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Initiation of CMEs by Magnetic Flux Emergence
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Abstract. The initiation of solar Coronal Mass Ejections (CMEs) is
studied in the framework of numerical magnetohydrodynamics (MHD).
The initial CME model includes a magnetic flux rope in spherical, axi-
symmetric geometry. The initial configuration consists of a magnetic flux
rope embedded in a gravitationally stratified solar atmosphere with a back-
ground dipole magnetic field. The flux rope is in equilibrium due to an
image current below the photosphere. An emerging flux triggering mecha-
nism is used to make this equilibrium system unstable. When the magnetic
flux emerges within the filament below the flux rope, this results in a catas-
trophic behavior similar to previous models. As a result, the flux rope rises
and a current sheet forms below it. It is shown that the magnetic reconnec-
tion in the current sheet below the flux rope in combination with the out-
ward curvature forces results in a fast ejection of the flux rope as observed
for solar CMEs. We have done a parametric study of the emerging flux rate.

Key words. Sun: corona, coronal mass ejections—magnetic fields—
magnetohydrodynamics—flux emergence.

1. Introduction

Coronal Mass Ejections (CMEs) play a crucial role in space weather and a careful study
of the origin, structure, and propagation characteristics of this violent phenomenon is
essential for a deeper insight into space weather physics. The fast CMEs are important
because of the geomagnetic storms created by the impact of the CMEs on the earth’s
magnetosphere and the solar energetic particles (SEPs) accelerated by the CME leading
shock front. Clearly, the theoretical modelling of the evolution of CMEs can be divided
into sub-problems. An important unresolved sub-problem is the initiation of CMEs,
i.e., the question why CMEs occur at all and how are they triggered?

Klimchuk (2001) reviewed the theoretical models for CME initiation. Based on
basic physical properties such as energetics, structure and dynamics, this author dis-
tinguished two types of models, viz., directly driven models and storage and release
models. However, all these models have difficulty explaining one or more aspects of
observations. Hence, a lot of work remains to be done to improve the present models:
3D extensions need to be created including fine structure, real (i.s.o. numerical) dissi-
pation, a realistic shearing of foot points, etc. CME shock evolution studies very often
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apply simplified generation models for CMEs. Groth et al. (2000) used a ‘density-
driven’ model which simply means that a high-density (and high-pressure) plasma
blob is superposed on the solar wind. Other simplified models generate a pressure
pulse with or without an additional velocity change (i.e., a kind of ‘nozzle’ bound-
ary condition), see e.g., Wang et al. (1995) and Odstrcil & Pizzo (1999). Keppens &
Goedbloed (1999), on the other hand, impose an extra mass flow to generate CMEs.

More realistic CME evolution simulations make use of theoretical analytic CME
initiation models such as the models of the self-similar Gibson & Low (1998) family
(Gombosi et al. (2000)) or the Titov & Démoulin model (Roussev et al. (2003)).
Odstrcil & Pizzo (2002) and Odstrcil et al. (2003) use yet another analytical flux
rope model. What one should really do, however, is to simulate the evolution of the
reconstructed coronal structures (e.g., Aulanier et al. (2000)) driven unstable by foot
point shearing and/or flux emergence or cancellation. Several groups are working on
such simulations and results will appear in the near future.

The CME initiation model presented in this paper extends earlier results obtained by
Lin et al. (1998) and Chen & Shibata (2000) by including geometry effects (curvature)
and gravitational stratification, and performing a parametric study.

2. Model and numerical method

2.1 Initial model

Our pre-CME model is motivated by the work of Chen & Shibata (2000) and Lin et al.
(1998). Chen & Shibata used three separate line current elements to get the detached
magnetic flux rope in a 2D cartesian plane. We have also considered three separate
current elements but in a 2.5D spherical plane: a ring current centered at distance h
above the photosphere on the equator with a finite radius r0, its image current is located
below the photosphere, and a background dipole field, similar to that in Forbes (1990).
In the present work, we do not consider the formation of flux ropes but in previous
studies, several mechanism have been suggested for this.

