Chapter 8

Propagating MHD Waves

The terms‘waves”and “oscillations”are often used interchangably, because the gen-

eral wave form is often decomposed into Fourier componeatsh one representing
an oscillatory solutionA(x,t) = 3 Ay exp (—i[kx — w,t]). In this book we use
a stricter definition, reserving the teroscillationsonly for standing wavewiith fixed
nodes § 7), while propagating wavelsave moving nodes (Fig. 8.1). All the MHD os-
cillation modes we described in chapter 7 have fixed nodetand at both endpoints
of a coronal loop, forced by the photospheric line-tying ditions of the magnetic
field, analogous to the strings of a violin. In principle,akeharmonic oscillations are
only warranted if either the excitation profile along a looptohes the sine function
of a harmonic wave solution, or once an initial arbitraryptieement settles into a
fundamental harmonic oscillation, after the higher harim@omponents are damped
out. This time interval can be quite long, for instance it amis to about 40 oscilla-
tion periods for a clarinet, as measured with a high-spesteca Since coronal loop
oscillations have been found to be strongly damped withiava dscillation periods,
they probably never have sufficient time to settle into arclearmonic eigen mode,
besides the unavoidable damping due to finite dissipatianeXect a series of short-
wavelength disturbances to propagate along the loop, ediyeghen the excitation
occurs at one side of a coronal loop on a time scale much shber the reflection
time over the entire loop length. Hence, there is a gradaakition from harmonic
oscillations to propagating waves, depending on the tinadesand spatial symmetry
of the initial displacement. In this chapter we deal exslelsi with propagating waves,
a field that experienced a major breakthrough after the teé8eHOand TRACE ob-
servations, including the discoveriesofT (or coronalMoretor) waves (Thompson et
al. 1998a; Wills-Davey & Thompson 1999), compressible waves in polar plur@és (
man et al. 1997; DeForest & Gurman 1998; Ofman et al. 1999)ewrains in coronal
loops (Berghmans & Clette 1999; Robbrecht et al. 2001; Defiébet al. 2002a,b,c),
as well as with the first detection of propagating wave traingng a solar eclipse
(Williams et al. 2001, 2002; Pasachoff et al. 2002). Recewieivs on the subject can
be found in Roberts (2000; 2002) and Roberts & Nakariako@320
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Standing Waves
A(z,t)=A, sin(kz)*cos(wt)
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Propagating Waves
A(z,1)=A, sin(kz-wt)
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Figure 8.1 :Definition of “standing wave'or “oscillation” (left) and “propagating wave(right).

A standing wave has fixed nodes, while a propagating wave loagxmnodes as a function of
time. Standing waves can also be composed by superposingppesitely directed propagating
waves.

8.1 Propagating MHD Waves in Coronal Loops
8.1.1 Evolutionary Equation for Slow-Mode MHD Waves

We derived the general dispersion relation for magnetastiowaves in cylindrical
fluxtubes in§ 7.1.4, which showed two branches of phase speed solutipkisa fast-
mode branch (with Alfvén speeds) and a slow-mode brancth (agoustic speeds),
as shown in Fig.7.4 for coronal conditions. In this sectiomstudy the propagating
waves of the slow mode for the special geometry of corongbdoavhich involves
gravitational stratification in the vertical direction fluxtubes curved along closed
magnetic field lines, while the case for open magnetic fielddiis considered in the
next section { 8.2). Making some simplifying assumptions, such as neigigdhe
coupling of the slow magneto-acoustic mode with other waeel@s, 2D effects (in-
cluding wave dispersion), loop curvature, whilst assumirgelengths much shorter
than the gravitational scale height, Nakariakov et al. @)@erived thesvolutionary
equationusing the following form of the resistive MHD equations€§e5.1.5):

dp 0O B
ottt =0 (8.1.1)
6V 6\/ _ ap 4 82V
p<5+v£> =95 WPt 3haa (8.1.2)
1 op 1 ypdp_ 9 ( 0T
Dot (-1 poat as\Nas)> (8.1.3)

wheres is the loop length coordinate(s) the plasma density;(s) the longitudinal
speedp(s) the plasma pressur@)(s) the plasma temperature,the adiabatic index,
k| = kT°/? the thermal conductivity along the magnetic field, the compressive
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Figure 8.2:Evolution of the amplitude of slow magneto-acoustic wavés e initial ampli-
tudev(0) = 0.02 ¢, for three wave periods: 900 s (solid curves), 600 s (dottedes), and
300 s (dashed curves). The upper curve of each kind corrdsgorthe normalized dissipation
coefficient; = 4 x 10~%, and the lower curve t§ = 4 x 10~ *. The amplitude of each wave is
measured in units of the initial amplitude. The loop radas.i.., = 140 Mm (Nakariakov et
al. 2000a).

