).

axial polarity), and in the special case where the MC pos-
sesses dual axial polarity, where the outer radius is given as
RNEW. That is, on (relatively rare) occasions we see exam-
ples of flux ropes with a core-annulus structure, where the
inner radius, R0, separates the core from the annulus; this
will be exemplified below. For most cases a MC has only a
core with radius R0. The scheme was applied to 82 identi-
fied cases of MCs observed in the WIND data in the form
of 15 min, 30 min, or 1 h averages, depending on the du-
ration of the specific event, such that there was an attempt
to keep the number of points in the range of N: 20–90, but
typically N=40. For example, a MC of 40 h duration would
require 1-h averages for the fitting, and a MC of≈10 h du-
ration would require 15-min averages, but 30-min averages
were used most often. In the scheme the least-squares fit-
ting is initially carried out using unit normalized magnetic
field data. That is, only the field’s direction is considered
at first. (A simple linear scaling of the model fields magni-
tude to the observed fields magnitude is done after the least-
squares fitting, as a final step.) A “reduced” chi-squared de-
viation to the fit,χ2/(3N–n) (≡χ2

R), where N is the number
of time-averaged points and n=5 is the number of parameters
in this part of the fitting, is calculated to measure the quality
of the fit. The chi-squared quantity parameter is dimension-
less since the magnetic field was unit normalized up to this
point; actually{χ2/(3N–n)}1/2 (i.e. |χR|) is displayed. The
full set of 7 fitted parameters are:

– B0, the axial field intensity;

– H, the handedness of the field twist, right-handed
(H=+1) or left-handed (H=−1);
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– R0, the radius of the MC;

– φA, θA, the longitude and latitude, respectively, of the
MC’s axis (GSE coordinates);

– t0, the center time (i.e. the closest approach time); and

– Y0, the closest approach (CA) distance (often called the
impact parameter) and generally given below as a per-
centage of R0. (In that case, CA≡100 Y0/R0 %.)

The last five parameters are the n=5 considered in the re-
duced chi-squared fit process. Note that we choose the (nor-
mal, i.e. core) boundary of the MC such that the magnetic
field becomes purely azimuthal there, i.e. where r=R0; see
Fig. 6. Hence, the argument of the Bessel functions at that
point is αr=2.40 (i.e. R0=2.40/α at the core boundary), to
three place accuracy. However, the exact end-points are not
always evident in the data, and sometimes many trial-fits
are necessary. Figure 5 shows explicitly some of these fit-
parameters. See Appendix A of Lepping et al. (2003a) for
details on how the MC parameter fitting technique is carried
out. We refer to the analysis interval chosen for the fitting
procedure as the “duration” [1T=(end time – start time)]
of MC passage, which is not necessarily equal to twice the
modelsestimatedcenter time, t0. By allowing t0 to be a free
parameter we are giving the model a chance to tell us a best
estimate of the center time even in cases where1T/2 may not
have been well chosen. In many cases, however, any natural
distortion of the MC will cause t0 and1T/2 to differ.

It is convenient to define a so-called cone angle (βCA),
defined as the angle between the MCs axis and the Sun-Earth
line (specifically theXGSE-axis, positive toward the Sun, as
usual), i.e.

cosβCA = cosθA cosφA . (3)

Now we derive the formulae used to estimate the axial cur-
rent density (J0) and the axial magnetic flux (80) according
to the MC model used here (Lepping et al., 1990). Since
J=αB, then the axial current density, J0=αB0, and therefore,

J0 = 2.40B0/R0, (4)

according to our choice of boundary,α=2.40/R0. Since B0
and R0 are quantities that are estimated directly by the field
data fitting process, J0 is a direct by-product of the fitting
process. The axial magnetic flux is defined as

80 = Flux =

∫
B · dS =

∫
BAdS = B0

∫
J0(αr)2πrdr

= (2πBO/α2)

∫
J0(x)xdx, (5)

over x: 0−2.40, where x≡α r and x0=αR0=2.40, at the MC’s
boundary according to the model, and where Eq. (2), for the
axial field component (in terms of the zeroth-order Bessel
function,J0), was employed. Hence,

80 = 1.36B0R
2
0, (6)

again where B0 and R0 are quantities that are estimated di-
rectly. Obviously Eq. (6) does not hold for core-annulus
cases, if one desires the net axial flux.

2.3 Recent modifications to the model

Recent modifications were added to the MC fit-model, to
help us better judge the quality of the fitting. One of these
is the use of the quantity check (where the closer its value
gets to zero the better), and is defined as

check= (R1T−R0)/R0, (7)

where

R1T =

√
[Y 2

O + (sinβCAVC1T/2)2], (8)

and where1T is the observed duration of MC-passage, VC is
the center speed of the MC (being close to the average speed
across the MC) and taken at the 1/2-duration point,βCA is
the angle between the clouds axis and the Sun-Earth line,
given by Eq. (3), and Y0 is the closest approach distance.
That is, the value of the quantity “check” tests for consistency
between two different means of obtaining estimates of the
MC’s radius: 1) directly from the models R0 and 2) from
R1T , which is based on the MC’s speed and duration, and
where we must account for the tilt of the MC’s axis (via sin
βCA) and for the fact that the spacecrafts closest approach is
usually not zero (via Y0). Other useful quantities are:

asf= |(1 − 2t0/1T )|×100%, (9)

called the “asymmetry factor” (where 0% is perfect sym-
metry), and consideration of the average field components
(taken across the MC) in cloud coordinates,<BX>Cl ,
<BY >Cl , <BZ>Cl (as described in Appendix A). The fol-
lowing URL, within the WIND/MFI Website, explains the
basis for the Cl coordinates and provides a matrix that will
transform from GSE coordinates to Cl coordinates:http:
//lepmfi.gsfc.nasa.gov/mfi/ecliptic.html.

In brief, in Cl coordinates theXCl-axis is along the MC’s
axis, positive in the direction of the positive polarity of
the axial field, theZCl-axis is the projection of the trajec-
tory of the spacecraft [relative to the MC’s velocity (essen-
tially the XGSE-axis)] onto the cross-section of the MC, and
YCl=ZCl×XCl . Ideally then,<BX>Cl should be always
positive and<BY >Cl should be zero, because of the funda-
mental field structure of the force free model (Eq. 1) and this
definition of the Cl coordinate system. However, the expecta-
tion that<BX>Cl should be always positive is not expected
to hold for the special “core-annulus” cases, as mentioned
in Sect. 2.2. (Notice that theYCl-axis is aligned with a line
that passes through the closest approach point and the MC’s
axis. We often refer to this as the closest approach axis.)
These considerations will enter into evaluation of the model
fits quality (Q0), along with some other fundamental aspects
of the fit, discussed below in Sect. 3.0.

Finally, in the MC parameter least-squares fitting proce-
dure it is imperative to provide flags to warn us of: 1) lack of
convergence (or at least poor convergence), denoted by the
F-flag, and 2) the inability to accurately estimate MC hand-
edness (H), indicated by the f-flag. In particular, the f-flag
depends on examination of the sign of the YCl-component

http://lepmfi.gsfc.nasa.gov/mfi/ecliptic.html
http://lepmfi.gsfc.nasa.gov/mfi/ecliptic.html
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of the average magnetic field of the MC in Cl coordinates,
separately for the first and second halves of the MC, where
the half-way point is assumed equal to the mid-point of the
estimated duration. From simple symmetry the average YCl-
field component in these two halves of the MC should be of
opposite sign (and ideally of equal magnitude), and this sign-
phasing is independent of which side of the MC the observer
passes first. When these two average fields are shown, in fact,
to have opposite signs, the f-flag is set equal to “OK” (no er-
ror), but if they are of the same sign, the f-flag is set equal
to “NOT OK” (giving a warning). [As we will see, 6 out of
82 MCs (i.e. 7%) will receive this warning.] Note that, ac-
cording to our MC model, the axial field component (BX,Cl)

is always positive in the Cl coordinate system allowing us to
ascertain H from BY,Cl alone.

Concerning the F-flag, in the least-squares iteration pro-
cess of fitting the field of the MC we step-wise adjust the
direction of the MCs axis by1θi (change of axial latitude)
and1φi (change of axial longitude), finally taking note of the
size of these changes for the last iteration (see Appendix A
of Lepping et al., 2003a). Usually these final angle-changes
are very small, such as a few degrees, indicating proper con-
vergence, but we arbitrarily allow angle-changes as large as
10◦. If the last iteration required a change larger than 10◦

for either angle, we designate the process as non-convergent,
and the program shows an F-flag=“NOT OK”. [As we will
see, 3 of the 82 MCs will receive NOT OK designations (i.e.
4%) for the F-flag.]