We use spherical coordinates (r, θ, ϕ) and express the magnetic field B in terms of a
vector potential Aϕ , i.e., B = ∇ × (Aϕeϕ)+Bϕeϕ . The initial magnetic configuration
is given by Aϕ = Aϕr + Aϕi + Aϕb, where the magnetic vector potential of the ring
current (Aϕr ), its image current (Aϕi) and the background dipole field (Aϕb) have the
following forms:

Aϕb(r, θ) = m
sin θ

r2
, (1)

Aϕr(r, θ) =
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

4Ih√
h2+r2+2hr sin θ

[(2−k2
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k2
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B0
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, (3)

where m is the dipole strength in the formula of background field, j0 is a Bessel
function of zeroth order, r1 = √

r2 + h2 − 2rh sin θ is the radial distance from the
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flux rope center, K and E are the complete elliptic integrals of the first and second
kind, respectively, and

k2
1 = 4hr sin θ

h2 + r2 + 2hr sin θ
, k2

2 = 4hrR2
0 sin θ

h2r2 + R4
0 + 2hrR2

0 sin θ
.

The constant λ is chosen such that j0(λr0 = 0). Moreover, we consider a flux rope
with radius r0 = 0.1 R� at a distance h = 1.3 R� from the solar center (i.e., 0.3 R�
above the photosphere). The strength of the magnetic field in the center of the flux
rope is chosen as B0 = 5.6 G.

We assume axial symmetry in our model and that there are no magnetic field sources
at infinity. The current within the flux rope, that is located at the equatorial plane, is
the only current source within the region r > R� prior to the eruption.

We have taken into account the effect of gravity in our model. As a result, the ambient
density is stratified, i.e., ρg = exp(((v2

esc/r)− 1)/2), where vesc is the escape velocity
of the Sun. The flux rope is initialized with a high density that is distributed as:

ρ

ρ0
=



ρg + 2 cosπr2

1

β(2r0)2
r1 ≤ r0

ρg r1 > r0.

(4)

An initial uniform temperature is assumed T = T0 and the initial velocity v is set
to zero. The initial distribution of the electric current density and magnetic field
inside the flux rope is arbitrary to some extent. The initial state is iteratively relaxed
to a numerically satisfied equilibrium state before the flux triggering mechanism is
applied.

2.2 Numerical methods

The 2.5D (axially symmetric) time dependent ideal MHD equations are applied. This
set of PDEs is solved numerically by means of the VAC Code (Versatile Advection
Code, Toth (1996)) by a two-step Runge-Kutta scheme in time and for the spatial dis-
cretization we use a second order finite volume scheme, viz., the TVD Lax-Friedrichs
method. The solenoidal condition, ∇ ·B = 0, is maintained to machine precision using
Balsara’s (2003) approach.

We have taken the following characteristic values for normalizing the density and
temperature:ρ0 = 1.6726×10−16 g/cm3, andT0 = 1.5×106 K, respectively. The solar
radius R� = 6.9626 × 1010 cm is used to normalize the length scales. The numerical
units for the other quantities follow from these, viz., velocity v0 = T02kb/mp =
15.74 × 106 cm/s, time t0 = R�/v0 = 4420 s, B0 = v0

√
4πρ0 = 0.7216 Gauss, and

magnetic flux ψ0 = B0R
2
� = 34.98 × 1020 Mx. We have considered ideal MHD but

reconnections of magnetic field lines can occur due to the numerical diffusion. In the
near future, we will take into account finite magnetic resistivity in our model.

The computational domain is part of the (r, θ)-plane limited by 1 ≤ r ≤ 30 and 0 ≤
θ ≤ π . This domain is discretized by 600 × 201 grid points, which are non-uniformly
distributed in both the r-and θ -directions. The numerical grid is accumulation near
r = 1 and θ = π/2 with a stretch factor of 50 and 10 in the r- and θ -directions,
respectively. The bottom boundary of the simulation area is a line tying boundary,
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Figure 1. The plasma density log10 ρ (grey scale) and magnetic field lines for the initial relaxed
configuration (i.e., at t = t0 = 32.0 or 39.3 hours).

where all quantities except the temperature T are fixed outside the flux emergence
region, while T is determined by equivalent extrapolation. The boundary conditions
at the poles for the ϕ- and θ -components of vector quantities are asymmetric, while
for the r-components and the plasma density symmetric BCs are applied.

The simulations are done in two phases. In an initial phase the initial state is relaxed
for a long period, viz., until t = 32 corresponding to 39.3 hours, to assure that a
numerical equilibrium is reached with a stable flux rope, see Fig. 1. After this initial
phase the kinetic energy of the system and the changes in density and magnetic fields
are negligible. Note, that in equations (2) and (3), the current I has been determined
by trial and error to make sure that the flux rope center approximately keeps stable for
a long enough time, viz., 32 time units. In these simulations the (dimensionless) value
of I we obtained this way is 6.33.