viscosity coefficient, ang(s) the gravitational acceleration projected along the loop
coordinates for a semi-circular geometry (with curvature radiys, ),

—2
g(s) = ge cos < i ) <1 4l gy 2 ) . (8.1.4)
Teurv RG) Teurv

Combining the equations (8.1:B) into a wave equation, Nakariakov et al. (2000a)
obtained an evolutionary equation for the density pertiiwhan the form of a modified
Burgers equation

ov 1 y+1 v Repo(0)n 8%v
i = = 1.
0s 2)\nv+ 2c; V@f 2p0(s) 0€&? 0, (8.1.5)

where¢ = s — ¢t is the coordinate co-moving with a wave crest with sound dpee
s, An(8) = c2(vg) ! the local density scale heighk,.s = p/pT = 2kg/um, the
gas constant, ang, (0) the equilibrium density at the base of the corona=(0). The
linearized version of Eq. (8.1.5) can be solved under tharaption of a harmonic
wave,v(s) o cos (k€) = cos (ks — wt), propagating with sound speedk = ¢, with
wave numbek;,

0 = v | [ (5757 - kQZﬁg)R@) C e




334 CHAPTER 8. PROPAGATING MHD WAVES

Table 8.1:Observations of slow-mode (acoustic) waves in coronatsires.NV is the number
of analyzed events.

Observer N  Frequency or Wave speed Instrument
wavelength v [km/s]

DeForest & Gurman (1998) 1 1A ~ 75— 150 SoHO/EIT

Berghmans & Clette (1999) 3 195 ~ 75 —200 SoHO/EIT

De Moortel etal. (2000b) 1 174 ~ 70— 165 TRACE

De Moortel et al. (2002a) 38 174 122 443 TRACE

De Moortel etal. (2002b) 4 198 150 + 25 TRACE

De Moortel et al. (2002c) 38 174 122 + 43 TRACE

Robbrecht et al. (2001) 4 171, 186 ~ 65 — 150 EIT, TRACE

Berghmans et al. (2001) 1 171,185 ... EIT, TRACE

Sakurai et al. (2002) 1 5308 ~ 100 Norikura

King et al. (2003) 1 171,198 .. TRACE

Marsh et al. (2003) 1 171, 368 ~ 50 —195 CDS, TRACE

where the normalized dissipation coefficigris defined by
_ 1 Ao Ky(y —1)?
N=—~<5 |—= T— %5 -
po(0)esRe | 3 Rgasy
The linearized solution of the evolutionary equation (8) yields a proportional per-

turbation in density, pressure, and temperature (accpririhe continuity equation
and ideal gas equation),

(8.1.7)

p v P v T v

Po Cg Po Cg ' TO Cg

The evolution of each normalized quantity (Eg. 8.1.8) asation of the loop coordi-
nates is shown in Fig. 8.2. The growth rate of each amplitude (insitgnvelocity, or
pressure) is determined by the balance between the vegtigaitational stratification
and dissipation (by thermal conduction and viscosity). &¢awf shorter wavelengths
(larger wave numbers) grow slower than long-wavelength waves. Sufficiently shor
wavelength perturbations, with > 1/4/7,(0), do not grow at all, but decay with
height. So the evolution of upward propagating slow-mode(atic) waves, whether
they grow or decay, depends on the value of the dissipatiefiicientr, thermal con-
duction coefficients, and base density; (0), as combined in the normalized dissi-
pation coefficient] (Eq. 8.1.7). Nakariakov et al. (2000a) estimate a lowertliofi
7~ 4 x 1074, usingny = 0.352 g cm! s7! according to Braginskii's theory for
no = 5 x 108 cm™3, T, = 1.6 MK, and neglecting thermal conduction (= 1).
Evolutions of slow-mode acoustic waves fpr= 4 x 10~* and10~2 are shown in
Fig. 8.2.