3 Means of judging quality and some peculiarities

The quantities that are chosen for estimating the “quality”
(designated Q0) of MC model parameter fitting are: Diam-

eter (≡ 2R0), χR

(
≡

√(
χ2

R

))
, CA (≡Y0/R0), asf, check,

<BX>Cl , <BY >Cl , <BZ>Cl , the f-flag (for ability to deter-
mine handedness: OK or NOT OK), the F-flag (for conver-
gence: OK or NOT OK), and the cone angle (βCA). Q0 can
take on the values of 1, 2, 3, where 1 is good and 3 is poor. By
quality we mean a measure of the MC models ability to fit the
magnetic field data for any given event period, as well as to
satisfy some important consistency constraints. For example,
one such constraint is that the two different kinds of estimates
of the flux rope radius agree, i.e. that|check| is small (see
Eq. 7). Specifically, the Q0 value is assigned according the
criteria based on magnetic field quantities, determined em-
pirically and described in Appendix A. In Sect. 6, in another
context, we extend our concept of MC quality (through au-
tomatic identifications of MCs) by including plasma quanti-
ties, i.e. proton temperature and proton plasma beta. As men-
tioned above, we often tried various types of field averages
in the model fitting. The results of these various attempted
fittings for a given MC were compared, for some trial runs, to
see if a particular type of average provided higher quality fits
than the others, in which case the highest quality case would
be the trial that was accepted.
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Fig. 7. Two examples of poor quality (Q0=3) MCs, both from the
year 2000:(A) the event of 21–22 February Days 52 and 53 and
(B) that of 1 August Day 214, presented in the same format as that
of Fig. 1. In the first one (A) the quality is poor, because of the
poor parameter fit, whereχR was high, 0.215, and in the second
one (B)χR was acceptable (0.122), but the asymmetry factor (asf)
was large, 45.9%, i.e. the peak in BMODEL is far off center (and
notice that there was little change in the latitude of the field within
this MC making MC parameter fitting difficult). The regions shaded
in yellow in both cases are where the observed Bz components are
briefly southward.

In Fig. 7 we show two examples of Q0=3 MCs. For the
event in Fig. 7A, that of 21–22 February 2000, the quality is
poor, because of the poor parameter fitting, i.e. whereχR was
high (0.223). Also, although not related to quality,θA was
unusually large, 75◦, in this case. In Fig. 7B, showing the MC
of 1 August 2000, theχR was acceptable (0.121), but the asf
was large (60.9%). Both MCs had moderate length durations,
27.5 and 15.9 h, respectively. Notice that theθB curve of
Fig. 7B varies little across the MC indicating that the observ-
ing spacecraft was quite distant from the MCs axis at time of
closest approach agreeing with our estimate of CA=−82%
for this case. By comparison with these low quality cases
(where Q0=3), all three examples in Fig. 1 are Q0=1 cases,
where we see that the parameter fittings and symmetries are
rather good.

We have shown that Q0 is not strongly dominated by
any one of the values of its input quantities. Quality’s
strongest dependence, however, is on asf (correlation coeffi-
cient (c.c.) of 0.42) with the criteria related to<BY >Cl (for
separating Q0=1 from Q0=2 cases),<BX>Cl , χR, |check|,
βCA, and|CA| being of intermediate importance; they have
|c.c.|s from only 0.35 to 0.22, dropping in the order shown.
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Fig. 8. (A) The magnetic field profile (in GSE coordinates) of a so-
called core-annulus MC, in this case occurring on 4 and 5 February
Days 35 and 36, 1998, where the (outer) annulus fitting interval is
shown by two vertical solid lines, in the same format as Fig. 4 where
the red dashed curves are model-fits. The region shaded in yellow
is where the observed Bz component is southward.(B) The same
MC shown for the magnetic field only and in Cloud coordinates in
a Cartesian (BX,Y,Z,CL) format; again, the model field is shown as
smooth red dashed curves. Now we show two sets of boundaries,
the inner (core) boundary and again the outer (annulus) boundary.
The max and min in BY,CL (at the dashed vertical lines, which de-
termine the boundaries of the core) should be in phase with that
BX,CL-polarity change – as we see they approximately are. There
were four examples of this type of MC among the 82 MCs; see the
asterisks (*) on check (ck%) in Table 1.

“Diameter” as a criterion simply addresses size-plausibility
(where very large MC diameters, e.g.≥0.45 AU, are not be-
lievable at 1 AU) but can be shown to have essentially no
correlation with Quality otherwise. The handedness flag (f)
and the convergence flag (F) when equal to NOT OK means
that all fit-parameters cannot be trusted. It will turn out that
32 out of the full 82 MCs had Q0=3. Of these, 15 violated
two or more “Q0=3” criteria. There were three cases that vi-
olated four criteria of Appendix A. For the 32 Q0=3 cases,
consideration of asf was the most important of the nine crite-
ria listed; 13 violations fell into this category. Consideration
of χR was second. There were also a lot of MC “checks” vi-
olated, but as we shall see, some of them were due to the fact

that a MC can have a “core-annulus” structure that we dis-
cuss below, and they should not be expected to have a small
check value. We now consider an unusual MC structure.

Figure 8A shows the magnetic field and plasma profiles
for the MC occurring on 4 and 5 February (Days 35 and 36),
1998. This is a special case of a core-annulus MC, where
the solid vertical lines in Fig. 8A denote its outer bound-
aries. In Fig. 8B we show the MC’s magnetic field pro-
file in Cl coordinates and its model fit (shown by the red
dashed curves). Again, two vertical solid lines indicate the
outer boundaries, and the traditional fitting interval (enclos-
ing the “core”) is given by dashed vertical lines. This struc-
ture is compatible with a solution of Eq. (1), but now the
outer boundary extends beyond R0=2.40/α, which is the ra-
dius of the core. On the right side of Fig. 6 there is a sketch
of the field structure of a core-annulus flux rope approxi-
mated by the MC profile of Fig. 8, where the outer radius
is taken to be RNEW. In this case we cannot interpret “check”
in the same manner as a MC consisting of only a core. That
is, R1T in check [=(R1T−R0)/R0] depends on MC duration
(1T), which is compatible with theouter boundary of the
annulus, but the model-R0 does not depend on1T and is
not directly related to it. However, we have found very few
of such core-annulus cases. Possibly only four such cases
exist in the WIND data, including one that is apparently an
annulus-only-passage (that of 24 June 2000). Table 1 (to
be discussed below) denotes which cases fall into the core-
annulus (or annulus only) category, by an asterisk (*) marked
on the “check” (ck%) value for that MC.

We point out a characteristic property of the Lepping et
al. (1990) fitting program that is most helpful at times, i.e.
its ability to attempt to provide the correct output MC pa-
rameter estimates, even though thewrong analysis interval
(i.e. wrong start- or end-point) is chosen for the fitting. This
is more likely to happen when one of the boundaries is cho-
sen correctly. For example, see Fig. 9 which shows such a
case, the MC of 27 May 1996. At the top of Fig. 9A the
full (apparently correct) interval of the MC was employed,
where the duration was a long 40 h (at a slow average speed
of 370 km/s), and this lead to a successful fit. At the bottom
of Fig. 9 (B) only part of the MC was used for the fitting with
the same model-program, where the duration was incorrectly
assumed to be 21 h. It is interesting that trial B provides
fit-parameters that are very similar to those of trial A. That
is, for interval A, R0=0.17 AU,|Y0/R0|=10.5%, B0=11.9 nT,
(φA,θA)=(120◦, 32◦), βCA=115◦, and |χR|=0.181, and
for interval B, these were R0=0.15 AU, |Y0/R0|=4.5%,
B0=12.2 nT,φA,θA=(108◦, 40◦), βCA=103◦, and|χR|=0.121,
showing relatively small differences from trial A, even
though the input “analysis interval” was almost halved from
trial A to B. And it is obvious that both trials give very simi-
lar field profiles for the shorter interval, and they continue to
agree upon extrapolation of trial-B’s model field (not shown)
over the full length of trials interval. However, as should
be expected, “check” was vastly different between the two
trials: it was−0.07 (acceptable) for vs.−0.40 (very poor)
for B.
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This difference in “check” is a warning that the B-interval
was probably incorrect, and similarly for asf (the asymme-
try factor), where asf was 27.5% for interval A, but had a
ridiculous value of 122% for interval B, again as might be
expected.