In analogy with Forbes et al. (1984) and Chen & Shibata (2000), the magnetic flux
emergence is then implemented by changing the boundary magnetic field in time. This
is done by changing the value of vector potential Aϕ starting at t = t0 = 32. The
magnetic flux emergence region is limited to π/2 − 0.6 ≤ θ ≤ π/2 + 0.6 and grows
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Figure 2. Aϕ
∣∣
r=1 versus θ at t = t0 = 32.0 (after the relaxation), t = 32.01 (during the flux

emergence), and t = 32.05 (after the flux emergence).

linearly in time, in the time interval �t = te − t0:

Aϕ(t; θ)|r=1 = Aϕ(0; θ)|r=1 + ce
(t − t0)

�t

cos2
((
π
2 − θ

)
π

1.2

)
sin θ

, t0 ≤ t ≤ te, (5)

where ce is a free parameter. This BC is illustrated in Fig. 2. After t = te all quantities
at the bottom boundary are again fixed (except for the value of T ) as before.

3. Numerical results

After the initial relaxation of the equilibrium (as described above) the triggering phase
starts. In this phase we emerge the magnetic flux at the lower boundary (r = 1) in a lim-
ited time interval (�t = te−t0) and a limited θ -interval around the equator. We consid-
ered a range of different time intervals, i.e., different values of the parameter te in equa-
tion (5). The parameter ce in equation (5) is set to −3 in all simulations so that the total
amount of emerged flux is the same in all simulations, viz., 2π ce ψ0 ≈ −6.6×1020 Mx
in northern hemisphere and the exact opposite in the southern hemisphere. Hence, we
effectively change the flux emergence rate, i.e., 2π ce ψ0/�t , in this parametric study
as the same amount of flux is emerged in a time interval ranging from 0.05 to 3, i.e.,
from 221 s to 3 h 41 min. The flux emergence rate thus varies from −3 × 1018 Mx/s to
−5 × 1016 Mx/s. Note that the emerging magnetic flux has the opposite polarity from
the ambient coronal magnetic field.

As the new magnetic flux emerges near the neutral line magnetic reconnections
take place below the flux rope leading to partial magnetic cancellation and the loss of
equilibrium. Consequently, the flux rope starts moving upwards and the region below
the flux rope is evacuated and suffers a pressure drop. Therefore, magnetized plasma
at both sides (left and right to the null point) is seen to move inward. A clearly formed
current sheet below the flux rope can be seen in Fig. 3. The current in the sheet has
the same direction as that in the flux rope and, therefore, flux rope feels a downward
Lorentz force because of this sheet current. With a finite resistivity, the current sheet
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Figure 3. The plasma density log10 ρ (grey scale) and magnetic field lines at t = 32.3 (left)
and at t = 36.0 (right, with a different scale on the abscissa) for the case with te = 32.05.
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Figure 4. Considered time dependencies of Aϕ
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2
for the same ce value (= −3).

would be dissipated and the escaping flux rope would be accelerated in that case. Here
however, we only rely on numerical diffusion.

We have performed a parametric study of the emerging flux rate by changing the
value of te while keeping ce constant. This is illustrated in Fig. 4. The corresponding
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Figure 5. Height of the flux rope center vs. time for the different flux emergence rates.
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Figure 6. Velocity of the flux rope center vs. time for different flux emergence rates.

height-time curves of flux rope center are shown in Fig. 5. From these curves, the
velocities can be easily derived. The related velocities are shown in Fig. 6. Clearly,
an increasing flux rate leads to a higher upward speed of the flux rope while the
total amount of emerged flux is the same in all cases. The obtained velocities are
in the range which is typical for CMEs. For an emerging flux rate that is smaller
than some threshold value, the flux rope cannot escape from the corona and it falls
down again as a result of the deceleration due to gravity (see e.g., the lowest curve in
Fig. 5).
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4. Discussion and conclusion

The CME initiation model of Chen & Shibata (2000) has been extended by including
the effects of gravity, geometry (curvature), and an ambient medium. Moreover, we
studied the effect of the flux emergence rate on the velocity of the resulting flux rope
CMEs. The obtained velocities lie in the typical range of 300–400 km/s for reasonable
values of the flux emergence rate. For smaller values of the flux emergence rate, the
launched flux rope falls back to the Sun as a result of the gravitational deceleration.
The present model cannot explain fast CMEs. Yet, these fast CMEs are the important
ones for space weather, since these CMEs drive shocks which accelerate particles and
impinge on the Earth’s magnetosphere. In future analyses we will extend the parametric
study to investigate whether we can simulate the deceleration of the fast CMEs and
the acceleration of slow CMEs as observed by Gopalswamy (2004). Furthermore, we
will include the effect of the drag of the background solar wind.
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