8.1.2 Observations of Acoustic Waves in Coronal Loops

Acoustic waves propagating in coronal loops were probabdy fioticed in EUV im-
ages ofSOHO/EIT observations, when time sequences of flux profii§s, ¢) along
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13/06/2001 - 0646 UT

Figure 8.3:TRACE 171A observation of a slow-mode (acoustic) wave recorded orl 200
13, 06:46 UT.Left: the diverging fan-like loop structures emerge near a sunspioere the
acoustic waves are launched and propagate upwRight: a running difference plot is shown
for the loop segment marked in the left frame, with time rmgnipward in the plot. Note the
diagonal pattern which indicates propagating disturbaiibe Moortel et al. 2000a).

loops with transient features were plotted with sufficigrtigh cadence (e.g., with
At = 15 s, Berghmans & Clette 1999). In such space-time diagraragpdial patterns
were noticed (e.g., Fig. 8.3 right), which exhibited slopethe range ofr = ds/dt =~
150 km s™! (Berghmans & Clette 1999), corresponding to a speed sfigitiow the
sound speed of, ~ 180 km s7! atT ~ 1.5 MK expected in the used EIT 195
temperature band. A compilation of related observatioagjaen in Table 8.1.

A number of propagating waves were also analyzed from TRA&H, dtarting in
active regions and propagating upward into diverging, lfe@-bundles of loops that
fade out with height (Fig. 8.3, left), while no downward pagating waves were de-
tected (De Moortel et al. 2000b, 2002a,b,c). Typical sp@éds~ 122 + 43 km s~!
(De Moortel et al. 2000b) were measured from TRACE £7data, where the mean
sound is expected to hg ~ 147 km s ! atT ~ 1.0 MK. Multi-wavelength obser-
vations with both EIT and TRACE confirm that the diverging ftnuctures consist
of multiple loop threads with different temperatures and-esponding sound speeds
(Robbrecht et al. 2001; King et al. 2003). Time periodsfof= 172 + 32 s were
found for loops rooted near sunspots, which coincide with3kminute p-mode os-
cillations detected in sunspots (Brynildsen et al. 200@22@Iludra 2001; Maltby et
al. 2001), while waves that start further away from sunsfiatactive region plages)
have periods o = 321 + 74 min, which coincide with the global 5-minute p-mode
oscillations. This result clearly proves that subphotesjghacoustic p-mode oscil-
lations penetrate through the chromosphere and trangiigion and excite coronal
acoustic waves. The energy flux associated with these pabipggwaves was esti-
mated tade, 4. /dt ~ (3.5 +1.2) x 10% erg cn1 2 s~ 1, far below the requirement for
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Table 8.2:Statistical parameters of slow-mode (acoustic) wavesrobdanith TRACE 1714
in 38 structures (De Moortel et al. 2002a).

Parameter Average Range
Length of loop segment 26.4+9.7 Mm 10.2-49.4 Mm
Average footpoint widthw 8.1+2.8 Mm 3.9-14.1 Mm
Divergence gradientw/ds 0.28+0.16 0.07-0.71
Oscillation periodP 282+93 s 145-525 s
Propagation speed .. 122+43 km/s 706-235 km/s
Wave amplitudell /1 0.041+0.015 0.0070.146
Brightness changé€..ax /Imin  7.4%£5.8 1-22.7
Detection lengthl 4., 8.9+4.4 Mm 2.9-23.2 Mm
Detection ratiaL ge¢ /L 0.3640.188 0.08-0.814
Energy fluxde e /dt 3424126 erg/(c s)  194-705 erg/(cm s)

coronal heating§9.1). The statistical means and ranges of the parametersuneeh
in De Moortel et al. (2002a) are compiled in Table 8.2. Theevagins were found to
fade out quickly with height, partially an effect of the deasing flux amplitude due to
the diverging geometry of the loop fans, combined with thapiamg caused by thermal
conduction (De Moortel et al. 2002b; De Moortel & Hood 200302). The interpreta-
tion in terms of slow-mode (acoustic) waves is based on:h@ pbserved propagation
speed roughly corresponding to the expected sound spdeeluséd temperature band,
and (2) slow-mode (acoustic) waves being compressionag¢sygwoducing a modu-
lation of the density and EUV flux, and thus observed as EU¥nsity modulation
(which is not the case for Alfvén waves).