4 Average characteristics of magnetic clouds

The MCs studied here are from WIND data from early 1995
to August 2003, i.e. covering parts of both the quiet and ac-
tive parts of the solar cycle. They were initially identified
by visual examination of magnetic field and plasma data by
at least two members of the WIND/MFI team based on the
Burlaga (1988) definition of a MC.

4.1 Summary of model-related magnetic cloud
characteristics

Lepping and Berdichevsky (2000) presents a preliminary
statistical examination of WIND MC parameters (for only
28 MCs), along with those for MCs from an earlier pe-
riod mostly observed by the IMP-8 spacecraft. Table 1 is
a summary listing of the full 82 WIND MCs with specific
event times, durations, model fit-parameters and various re-
lated quantities; in footnotes at the bottom of the table is the
particular quantity’s definition. All of the quantities needed
to obtain Q0 (in last col., footnote r) are contained in Ta-
ble 1. Table 2 gives the averages and standard deviations
for most of these quantities for the full 82 MCs for both
the full set of 82 MCs and for the Q0=1,2 set (i.e. exclud-
ing poor cases) separately. These averages may be compared
to those given in the Lepping and Berdichevsky (2000) pa-
per, which showed preliminary values for WIND MC fit-
parameters for the early part of the mission (1995–1998)
vs. those from Lepping et al. (1990) mainly from IMP 8
(see Table 1 in that paper) for the earlier interval 1967–1982,
primarily in a period of greater solar activity. Lepping and
Berdichevsky (2000) show that, from the active (IMP) to the
mostly quiet (WIND) period, B0 decreases by about 16% and
MC speed decreases by 11%. Our present Table 2 (where
there is overlap in quantities) supports most of the values in
Table 2 of Lepping and Berdichevsky (2000), but apparently
is a little closer to the IMP set, except for the average of80.
We note that on average these MCs are one day long, 1/4 AU
in diameter, show a slight preference for having axes close
to Y-axis(GSE) alignment, and carry an axial current (IT ) of
about a billion amps, where IT =0.432πJ0R2

0 derived from the
Lepping et al. (1990) model. The MCs have a broad range of
speeds, but speed was typically around 400 km/s on average
early in WINDs mission (Lepping and Berdichevsky, 2000).
It has climbed to significantly larger values recently, giving
an 8.6-year-average of 453 km/s.

In Fig. 10 we display the distributions of the estimated
fit-parameters and other relevant quantities comprising the
following: Duration (1T), axis direction in terms of lon-
gitude and latitude (φA, θA in GSE coordinates), average

���������
	�� 


Fig. 9. Two attempts to fit the same MC:(A) Comparison between
the observed field and the force-free MC model fit (smooth dashed
curves) to these data in terms or field magnitude (|B|) and direction
(longitude and latitude angles,φB, θB) (also shown: proton thermal
speed, bulk speed, and density) for the MC of 27 May 1996. The fit-
ted curves hold strictly only within the vertical dashed lines, which
represent the estimated endpoints of the MC. The full interval of this
MC, where the duration was a long 40 h, is fitted with moderately
good success.(B) Now for convenience only 30 min.- averages of
the field are shown. In (B) only part of the MC was fitted with the
same model, where the duration was incorrectly assumed to be 21 h,
which interestingly provided almost the same fit-parameters values
as those from the (A)-interval fitting, including very nearly the same
estimated radius. The model occasionally displays this robust fea-
ture. This is a Q0=2 MC. The regions shaded in yellow are where
the observed Bz component is southward.

MC speed (V), diameter (2R0), axial field magnitude (B0),
square-root of chi-squared of the fit (χR), asymmetry fac-
tor (asf(%)), relative closest approach distance CA(%), ax-
ial magnetic flux (80), current density on the axis (J0), axis
cone angle (βCA) with respect to the X(GSE)-axis, radius-
“check(%)”, average of the MC’s field in Cloud coordinates,
(<BX>Cl , <BY >Cl , <BZ>Cl); see Sect. 2.2 for a defini-
tion of magnetic cloud coordinates. We now discuss some
features of the distributions in Fig. 10.

The1T-distribution is that of a severely skewed gaussian
(≈ Poisson) with a mode around 15 h. Only one case went
above 50 h. The long durations are generally indicative of the
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Table 2. Averages andσ ’s of MC fit-parameters of Table 1.

large cross-sections of some of these structures, but some are
a reflection of the slow speeds of some MCs, as clearly seen
in Table 1. TheφA-distribution shows an obvious bimodal
structure due to the fact that when the MC is seen at or near
its “nose”, globally speaking, and especially when having in-
clinations not far from the ecliptic plane, the axis will likely
be nearφA=90◦ or 270◦, as in fact we see in the histogram.
But the histogram shows many cases between these modes as
well. It is interesting that theθA-distribution is asymmetric,
strongly favoring positive values which is likely due to the
phase of the Suns dipolar field; however, this suggestion must
be subjected to critical analysis. The V-distribution shows a
broad peak around 400 km/s, ending at about 500 km/s. As
we moved into the active part of the cycle we occasionally
saw faster speeds, as Table 1 shows (in the V column), pro-
viding the V-distributions long tail. The 2R0-distribution,
with a peak at about 0.20 AU, is similar in structure to the V-
distribution, but there is an abrupt drop around 2R0=0.30 AU;
this is not surprising since an expanding MC (which most of
them are at 1 AU) would not have had enough time to expand
to diameters greater than about 0.3 AU in going from the Sun
to 1 AU. At farther distances from the Sun we would expect
there to be a higher percentage of larger cross-sections. The
B0-distribution is rather smoothly changing from the most
probable value at about 13 nT to very high, but uncommon,
values, such as were seen in the second Bastille Day MC
when B0 reached a value near 50 nT (e.g. Lepping et al.,
2001; Mulligan et al., 2001). TheχR-distribution displays
a rather restricted range of values between 0.05 and 0.2 with
only a few beyond that value, to 0.3. This is a measure of the
rather narrow range of field directional variations (whichχR

Table 3. Magnetic Cloud2B (or Bz) Categories*.

measures – not variations in B-intensity, as we pointed out
above) in our set. The asf(%)-distribution is of a simple form,
such as 1/(K+asf)k, where K and k are constants, and k is ap-
parently close to unity. So a large percent of cases have rel-
atively good symmetry. The CA(%)-distribution is approx-
imately normal (at least more so than any other distribution
in Fig. 10, excluding those of the averages ofB in the MCs
in Cl coordinates). One might have expected a more uniform
distribution, especially if there is no bias in solar source ex-
pulsion direction. We point out that CA(%) is not an intrinsic
characteristic of MCs, so its observed (but unexpected) dis-
tribution probably reflects an approximate realization of at
least the following two factors: 1) any natural focusing of
the path of the related ejecta toward (or possibly away from)
the ecliptic plane and more likely 2) any observer-selection
effect, whereby the MCs with small CA(%) are easier to rec-
ognize than those at or near 100%. TheβCA-distribution
is a slightly skewed normal distribution where the peak is
very near 90◦ which should be expected for the type ofφA,
θA-distributions seen here and according toβCA’s definition
(see Eq. 3);βCA should be somewhat broadly distributed and
peak near 90◦, as it is seen to do. The distributions of8O and
J0 are of similar structure and drop off rapidly, except for a
low number of cases in their long tails, i.e. there are only a
small number of high values. The “check(%)”-distribution is
relatively narrow and has a peak near zero, as expected. But
interestingly, when|check|<100% (i.e. reasonable values),
check very much favors negative values, which means that
most of the time for reasonable cases R1T≤ R0 (see Eq. 6).
When|check|>100%, it is observed that R1T >R0, and then
most of such cases are either core-annulus types [discussed
above in Sect. 3.0 (and see Figs. 6 and 8), and for which
we cannot depend on check for judging quality], or they are
simply poor cases. The distributions of<Bx>Cl , <By>Cl ,
and<Bz>Cl in Cloud coordinates (see the last three panels)
are all approximately normally distributed and appear to have
reasonable peak values. Most of the cases where<Bx>Cl<0
are poor cases, except where a core-annulus case is consid-
ered.

Figure 11 shows most of the quantities in Fig. 10 as a func-
tion of year for the period from 1995 to August of 2003; the
last three panels of the two figures are different, which in
Fig. 11 are: (panel n) handedness, H, (o) total axial current,
IT, and (p) quality, Q0. Many of the panels of Fig. 11 appear
to show a rough tendency of many of the parameters to split
into three regions: early, middle, and late, where the middle
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Fig. 10. Histograms of various estimated fit-parameters, by the Lepping et al. (1990) MC model, and related quantities for the 82 MCs
for the period from 1995 to August 2003 given in panels(a) through(p), respectively as: Duration (1T), axis direction in terms of (GSE)
longitude and latitude (φA , θA), average speed (V), diameter (2R0), axial field magnitude (B0), square root of reduced chi-squared of fit
(χR), asymmetry factor (asf(%)), relative closest approach distance CA(%), axial magnetic flux (80), current density on the axis (J0), axis
cone angle (βCA) with respect to the X(GSE)-axis, radius-check(%), average of the MC’s field in Cloud coordinates, (<BX>Cl , <BY >Cl ,
<BZ>Cl); see the text for a definition of Cloud coordinates.

region (most apparent inφA , panel (b), where<φA> tends
toward 180◦, whereas it was usually bimodal with peaks near
90◦ and 270◦. This middle region occurs over the interval
from late 1998 to early 2000. But part (or all?) of this differ-
ence in appearance, however, is apparently due to a paucity
of MCs in that time period. This apparent split is not easily
quantified. In panel (n) handedness (H, or chirality, where
+1 is R and−1 is L) shows an apparent oscillation between
one type and the other for most of the mission but is of only
H=L(−1) for the middle region. This temporal distribution is
not completely understood, but clearly it depends on the vec-
tor nature of the solar source regions (see Bothmer and Rust,
1997) and on the specific origin of the MCs, where the H=R
cases are expected to arise in the Southern Hemisphere of
the Sun and the H=L cases from the Northern Hemisphere.
The quantity that shows the clearest pattern is speed, V, in
panel (d). The envelope of V markedly increases from 1995
to the end of the data, almost linearly, except for the Bastille
Day event where V was near 1000 km/s.

4.2 Classified by Category and “State”

We find it useful to categorize MCs according to a combina-
tion of handedness (H) andθB profiles; see Fig. 4 of Lepping
et al., 2005 that preliminarily examines MC profiles in these
terms. TheθB profiles can be put into 10 different Categories,
as shown in Table 3, and likewise H put into two. The dis-
tributions of these Categories for our 82 MCs is shown in
Table 2 of Lepping et al. (2005); also see Figs. 10 and 11 of
Lepping et al. (2003b), which show pictorially how the asso-
ciated MC flux ropes are oriented with respect to the Ecliptic
plane to create such Categories. Therefore we have a total of
10×2=20 possible Categories. We then define a State func-
tion as

State=Category×H, (10)

where H is +1 (Right-handed) or -1 (Left-handed) and “Cat-
egory” is assigned, for example, 1 for N→S, 11 for S→N,
3 for almost all N, etc.; see the top part of Fig. 12 which
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Fig. 11.Variation of various MC quantities vs. time for all 82 cases; the quantities match those of Fig. 10, except for the last three, where the
histograms in Fig. 10 of<BX>Cl , <BY >Cl , and<BZ>Cl , respectively, are now replaced by:(n) handedness [H];(o) total axial current
[IT ]; and(p) quality [Q0].

defines 10 different Categories, 1, 2, 3, 4, 5 and 11, 12, 13,
14, 15. Hence, State ranges over−15 to−11,−5 to +5 and
+11 to +15, in increments of 1. In some notation schemes an
S→N Category with H=+1 (right-handed) would be called
an SWN MC and a SEN MC is in a S→N Category with
H=−1 (left-handed), similarly for the two N→S types; see,
e.g. Mulligan et al. (1998) and Bothmer and Rust (1997).
Our notation allows us to examine a larger set of Categories,
covering MCs that are steeply inclined. See the bottom of
Fig. 12 which gives State as a function of time and show-
ing some obvious clustering of this quantity in at least five
places; clustering here means a tightly grouped set of 3 or
more MCs in a given State in a 14 month (or shorter) pe-
riod, but not exclusively of that State. Most of these (4 sets)
are in the±11 State, i.e. from Category 11 (S→N types),
where two had H=−1 and two had H=+1, but two sets of
MCs, in 1998 and around late 2000, have States of +4 (all
N) with H=+1. So sometimes there was a slight tendency
for the MCs to fall into sets of a particular Category with a
fixed handedness, but with some small amount of intermix-
ing of other Categories as well. Clustering of Categories 4

and 11 should not be surprising, since they have been the
two most commonly occurring types of MCs, as the top of
Fig. 12 shows.

Since we have the ability to transform from GSE to Cloud
coordinates (as described in Sect. 2.3) and since our MC pa-
rameter fit program gives|Y0| and the sign ofY0 in Cloud
coordinates, we are able to find the closest approach vector
in GSE coordinates by an inverse transformation of the vec-
tor Y 0(Cloud coordinates). Table 4 gives details on MC Q0
and State (see Eq. 9), as well as this vector information on
the closest approach of the spacecraft to the MCs axis for all
82 cases. The table gives the closest approachunit vector in
GSE coordinates (yy,zz)and the actualclosest approach vec-
tor (again in GSE) in AU units (Y,Z), and provides the scalar
closest approach, CA=Y0/R0(%) (also provided in Table 1)
for completeness; the sign on Y0/R0(%) refers to closest ap-
proach on the positive (i.e. +YCl) or negative (−YCl) side
of the MCs axis. Notice that since the MCs are assumed
to be moving locally along the X-axis(GSE), there areno
x-componentsin GSE coordinates for the closest approach
vectors. This ability to provide CA in various forms and in
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both cloud- and GSE-coordinates is to be included in the list
of recent modifications to our MC fitting program, as well as
those discussed in Sect. 2.3.

4.3 Consideration of magnetic flux in clouds

Panel (j) of Fig. 10 shows the distribution of axial magnetic
fluxes,80, for the 82 WIND MCs for the 8.6-year period of
interest. When shown on a finer resolution the distribution
shows a peak near 9×1020 Mx (or 9×1010 Gauss km2); Ta-
ble 2 shows an average value of about 10×1020 Mx. There
is obvious severe skewness in the80-distributions. In Lep-
ping and Berdichevsky (2000)<80> changed from about
13×1020 Mx for the “IMP” set of 18 MCs (1967–1982) to
10×1020 Mx for the early WIND set of 28 MCs, consistent
with our present value for the larger set of MCs. We should
not be surprised that the more active period has the higher
MC flux associated with it. We now make use of this infor-
mation about a MCs typical axial magnetic flux in the follow-
ing way, using the value of 10×1010 Gauss km2=80(1 AU).
We start by assuming that both ends of the MCs field lines
are anchored at the Sun, at least for the period in which the
MC transits from the Sun to 1 AU. If we assume complete
axial flux conservation over 1 AU and consider the value
of 80(1 AU) to be typical, and assume 2 RS=4×104 km to
be a typical diameter of the MCs footprint at either end
(see plate 2 of Martin and McAllister, 1997; Lepping et al.,
1997b), then from

80 (Sun) = 80(1 AU) (11)

or

BS × AreaS = B1 × Area1

BSπR2
S = B1πR2

1 = 80 (1 AU), (12)

where the subscript “S” refers to one of the footpoints at the
Sun, and the subscript “1” refers to 1 AU. For the values of
80(1 AU) and RS given above, Eq. (12) yields a value for
BS of 80 Gauss. Such a value is not inconsistent with field
intensities observed for prominence fields: values quoted for
field intensities for quiescent prominences are around 5 to
30 Gauss (typically 8 Gauss), but for active region promi-
nences at the foot of the flux tubes the field intensity has
been estimated to be as high as 200 Gauss, but typically
20 to 70 Gauss are expected (Tandberg-Hanssen, 1995). So
80 Gauss is reasonably well bracketed by these values. This
presumed connection of a typical MC to a solar source is
therefore plausible, at least by this test. It is expected that
the MCs footprint-fields will eventually disconnect, perhaps
through magnetic merging. It might not occur until many
days after the expulsion of the MC, but there has been in-
sufficient study in this area to be more quantitative. Larson
et al. (1997), however, have given solid evidence for at least
partial field disconnection occurring, and a major change of
field line topology, for the WIND MC of 18–20 October 1995
case (and see, e.g. Lepping et al., 1997a), even as early as
the time when the MC reached 1 AU. Their work was based

on an analysis of solar impulsive∼10−1
−102 keV electron

events measured within the MC using data from the WIND
3DP plasma instrument (Lin et al., 1995).