Slow sound waves were possibly also detected in optical agéhs (in the green
line at 5303A) with spectroscopic methods using the Norikura Solar ®fery, with
periods of P ~ 3 — 5 min and speeds of ~ 100 km s™! (Sakurai et al. 2002),
but the confusion in white light seems to be much larger timanarrow-band EUV
filters. Similarly, searches for waves with CDS data, whielvéhsubstantially less
spatial resolution than TRACE and EIT data, have only reaaharginal signals of
oscillatory wave activity (Ireland et al. 1999; O’Shea et24l01; Harrison et al. 2002;
Marsh et al. 2003), due to the overwhelming confusion witteospatially unresolved
and time-varying loop structures.

8.1.3 Propagating Fast-Mode Waves in Coronal Loops

Fast mode MHD waves have Alfvén phase speeds, which carovana considerable
range in coronal conditions, between the minimum Alfvéeespvaluey 4 inside of a
loop and the maximum speed,. outside of the loop (i.eva < vpn = w/k < vye)

(Fig. 7.4). We discussed the standing waves or eigen fremeaf this fast MHD wave
mode in§ 7.2 (kink mode) and 7.3 (sausage mode). Now, what about propagating fast
MHD waves. We quote Roberts et al. (1984): “Propagating wasagher than standing
modes, will result whenever disturbances are generatedlgnply. Such waves may
arise in a coronal loop, if the motions have insufficient timeeflect from the far end of
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Figure 8.4:The evolution of a signal produced by a propagating fastendéiD wave in a
coronal loop, which originates at height = 0 and is observed at heiglit = z. The time
intervals of the three phases depend on the characterédtcitiesv 4, v a., andc;’“”" (Roberts
etal. 1984).
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Figure 8.5: The group speedt, = dw(k)/0k, normalized by the external Alfvén velocity
Ve, @s a function of the dimensionless wave number frequéney= wa /v 4., calculated for
coronal conditiong;s < v andpg/pe. = 6. Note the occurrence of a minimum in the group
speed¢;”™™ (Roberts et al. 1984).

the loop, or in open field regions. An obvious source of sucmgulsive disturbance
is the flare (providing either a single or a multiple sourceisfurbances), but less en-
ergetic generators should not be ruled out. If the wavesememted impulsively, then
the resulting disturbance may be represented as a Foutégrah over all frequencies
w and wave numberk. In general, a wave packet results, its overall structumegoe
determined by the dispersive nature of the modes.” Robeats €984) calls this type
of wave animpulsively generated fast wavBuch propagating fast-mode MHD waves
display a bewildering variety of evolutionary scenariokjeh have not been explored
much in the solar context, but their hydrodynamic analoge fieeen widely studied in
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Figure 8.6: SOHO/EIT 195A observations (left) andolar Eclipse Corona Imaging System
(SECIS)observations of an active region loop during the total seldipse on 1999 Aug 11
(Shabla, Bulgaria), which showed propagating waves aloadpop with rapid oscillations® =

6 s). The SECIS image is taken in Fe XIV 5383is averaged over 50 consecutive frames (1.1
s), and is contrast-enhanced. The loop is enlarged and logifigns A—-M are marked ir8 x 3
macropixels with a scale df07”’, while the time profiles at positions-AM are shown in Fig. 8.7

(Williams et al. 2002).

oceanography. Here we summarize just some salient feaarésscribed in Roberts

et al. (1984).