5 Error estimations of magnetic cloud fit-parameters

There are many possible sources of fit-parameter errors in
modeling MCs. We list the most obvious ones here: (#1)
“noise” fluctuations in the IMF within the MC (meaning any
non-MC-model perturbing fields), (#2) incorrect choice of
MC boundaries, (#3) not accounting for systematic features
in violation of the model (e.g. those due to MC expansion
(Osherovich et al., 1993b; Berdichevsky et al., 2003), non-
circular cross-section (Lepping et al., 1998), effects of a pos-
sible interaction of the MC with surrounding plasma, etc.),
and (#4) measurement errors inB and the velocity (V) of the
MC. To these we could add the possible misidentification of
a solar wind structure as a flux rope in the first place, but
this may be considered to be included in category (#2). We
can generally ignore this source of error, since there are gen-
erally good means of providing assurance that the structure
is a MC from the examination of the full plasma and field
set together. Only the unusually short-duration cases present
identification problems. But there is a possibility of incor-
rectly identifying combined MCs as a single MC, or the op-
posite, the incorrect identification of multiple MCs when the
overall structure is really a single MC. We have taken pains
to avoid such misidentifications, but can not guarantee that
none have slipped through. In fact, we have discovered both
kinds in our earlier list and corrected them. Category #4 can
almost always be ignored compared to source #1; measure-
ment errors are relatively very small. Modification of our
model to account for the systematic features listed in source
#3 is planned for a later time. Source #2 is usually important
also, but we concentrated here only on #1 as being the most
tractable, and usually the most important, especially if care is
taken to use all available means to obtain proper boundaries
to solve uncertainty #2.

If there were any doubt about the choice of the bound-
ary positions, we would try many reasonable attempts at
start/end times in the model parameter fitting, and then note
the average and variation for the various output parameters,
where the variations should reflect the degree of uncertainty
due to this source of error. This error source may be con-
siderable for what may be called “unstable” cases (where
small estimated boundary changes give large changes in out-
put parameter values), for which poor results are expected.
The multiple trial method will not likely give a very accurate
measure of this error, however, because we then do not usu-
ally have a quantitative measure of a “reasonable” attempt at
start/end times. But there is usually no other choice, if the
data set is restricted to a single spacecraft. (We should point
out that the detailed features in the plasma parameters, es-
pecially proton temperature and proton beta, and even bulk
speed (although not part of a MCs definition), are useful in
choosing the proper boundaries. And the presence of field
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directional discontinuities is usually definitive in choosing
boundaries, because a significant directional discontinuity
(DD) should not exist within the MC, and therefore the clos-
est DD may be the boundary. As mentioned above, some-
times a magnetic hole, i.e. a prominent dip in B (see, e.g.
Burlaga, 1995; Farrugia et al., 2000; Baumgartel et al., 2003)
will be seen at one or both boundaries of a MC.) If one of a
series of boundary trials provided the highest Quality esti-
mate (among Q0=1,2,3), that clearly would have been our
choice. As stated above, source #3 is beyond the scope of
this study, but it is not completely independent of source #1,
because noise-fluctuations is a relative term, which, in fact,
depends on the choice of model.

The model fit-parameters were recently examined in terms
of level of fit-parameter uncertainty due to typical field fluc-
tuation noise (source #1), as seen generally in MCs. This is
described in a recent fit-parameter error study by Lepping et
al. (2003a, 2004) and implemented in a related program that
interpolates between the output parameter values developed
in the original Lepping et al. (1990) paper, to better enable
its use. This error-interpolation program is given by the URL
http://lepmfi.gsfc.nasa.gov/mfi/interpolationmc.pro.

The Lepping et al. (2003a, 2004) fit-parameter error pro-
gram was applied to the magnetic field within the interval of
each of the identified 82 WIND MCs, and the interpolation
process described above was employed. (See Appendix B,
which provides some brief practical notes on background
and use of the Lepping et al. (2003a, 2004) fit-parameter er-
ror program.) To summarize the results of the WIND fit-
parameter error study, Fig. 13 provides histograms of the pa-
rameter output uncertainties (σs) for the cases where Q0 is
1 or 2, in the left column, and for Q0=3 in the right col-
umn, all for the following parameters:|θA|, β(cone), θA,
CA(=Y0/R0), asf(%), R0, and B0, where the error-cone-angle
(β(cone)) represents the statistically estimated angle between
the exact MC axisand the estimated MC axis;β (cone)
should not be confused with the angleβCA, which is that
angle between the estimated MC axis andXGSE (see Eq. 3).
Note that Handedness (H) is not included, since H is always
correct, unless the f-flag gives a NOT OK, as seen in Table 1.
Table 5 gives the individual fit-parameter uncertainties (σs)
for the specific MCs for the sets Q0=1 or 2, with the premise
that some of the parameterσs for the Q0=3 cases are too
poorly estimated to be quantitatively reliable, as the far right
portions of most histograms in the right column of Fig. 13
(and their rmss) indicate. Specifically, the parameters given
in Table 5 are:σB0, σR0, σasf(%),σCA(≡σ {Y0×100/R0}),
σθA, σβ(cone),σ |θA|, as well as Q0 just for comparison, and
in that order.

The mean and rms values for each histogram in Fig. 13
are listed to the right of each panel. It is evident that the
mean ofσ [X] (where X is any one of B0, R0, etc.) is higher
for all parameters for the Q0=3 cases with respect to the
Q0=1, 2 cases, but not always markedly so, and just barely
so for σ [asf]. However, forσ [CA%] there is a big differ-
ence between the two distributions and their means; CA is
generally much more poorly determined for the Q0=3 cases.
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Fig. 12. Histogram of MCs separated into various Categories de-
fined in Table 3 (from Lepping et al., 2005). Bottom: State of the
MCs vs. time for the period from 1995 to August 2003, where
State=Category H H (see Eq. (10) and text). See Table 3 for def-
initions of various MC categories. The State function takes into
account handedness, axial polarity, and the attitude of the MC axis.

As was pointed out in Lepping et al. (2003a), CA is usu-
ally the most poorly determined parameter of all of the seven
fit-parameters in the first place, so this big difference in the
two distributions should not be surprising. At the bottom of
Fig. 13 we also see a dramatic difference in the distributions
and their means forσ [B0] between the Q0=3 cases and the
Q0=1,2 cases. Obviously for some Q0=3 cases B0 is quite
poorly determined. Usually B0 is one of the best determined
parameter for the Q0=1 or 2 cases.

6 Magnetic cloud-like structures

We developed a program to automatically identify MCs
(Lepping et al., 2005). When applied to WIND data from
launch to about August 2003, the program not only identified
most (≈ 88%) of those events that were previously identified
as MFI-MCs, which we list in a Table 1 (called set 1 here),
but it found many other similar events, which we designate
magnetic cloud-like (MCL) structures. The full set found by
the automatic identification program is called set 2; there are
185 events in this set. The structures in set 2 (sometimes

http://lepmfi.gsfc.nasa.gov/mfi/interpolation_mc.pro
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Table 4. Closest approach vectors and magnetic cloud state values.
See footnotes at bottom of page 22.

called the “joint” set) should at least resemble actual MCs,
since the “automatic” program uses criteria that were based
on MC plasma and field characteristics determined from the
study of the earlier visually identified cases of MCs, i.e. set 1,
in the first place. Strictly speaking, then the MCL set (called
set 3 here) is defined as the difference-set (set 2–set 1), and
it is even bigger than set 1 (NMFI=103). As Fig. 14 shows,
the occurrence frequency of the joint set (set 2), in fact, bet-
ter matches that of the sunspot cycle than set 1, obviously
indicating the joint set’s better association with ejecting so-

lar sources than set 1. However, many cases in the MCL
set are less intense (i.e. lower<B>) and have relatively
shorter durations than those in set 1, and rarely do they repre-
sent good flux ropes through force free parameter modeling.
Nevertheless, many of the MCL structures are geoeffective
having long periods of negative Bz, being somewhat similar
to mostbona fideMCs in that respect. Some of their un-
usual characteristics may be the result of distant spacecraft
passages (with respect to the MC axes) of actual MCs, but
some may be non-MC ejecta. The start and end times of
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Table 4. Continued.
See footnotes at bottom of page 22.

the events in set 3 (MCL set) can be found at the URL of
http://lepmfi.gsfc.nasa.gov/mfi/MCL1.html.

Plans are to examine these against other lists of ejecta,
including ICMEs, the interplanetary counterpart to coronal
mass ejections (see, e.g. Kahler, 1987; Gosling, 1990, 1997).

With some modifications the Lepping et al. (2005) pro-
gram, now used for automatically and objectively identify-
ing MCs generally, may also be used in a real-time mode for
predicting the point where IMF-Bz goes to a minimum late
in a MC from information within the early part of the MC

for N→S cases. These are expected to be the most probable
type of MCs in the near future (starting about year 2007), as
discussed by Lepping et al. (2005). [And see Bothmer and
Rust (1997), concerning the field configurations of MCs with
respect to the solar cycle, and Chen et al. (1997), who also
developed a scheme for predicting solar wind structures and
degree of their geoeffectiveness, based on solar wind mea-
surements made immediately prior to the prediction time, but
with no special concern for whether they were MCs or not.]
With such real-time information, forecasting of minimum

http://lepmfi.gsfc.nasa.gov/mfi/MCL1.html
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Table 4. Continued.

Dst (and its point of occurrence), for the expected type of
N→S MCs, is possible many hours before it occurs, because
of the large size of most MCs and also because of the approx-
imately 1-h lead-time from spacecraft at L1 to Earth, such as
provided by ACE and WIND (presently).

7 Some particular properties of magnetic clouds

In this section we review some findings by the WIND MFI
team in their general and specific examinations of WIND
MCs either not given above or given only briefly. A few items
are a review of important properties determined by others, for
completeness.

7.1 Particular properties of magnetic clouds

At 1 AU 56% of MCs drove interplanetary shocks, i.e. 46 out
of 82 MCs (if we include 5 upstream pressure pulses appar-
ently caused by the MC as driver and appearing as shocks
in formation) (Lepping et al., 2002). And 10% of the total
MCs had an interplanetary shock inside (e.g. Lepping et al.,
1997a; Collier et al., 2001, 2005); it is not yet clear why so
many MCs have these internal shocks.

There were two very short duration MCs: both were esti-
mated to be small: 1) the MC of 13 May 1995 with a R0 of

0.048 and duration of 5.5 h (with Q0 of 3), and 2) the MC
of 2 June 1998 with an R0 of 0.035 and duration of 5.3 h
(with Q0 of 2). Some others with short durations did not nec-
essarily have small R0s, such as the MC of 20 March 2003
with an R0 of 0.101 and duration of 10.5 h, but the|CA| was
70% and the speed was 650 km/s (with a Q0 of 1). There
are other good examples of small flux ropes in the solar wind
(e.g. Moldwin et al., 1999) that are apparently not MCs for
many reasons, as argued by Moldwin et al.

There were at least 4 MCs with a core-annulus struc-
ture (as defined by right side of Fig. 6), occurring on:
1) 18 September 1997 (Q0=3), 2) 4 February 1998 (Q0=2),
already discussed (see Fig. 8), 3) 8 November 1998 (Q0=1),
and 4) 24 June 2000 (Q0=3). Actually case (3) appears to be
an annulus-only case. These four cases are marked by an *
in the ck% column of Table 1; often the ck% value for such
cases is very large, although not among the largest of such
values, which are explained in other ways.

Any specific MC may be part of multiple or complex
ejecta (Burlaga et al., 2002; Farrugia and Berdichevsky,
2004). There was no attempt to address this issue here, and
likely some of our MCs were, indeed, part of such com-
plexes.
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Fig. 13. Histograms of the uncertainties (σs) for various MC pa-
rameters (in the order|θA|, βCA, θA,CA (=Y0/R0, in %), asf(in
%), R0, and B0), where the combined Q0=1,2 cases (N=50) are in
the first column and the Q0=3 cases (N=32) are in the second col-
umn, as noted. For any given case the designations of mean and rms
hold for the specific histogram shown to their left, and they have the
same units as that histogram, as shown below it. An rms for a given
histogram provides a measure of the spread in the parameter uncer-
tainties across a particular set of MCs; as expected, the Q0=3 cases
show larger rmss than the Q0=1,2 cases.

Unusual composition is observed in MCs, as in ICMEs
(e.g. Steinberg et al. (1997) where often He++enhancements
were observed). Also see McComas et al. (1998) on ACE
measurements of composition with respect to CMEs.

There is a fairly high incidence of MCs occurring at sector
boundaries (Crooker and Intriligator, 1996; Crooker et al.,
1998a,b), at least as measured by the high incidence of near
180◦ changes inφB in the WIND magnetic field data. These
authors cogently explain the reason for this high correlation
between MCs and sector boundaries.

The frequency of occurrence ofbona fideWIND MCs is
given by the diamonds in the lower part of Fig. 14. They
clearly do not correlate well with the Sunspot number (given
by triangles in Fig. 14). But the joint set (given by xxx, and
comprised of WIND MCs plus the automatically found set,
MCLs, resembling actual MCs) fairly well correlates with
Sunspot number, with a correlation coefficient of 0.80. This
must be investigated further.

Relatively uniform speed decreases across most MCs (and
associated MC-expansions) at 1 AU are well known. In the
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Fig. 14. (Top) Monthly sunspot number (SSN, triangles) and num-
ber of CMEs (***) (Gopalswamy et al., 1998) vs. time over the
period of 1995 through 2003; the CMEs are yearly-averaged. The
CMEs very well track the SSNs, as expected with a linear correla-
tion coefficient, c.c.=0.97. (Bottom) SSN (triangles) vs. time, and
yearly averaged occurrence of WIND MCs (dots-diamonds) and
joint set (MC+MCL) of events (solid-xs) vs. time for the same time
period; MCL refers to magnetic cloud-like structures that are deter-
mined by a program developed by Lepping et al. (2005) (see Sec-
tions 2.1 and 6.0). In this panel it is evident that the joint set much
better correlates with SSN than with the (MFI) MC set alone. In
fact, the linear correlation coefficient for WIND MCs vs. SSN was
only c.c.=0.12, but for MCLs vs. SSN it was c.c.=0.80.

WIND set of MCs 76% had such uniform speed decreases,
if 9 (out of the full 82) borderline cases are included; here
a borderline case means the speed decreased across the MC
but not necessarily in a very uniform way. Hence, at least
to 1 AU most MCs are expanding, and probably many do so
well beyond 1 AU (e.g. Skoug et al., 2000).

As exemplified by Fig. 4, magnetic holes are sometimes
observed at MC boundaries usually helping in the determina-
tion of the MC boundary or boundaries (e.g. Burlaga, 1995,
and Farrugia et al., 2000). In the WIND set a preliminary ex-
amination finds that in about 60% of all cases there is a mag-
netic hole at either the front or rear boundary or both, even if
they were sometimes shallow or somewhat broad in appear-
ance. In other words, 31 cases clearly had no magnetic holes,
front or rear; a plasma data gap in one case did not allow any
determination. Few cases were as clear as those holes shown
in Fig. 4.

There is a strong tendency for the handedness (H) of
the field in a magnetic cloud to be correlated with a given
hemisphere of the Sun, independent of solar cycle, with
left-handed MCs being associated with the Northern Hemi-
sphere and right-handed with the Southern Hemisphere, just
as found for solar filamentary structure (Rust,1994 and refer-
ences therein; also see Rust and Kumar, 1994; and Bothmer,
2003).



238 R. P. Lepping et al.: A summary of WIND magnetic clouds for years 1995–2003

Ta
bl

e
5.

E
st

im
at

ed
un

ce
rt

ai
nt

ie
s

of
fit

pa
ra

m
et

er
s

+
fo

r
Q

0
=

1
an

d
2

ca
se

s.