Let us assume that an impulsive disturbance, in the form cdignatic field fluctu-
ationB(z,t) = Bg(z) + B1(z = 20, 1), launches an Alfvén wave near the footpoint of
a coronal loop. As we learned In7.1.2, a surface wave at the boundary between the
overdense loop and the less dense coronal environmenheill propagate along the
loop (in an upward direction), with a phase spegg = w(k)/k that depends on the
wave numbet of the disturbance, which could be a broadband spectrum xgitke
the whole range of Alfvén velocitiess < vp, = w/k < va.. Let us watch the re-
sponse of the loop plasma at some height h. The first signal that arrives at a height
z = h is that with the fastest phase speed, which is the exterrfaéAlspeed 4.,
having a frequency ab. = k.v 4., arriving at timet; = h/v 4.. This is the start time
of local periodic oscillations with frequency.. After that, waves with slower phase
speeds arrive, down to a minimum spegg = v4 after timet, = h/v4. This time
interval (t; < t < ty) is calledperiodic phaséFig. 8.4) , during which the oscillation
amplitude steadily grows. However, there is a Fourier spatbf wave frequencies,
but the key for the understanding of the evolution is the grspeede, = dw(k)/0k,
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Figure 8.7:Time profiles of the intensity (left) at position-AM of the SECIS image shown
in Fig. 8.6. The mean period in each time profileAsx 6 s, but the peaks shift as a function
of position, indicating a propagating wave. The distanagdled by the wave maximum along
the positions A-H is shown in the top right diagram, where the slope indicateglocity of

v = 2100 km s™!. The average phase as a function of the distance along thadahown in
the bottom right diagram, yielding a wavelengthdo&= 12 Mm (Williams et al. 2002).

the observed speed with which the signal of the disturbapeopagating. This group
speedv, = dw(k)/0k has a minimum value]"" at some wave vectdt, as shown
in Fig. 8.5, which will arrive at timeg; = h/c;"i" at heightz = h. The time interval
ty < t < tg is called thequasi-periodic phad&ig. 8.4). After timet; the amplitude of
the disturbance will decline, a phase called tleeay(or Airy) phase (Fig. 8.4). These
various phases of an impulsively generated fast wave haualgcbeen observed in
oceanography (Pekeris 1948). Numerical simulations ofriliel stage confirm this
evolutionary scenario (Murawski & Roberts 1993; 1994; Muski et al. 1998).

The interpretation of solar observations in terms of thisl@wnary scenario of
fast-mode MHD waves is not trivial. Roberts et al. (1983; 498mphasize that the
cutoff frequencyw. and the frequency,,;,, of the minimum group velocityj}""” are
the most relevant time scales to be observed and assocgpetiods P ~ 0.5 — 3.0
s) observed in radio wavelengths to this mode of (impulgigeinerated) propagating
fast-mode MHD waves. Propagating fast-mode MHD waves intiphf a magnetic
field disturbance travels at Alfvén speeds. If it modulagsosynchrotron emission,
the corresponding radio emission should show a frequanuy-drift of some ripple
in the gyrosynchrotron spectrum, which perhaps has beesnadxsin the form of a
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Figure 8.8: Numerical simulation of an impulsively generated fast-eddHD wave train
propagating along a corona loop with a density contragh@p. = 14. Top: the time series is
recorded at location = 70w (with w the semi-width of the loop)Bottom: wavelet transform
analysis of the signal, exhibiting a “tadpole” wavelet siggre similar to the observations shown
in Fig. 8.9 (Nakariakov et al. 2003b).

quasi-periodic fine structure calldéither burst§Rosenberg 1972; Bernold 1980; Slottje
1981). Most of the fast oscillation events, however, havenbebserved in metric
and decimetric frequencies, where plasma emission doesnaiit since Alfvén MHD
waves are non-compressional (in contrast to the slow-modastic waves), is not
clear how they would modulate the plasma emission, whichnig a function of the
local electron density. Another problem is, even if fastd@®d/IHD waves modulate
plasma emission, that the average density, and thus théltotantegrated over a loop
oscillating in the sausage mode would be conserved, and cmtlbe perceived as an
intensity modulation by non-imaging radio instrumentdpag as they do not spatially
resolve a sausage node (with spatial scate 27 /k).