R. P. Lepping et al.: A summary of WIND magnetic clouds for years 1995–2003 239

7.2 What MC parameters tend to be approximately invari-
ant at 1 AU?

We ask, is there a tendency for the Sun to produce MCs with
a narrow range of B0s, or diameters, and/or other param-
eters (e.g. total axial current (IT ), J0, 80, and B2

0/8π), as
measured byσ /Mean andσMedian/Median (see footnote of
Table 6A for a definition), which arerelative standard devi-
ations (r.s.d.s)? And further, what is the specific values of
these ratios for each parameter for a large number of cases?
In Tables 6A, B we show computed values for these ratios
for these particular MC parameters (B0, Diameter, etc.) for
the full set of N=82 MCs (in Table 6A) and for the best
cases, where Q0=1,2 (in Table 6B), both showing a clear
trend among the parameters. The trends for the two differ-
ent ratios is the same within the full set and similar for the
Q0=1,2 set. For the apparently more reliable Q0=1,2 set, it is
clear that the r.s.d.s for B0 and diameter are rather narrow, but
for B2

0/8π and80 they are broad, and for total axial current
(IT ) and J0 they are intermediate in value. Hence, there is a
tendency for the Sun to keep the axial magnetic field and size
of a MC more invariant than the MCs axial-80, and/or B2

0/8π

(with total current and J0as intermediate cases) – based on
our model (Lepping et al., 1990) for the 8.6-years period of
interest. Some of the reason for this is obviously due to the
manner in which parameter errors propagate.

8 Summary and discussion

MCs usually have the field structure of very large mag-
netic flux ropes (with average durations of 21 h), with strong
magnetic fields, and containing relatively cool internal pro-
ton plasma. All of the many MCs considered here (N=82)
were analyzed according to a relatively simple static force
free cylindrically symmetric MC model (Lepping et al.,
1990). The relevant seven model-parameters are presented
in Sect. 2.2. Section 2.3 describes recent modifications to
the program to help assess the “quality” (Q0) of the models
parameter-fitting for any MC; also a scheme was developed
to estimate the uncertainties on the fit-parameters, which was
implemented for the good or fair quality cases. Examples of
how boundaries are chosen were given, and there was dis-
cussion of the difficulties in determined these boundaries,
especially when there are apparent inconsistencies between
requirements of the MC fit model (for a given magnetic field
data set) and the plasma data, such as when indicated by pro-
ton temperature, plasmaβ, and speed gradient. Examples of
MC parameter fitting to the magnetic field, according to the
model of Lepping et al. (1990) (given by red dashed curves),
are shown in Figs. 1, 3, 4, 7, 8, and 9. Table 1 gives the
overall summary of the basic fit-parameters for all 82 cases.

A by-product of the modeling is its ability to estimate a
MC’s axial magnetic flux (80), the axial current density (J0),
and total axial current (IT ), carried by a MC at the observing
spacecraft’s distance from the Sun. All such estimates have
been made for WIND, and a comprehensive set of various

MC derived parameter values, including these by-products,
and Q0, are also shown in Table 1. We have extrapolated the
axial magnetic flux back to the Sun, for a few observed MCs,
obtaining acceptable consistency with the expected values of
the flux of the solar magnetic arcades in the lower corona
(Lepping et al., 1997b).

Table 2 and Figs. 10 and 11 give a comprehensive
overview of our MC modeling results in terms of parame-
ter distributions. We here summarize a few basic determined
properties: on average the WIND MCs are just under one day
long, are 1/4 AU in diameter, have a broad distribution of ax-
ial directions with a slight preference for alignment with the
Y-axis(GSE), have axial fluxes of 1021 Mx, have axial current
densities of about 2µA/km2, and carry a total axial current
(IT ) of about a billion amps. Their speeds were typically
around 400 km/s for the first four years of WINDs mission
(Lepping and Berdichevsky, 2000), but they have climbed to
significantly larger values recently with some values between
600 and 800 km/s; the 8.6-year-average is<V>=450 km/s.
Some of these values are expected to change as the MC is
observed at distances other than at 1 AU, as indeed, they have
been observed to do (Skoug et al., 2000). Table 5 provides
uncertainty estimates for the Q0=1,2 MCs for many of the
key MC fit-parameters of Table 1 based on a Monte Carlo
scheme (Lepping et al., 2003a, 2004). Model MC parameter-
uncertainties are summarized in histograms for N=82 cases
separated according to Q0-values in Fig. 13.

We classified the full set of MCs not only according to
Q0, but also by Category (i.e. profiles of S→N, N→S, etc.;
see Table 3) andState(see Eq. (10) and Fig. 12), which re-
quires knowledge of H. (For a comprehensive understanding
of MCs in general, State is important, among other physi-
cal quantities.) However, forgeomagnetic storm forecasting,
knowingCategory, speed, and density are crucial, but know-
ing Stateis less important. For example, for an N→S case
(Category 1), we can predict Bz in the latter part of the MC,
where Bz is mostly southward, based on observations from
the earlier part of the MC, in order to then forecast the re-
sulting stormDst and its timing (e.g. Lepping et al., 2005).
Hence, knowing the particular Category of a MC may aid in
carrying outDst forecasting. In summary, we have classi-
fied MCs according to Q0, Category, and State, each having
its own purpose. But for study of the expansion-field of a
MC, classification according to CA (=|Y0|/R0) may also be
necessary, since the plasma radial speed in the MC frame of
reference should depend on the spacecrafts CA (measured
from the MC axis) at which the plasma speed was measured
in the MC frame of reference; this frame of reference is de-
scribed in the end of Sect. 2.2. Closest approach vectors of
the observing spacecraft for the full set of MCs are given in
Table 4; these may be especially useful for solar studies.

Recently we developed a program toautomaticallyiden-
tify MCs (Lepping et al., 2005). When applied to the first
8.6 years of WIND data the program identified 88% of those
events that were previously identified through visual inspec-
tion as MCs. It also found many other similar events, i.e.
“false positives”, which we designate magnetic cloud-like
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Table 6A. Parameter variation measured byσ /Mean andσMedian/Median for all 82 cases.

Table 6B.Parameter variation measured byσ /Mean andσMedian/Median for Q0=1, 2 cases.

(MCL) structures. They differ frombona fideMCs from
our point of view, because they were not properly fitted by
the Lepping et al. (1990) MC model, nor are they likely
to be well fitted by any reasonable flux rope model. Their
somewhat unusual characteristics may be the result of dis-
tant spacecraft passages (with respect to the axes) of actual
MCs, but some may be non-MC ejecta. However, all are
well worth investigating, especially with respect to possible
solar sources, and to see how they compare to ICME lists of
events, such as that by Cane and Richardson (2003).

For a summary of “particular properties”, we point out
that the ratioσ /Mean for the derived quantities takes the
order (from min to max) as that shown here: 2R0 B0, J0,
IT , B2

0/8π (see Table 6B for the Q0=1,2 cases). We deter-
mined that in 56% of the total cases WIND MCs drove inter-
planetary shocks (including a small percentage of upstream
pressure pulses), and shocks internal to MCs have been ob-
served about 10% of the time (Collier et al., 2005). Of our
82 cases there were several MCs that had short durations,
with two shortest cases having about 5 h duration. There
were four core-annulus cases (marked by * in the ck% col.
of Table 1). Occasionally magnetic holes are seen at MC
boundaries usually making the identification of the bound-
aries much easier. The reason for this association is not
yet agreed upon. Also it is possible that any specific MC
may be part of multiple or complex ejecta (Burlaga et al.,
2002; Farrugia and Berdichevsky, 2004). Just as for ICMEs,

there is sometimes unusual composition at or near MCs (e.g.
Steinberg et al. (1997) where He++solar wind enhancements
were observed); also see McComas et al. (1998) on unusual
ACE CME composition. Crooker and Intriligator (1996) and
Crooker et al. (1998a, b) call attention to the high incidence
of MCs occurring at or near sector boundaries.

Other models have been used to fit the (local) defining pa-
rameters of MCs with various degrees of success (see Riley et
al. (2004) for a review of these and some comparisons of the
models’ features). Some of these models obtained a better
fit of the field intensity in a MC/flux rope than the Lepping
et al. (1990) model; for other recent MC/flux rope models
see Hu and Sonnerup (2001, 2002); Hidalgo et al. (2002);
Hidalgo (2003); Li et al. (2001); Mulligan et al. (1999); and
Vandas et al. (2005a, b). The cylindrical force free flux rope
model for MCs has been challenged via comparison with
spheroidal models (spherical, oblate, and prolate) by Vandas
et al. (1993). In particular, they found that for 14 structures
considered, primarily from IMP data, the spheroidal model
fits were of comparable accuracy to the cylindrical model
fits, but the estimated diameters were generally larger for
the spheroidal models. Farrugia et al. (1995) compared the
generic flux rope model to spheromak models, in order to
ascertain which type gives the more accurate description of
actual MCs and found that flux rope models are more con-
sistent with plasma thermodynamic constraints, according to
the findings of Osherovich et al. (1993a).
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We plan to modify our MC fitting model to account
for internal expansion (e.g. Osherovich et al., 1993b;
Berdichevsky et al., 2003), non-circular cross-section (e.g.
Lepping et al., 1998), and interaction with the surround-
ing plasma, and probably in that order. However, we will
still view the fundamental MC structure as a distorted (and
in some cases severely distorted) cylindrical flux rope, and
we plan to continue with a production type of operation, in
which any general MC may be processed; this eliminates
time consuming tailoring to each case. The results of this
new model, as applied to the same WIND data set of 8.6
years, could be compared to the results of the Lepping et
al. (1990) model shown here, where it is expected that the
field magnitude fit to the observations, at least, would be
markedly improved.