The first imaging observations that have been interpretéerins of propagating
fast-mode MHD waves (Nakariakov et al. 2003b) are the SECIlipse observations
of Williams et al. (2001, 2002). During this eclipse, a loagstheen observed with
propagating wave trains in intensity, with a periodf~ 6 s and a propagation
speed ofr ~ 2100 km s™! (Figs. 8.6 and 8.7). The evolution of the propagating fast-
mode MHD oscillation has been modeled with a numeric MHD cogé&akariakov
et al. (2003b), which confirmed the formation of quasi-péidavave trains predicted
by Roberts et al. (1983, 1984) and Nakariakov & Roberts (1.9BBe evolution of the
loop density as a function of time and oscillation periogds, P) is displayed in the
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Figure 8.9:0bserved wavelet transform of a coronal loop with propagatiaves during the
eclipse on 1999-Aug-11 observed with SECIS. Note the “tafpsignature atP = 1/0.16
Hz=6 s (Katsiyannis et al. 2003).

form of a wavelet transform in Fig. 8.8, which exhibits at tteminant period® ~ 6 s

a “tadpole” feature that is also observed by SECIS (Fig..88¢ SECIS observations
were made witht"” pixels (= 8" resolution) and averaged over 1.1 s (Katsiyannis et
al. 2003). There are no detections of fast-mode MHD wavesiiar@l loops reported
from SoHO/EIT or TRACE, probably because they are rarelyaeel at their highest
possible cadence of seconds. We expect that more detecfitast-mode MHD waves
will be accomplished with instruments of comparable spatisolution and cadence in
the future.

8.2 Propagating MHD Waves in the Open Corona

8.2.1 Evolutionary Equation of MHD Waves in Radial Geometry

While closed coronal structures have two boundaries, weacttrol the energy balance
and provide fixed nodes for standing waves, open field strestbave only a single
boundary where waves propagate in one direction without leging reflected. An-
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Figure 8.10: Alfvén speed as a function of radial distance from Sun aemtemputed for
isothermal 7. = 1.3, 1.4, 1.5 MK) open-field structures with radial geometry and in hydatis
equilibrium. Note that the Alfvén speed peaks at a few s@ldlii.

other significant difference is the radial divergence ofdpen magnetic field (Fig. 1.14),
R2
Bo(r) = BO(R(-))T—? ) (8.2.1)

which can often be neglected in closed field structures. lisathermal {'(r) =
const] plasma in hydrostatic equilibrium, the density follow® tsame radial depen-
dence as the pressure (i.e(y) = 2n.(r)kgT, Eq. 3.1.9), and thus has the radial
dependence (using Eq. 3.1.15 ang R + h),

R < R@)
Y1

Ap r
with A, the pressure scale height for a given temperature (Eq.6.IN\bte that the ra-
dial divergence has no effect on the pressure scale heighi{so hydrostatic analogy

of water vessels in Fig. 3.12). Combining Egs. (8.2.1) and.28 yields the variation
of the Alfvén speed 4 (r) as a function of the radial distanedrom the Sun (shown

in Fig. 8.10),
Ro 1— ke
2, T

In this approximation of the open magnetic field with a radiaipolar geometry, the
Alfvén speed reaches a maximum at a distance of a few sadiir vehile a semi-
circular dipolar geometry yields a minimum in the lower aoadFig. 5.10).

To study the propagation of magneto-acoustic waves in an figld structure with
radial geometry, it is useful to transform the ideal MHD etipuas § 6.1.3) into spher-
ical coordinategr,f, ») and to choose the directigh= 0. For purely radial propa-
gation, the ideal MHD equation in spherical coordinatestban be simplified to two
uncoupled (linearized) wave equations, of which one deesrAlfvén waves, charac-
terized by magnetic perturbatioss, andv,, (e.g. Nakariakov et al. 2000b; Ofman et

p(r) = po(Re) exp : (8.2.2)

Bo(Rs) R%

(8.2.3)

YA = o (Bo) [ 2
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al. 2000b; Ofman & Davila 1998; Roberts & Nakariakov 2003),

0%v Bo(r) 02
6t; B 47rpoo((r))r gz rBo(r)vel =0, (8.2.4)

and the other describes slow-mode (acoustic) waves, dieazd with density pertur-

bationsp andv,.,
Pp 0 [ ,0p op
—— -2 (2 ) —g(r)= =0. 8.2.5
ot2  r2or <r 6r> 9(r) or ( )

The right-hand side of these two equations is zero here Becaludissipative effects
(such as viscosity) are neglected. It is convenient to shiese two wave equations in
the Wentzel- Kramers- Brillouin (WKB) approximation [i.e., assuming that the wave-
length is much smaller than the scale of density variatistheimedium § < A,)], as
well as using the approximatioy), < R