Appendix A: Criteria for estimating quality of magnetic
cloud fit

We choose to quantify the quality (Q0) of the model
parameter-fit of a given magnetic cloud (MC) into three pos-
sibilities, Q0=1,2,3, for good, fair, and poor, respectively,
given below in terms of magnetic field quantities resulting
from use of the MC model (Lepping et al., 1990). However,
for the sake of compactness we often refer to Quality as a
measure of the MCper se, where it is understood that it is
the quality of the MCparameter-fitthat is being estimated.

We first describe the characteristics of those MC’s that
fall into the Q0=3 (poor) category. This category arises
from satisfying any one of the following Q0=3 criteria:
|check|≥55%, |CA|≥97%, <BX>Cl≤ −1.5 nT, either the
f-flag or the F-flag=NOT OK, Diameter≥ 0.45 AU, asf≥
40%, Cone angle (βCA)≤ 25◦ or βCA≥ 155◦, and χR≥

0.215. Notice thatχR=0.215 corresponds to a MC field
noise level v of 4.0 nT, according to Lepping et al. (2003a,
2004), and this is the highest MC noise level that they
found acceptable. The remaining cases, comprising desig-
nated “Q0=1 or 2”, are next examined to differentiate the
“good” cases (Q0=1) from the “fair” (Q0=2) ones. The Q0=1
cases must satisfy all of the following criteria:|check| ≤

20%, |<BY >Cl |≤ 3.0 nT, asf≤ 30%, 45◦≤βCA≤135◦, and
χR≤0.165. These are the “Q0=1 set”. Notice thatχR=0.165
corresponds to a MC field noise level v of 3.0 nT, according
to Lepping et al. (2003a; 2004). The remaining cases within
set 1,2, i.e. those not satisfying the Q0=1 criteria, are put into
category Q0=2.

Obviously there are many ways that a MC can achieve
a Q0=3 quality, so there is notypical Q0=3 MC. However
χR and asf are usually the two most important parameters
in judging MC quality. The quality criteria (meaning for all
Q0=1,2,3) were derived from our experience in the applica-
tion of the Lepping et al. (1990) model and partly from a
desire to be consistent with the results of the error study by
Lepping et al. (2003a; 2004). Before this formal definition of
Q0, MC fitting quality had been assigned somewhat subjec-
tively, but guided mainly by the values ofχR and asf. These

present criteria represent a distinct improvement in assessing
quality consistently. It should be stressed that, by our crite-
ria (magnetic field quantities only), a MC may well satisfy
the original Burlaga et al. (1981) definition of a MC and still
not have good flux rope structure by the Lepping et al. (1990)
model, and therefore not qualify for a Q0 of 1 or 2 evaluation.

Appendix B: Notes on the fit-parameter error program

Estimated errors in MC fit-parameters based on uncertainty
due to typical field fluctuation noise within a MC (i.e. source
#1 in Sect. 5.0) for each case are based on the three in-
dependent variables CA,βCA, and magnetic field (fluctua-
tion) noise level, calledν (in nT), as assumed by Lepping et
al. (2003a); also see the correction described by Lepping et
al. (2004). The results of the error analysis presented in Lep-
ping et al. (2003a) provides useful “error-parameter curves”,
in terms of CA,βCA, ν, given by Figs. 7a, b, c (and see Ta-
ble 2) in that paper. For practical application some smooth-
ing of the data shown in those figures and described by the
interpolation program discussed in Sect. 5.0 here, was nec-
essary. This required linear fits to the curves (with respect
to CA andβCA) and quadratic fits (with respect toν). This
provided a broad range of useful mid-region interpolations
for these independent variables. Also, we had toextrapo-
late to 30◦ for the cone angleβCA (but now this angle is
based on a modification of Eq. (3) (i.e. nowβCA=|cos θA

cosφA|), where the absolute value is applied) before any in-
terpolations were carried out. The extrapolation toβCA=30◦

was a simple linear one, because it was based on only two
points (βCA=60◦ and 90◦ from Lepping et al., 2003a). Be-
cause of theβCA angle extrapolation to 30◦ and the use of
various mirror symmetries in theβCA-quadrants (by apply-
ing the absolute value to Eq. 3), we extend coverage to the
five angles (30◦, 60◦, 90◦, 120◦, and 150◦), before interpola-
tion. It is also important to note that the magnetic field noise
level, ν (in nT), is obtained from the chi-squared of the MC
fit and use of Fig. 6 in Lepping et al. (2003a, 2004). Lep-
ping et al. (2003a) also describe how to make an adjustment
to the uncertainty associated with B0, according to a sim-
ple proportion with respect to the B0-value arbitrarily chosen
in the original statistical study, B0(statistical)=16.4 nT; i.e.
corrected-σB0=σB0×actual B0/16.4 nT. Final remark: notice
thatβCA is equivalent to PhiE (the estimated axial longitude,
shown for 60◦ and 90◦) in the main Table 1 and Figs. 7a, b,
c of Lepping et al. (2003a).

Acknowledgements.We thank the WIND/MFI and SWE teams,
and in particular, K. Ogilvie, the SWE principal investigator, for
the care they employ in producing the plasma and field data used in
part of this work. DBB and CCW acknowledge NSF support under
Space Weather Grant ATM 0208414. CCW is supported partially
by a NASA Living with a Star Program under NASA Grants num-
ber NAG-12527 (with RPL) and NAG-512467. DBB thanks NASA
for support under Grant number NAG-02035.

Topical Editor T. Pulkkinen thanks M. Vandas and another ref-
eree for their help in evaluating this paper.



242 R. P. Lepping et al.: A summary of WIND magnetic clouds for years 1995–2003

References

Antiochos, S. K. and DeVore, C. R.: The role of magnetic reconnec-
tion in solar activity, in: Sun- Earth Plasma Connections, Geo-
phys. Monogr. Ser., edited by: Burch, J. L., Carovillano, R. L.,
and Antiochos, S. K, AGU, Washington, D.C., Vol. 109, 113–
120, 1999.

Barnden, L. R.: The large scale magnetic configuration associated
with Forbush decreases, in: Proceedings of the Conference on
Cosmic Plasma Physics, held at ESRIN, Frascati, Italy, 20–24
September, 1971, edited by: Schindler, K., Plenum Press, New
York, 351–358, 1972.

Baumgartel, K., Sauer, K., and Dubinin, E.: Towards understanding
magnetic holes: Hybrid simulations, J. Geophys. Res., SSC-4,
doi:10.1029/2003GL017373, 2003.

Berdichevsky, D., Richardson, I., Thompson, B. J., Reames, D.,
MacDowall, R., Plunkett, S. P., Michels, D. J., Kaiser, M. L.,
Lepping, R. P., Ogilvie, K. W., and Stone, R. G.: Examples of
fast solar wind transients, their sources and the forecast of pos-
sible geomagnetic impact, Geofisica Interacional, 39, 1, 5–11,
2000.

Berdichevsky, D. B., Farrugia, C. J., Thompson, B. J., Lepping, R.
P., Reames, D. V., Kaiser, M. L., Steinberg, J. T., Plunkett, S. P.,
and Michels, D. J.: Halo-Coronal mass ejections near the 23rd
solar minimum: Lift-off at the Sun, interplanetary tracking, and
in-situ observations at 1 AU, Ann. Geophys., 20, 891–916, 2002,
SRef-ID: 1432-0576/ag/2002-20-891.

Berdichevsky, D. B., Lepping, R. P., and Farrugia, C. J.: Geomet-
ric considerations of the evolution of magnetic flux ropes, Phys.
Rev., E 67, 036405, 1–8, 2003.

Bothmer, V.: Sources of magnetic helicity over the solar cycle,
in: Solar variability as an input to the Earth’s environment, In-
ternational Solar Cycle Studies (ISCS) Symposium, 23–28 June
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