In the reference frame of an upward moving Alfvén wave witbal speed: 4 (r),
the transformed time variable is,

T:t—/i. (8.2.6)
va(r)

The wave equation for Alfvén waves can then be written inW€B approximation
with the variableR = r(\/)\,) < r,

dv, Ré

dR ~ A\,R2 ¢

=0, (8.2.7)

which is the linearized evolutionary equation for an Afiu&ave with solution (Nakari-
akov et al. 2000b),

By Ro

8.2.8
Rl (8.2.8)

Ve (r) = vy (Ro) exp

which indicates an Alfvén wave amplitude that is growinghaieight. This has the
implication that Alfvén waves can propagate large distanand deposit energy and
momentum several radii away from the Sun. The growth of é&ffwaves with height
has also the consequence that nonlinear effects come enofpl instance wave en-
ergy transfer of higher harmonics to shorter wavelength&resdissipation by viscos-
ity matters (Hollweg 1971). When the wave amplitude grovesnpressional waves
will be driven by Alfvén waves (Ofman & Davila 1997, 1998)uch dissipative ef-
fects, which have been neglected in the simplified wave émpgmfi.e., the right-hand
side of Eqs. (8.2.4) and (8.2.5) are set to zero], have bedudad for weak nonlinear-
ity and viscosityv,;s. by Nakariakov et al. (2000b), leading to a more general wave
equation that is the spherical scalar form of @@hen- Kulsrud-Burgers equation

% 3 Ré v 1 @ _ Vuisc 0*v,
OR  4X\,R? ¥ dva(v4 —¢2) Or 2v3 or?

= 0. (8.2.9)

An example of a typical evolution of an initially harmonicf&n wave during its
propagationin an open radial magnetic field is shown in Fijl 8showing three phases
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Figure 8.11Left: evolution of weakly nonlinear Alfvén waves propagatingiradial magnetic
field away from the Sun. The Alfvén waves have an initial spefer 4 (R = 1000 kms™ '), an
initial wave period of 50 s, an amplitude of = 25 km s !, and the corona has an isothermal
temperature off = 1.4 MK. The evolution is shown near the Sun (solid line),rat: 2R
(dotted line), atr = 5 R, (dashed line), and at= 9R dotted-dashed lineRight: dependence
of the nonlinear spherical Alfvén wave amplitude on theatise from the Sun, for 3 different
initial amplitudes:v, = 25,20, and 15 km s* (solid, dotted-dashed, dashed) (Nakariakov et
al. 2000b).

of nonlinear evolution: (1) linear wave growth, (2) satioatand overturn, and (3)
nonlinear dissipation. The theoretically predicted gtovéate of Alfvén waves can be
tested with observations of the evolution of line broadgras a function of height
above coronal holes, assuming that the line broadeningsisceged with transverse
motions caused by Alfvén waves.

8.2.2 Observations of Acoustic Waves in Open Corona

Probably the first detection of propagating MHD waves in (Qpeoronal structures
was made with SOHO/EIT in 1996. Plotting the EUV brightnegpalar plumes
(Fig. 8.12 top) as a function of time (Fig. 8.12, bottom),ngsthe EIT 171A wave-
length, propagating features were noticed which had anarndtapeed of ~ 75— 150
km s~! and occurred quasi-periodically with periods@fx~ 10 — 15 min (DeForest
& Gurman 1998). Based on the speed, which is close to the sspeed expected in
this temperature band’(~ 1.0 MK, ¢, = 147 km s~ 1), and the density modulation
inferred from the EUV brightness variation, it was conclddeat these wave trains
in plumes correspond to propagating slow-mode magnetasticovaves, which are
compressive waves. The energy flux associated with these trans was estimated
t0 deywave/dt = (1.5 — 4.0) x 10° erg cnm 2 s~', which is comparable to the heat-
ing requirement of coronal holes. The evolution of these/sitode magneto-acoustic
waves can be modeled with the theoretical wave equatiorb(8 derived (with neglect
of dissipative effects) for a radially diverging geometag, appropriate for the these
observed wave trains in polar plumes. Ofman et al. (199%ppaed a numerical 2D
MHD simulation of the evolution of slow-mode magneto-ad@aves in plumes,
found that the waves experience nonlinear dissipationcandluded that they signif-
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Figure 8.12:Top: polar plumes observed over the South Pole of the Sun with $BHGN
1996 Mar 7 at a wavelength of 174, after subtraction of the radial background mod@bttom:
running time difference images of plumes #1 and #5, witlpstaveraged over 360 s. Diagonal
features have velocities #f~ 100 km s~ (DeForest & Gurman 1998).

icantly contribute to the heating of the lower corona by coespive viscosity. This
dissipation mechanism leads to damping of the waves wilterfitst solar radii above
the surface (Ofman et al. 2000b). Cuntz & Suess (2001) mddde-mode magneto-
acoustic waves in plumes with a “basal-spreading” geomatiy found that shocks
form as a consequence at low coronal heights (.3R), in contrast to models that
assume weak nonlinearity.

Further away from the Sun, a search for slow-mode compnesisiMHD waves
was carried out with the SoHO/UVCS white-light channel (@fmet al. 1997, 2000a).
Within a heliocentric distance ef= 1.9—2.45 R, Fourier power spectra glolarized
brightnessime series revealed significant power at a perio@of 6 min (Ofman et
al. 1997). A wavelet analysis of the same and additional U&ta confirmed periods
in the range of” ~ 6 — 10 min, with coherence times of the fluctuations ox&gr~ 30
min. Banerjee et al. (2001) found long-period oscillationster-plume regions with
periods ofP ~ 20 — 50 min up to a height < 20 Mm above the limb, and interprets
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them also as slow-mode (acoustic) waves. These obsersaioroborate the presence
of compressional waves high above the limb, which are prigithle continuation of
the slow-mode magneto-acoustic waves detected in pluntb<EN.

8.2.3 Spectral Observations of Alfen Waves in the Open Corona

After we have discovered slow-mode MHD waves in the opentgrona (e.g., in
plumes,§ 8.2.2), the question arises whether there also exist fasteiVIHD waves,
which could provide an interesting probe for high-frequeddven heating and ac-
celeration of the solar wind. So far there is no direct refiann imaging observa-
tions, probably because of the high time cadence and higbigecontrast needed.
Vertical Alfvén waves with a speed ofs = 1000 — 10,000 km s~! would cross a
vertical scale heighh,, ~ 50 Mm of the T" ~ 1.0 MK plasma in coronal holes in
At = A\, /va =5 — 50 s. Moreover, Alfvén waves are non-compressional and do not
modulate the plasma density, in contrast to slow-mode @&uvaves, while fast-
mode MHD waves behave somewhere inbetween, but generatlylate the plasma
density to a lesser degree than acoustic waves. On the aihdr hoth compressive
magneto-acoustic (slow mode) and incompressive (fastegnativen waves perturb
the plasma velocityy(;), which causes positive and negative Doppler shifts that ca
be detected as line broadening. If the distribution of plasmlocity perturbations is
random, it broadens the natural line width in quadraturéhabthe broadened line can
be fitted by an effective temperatuig; ¢,

2kp

Tepp=Ti+ <AV > (8.2.10)
whereT; is the temperature of line formation for an ionand< Av? > is the aver-
age line-of-sight component of the unresolved perturbateocities (e.g., caused by
Alfvén waves).

If the line broadenin@\v is caused by Alfvén waves, the theory predicts a correla-
tion between the Alfvén velocity disturbander(r) = v,(r) (Eq. 8.2.8) and the mean
densityp(r) = mn ~ m;n; (Eq. 8.2.2), which according to the evolutinary equation
in radial geometry derived i§8.2.1 is

Av(r) = vy (r) « pg]“(r) o< n; VA (8.2.11)

Nonthermal broadening of UV and EUV coronal lines have beeasured with
Skylah where nonthermal velocities akv ~ 20 km s™! were reported in coro-
nal holes and quiet Sun regions (Doschek & Feldman 1977).eMecent measure-
ments with SOHO/SUMER (for a review see, e.g., Spadaro 189@al that the non-
thermal velocity increases systematically with the adt&wabove the limb (e.g., from
Av =24 km s! atthe limb toAv = 28 km s™! at a height ofs = 25 Mm, Doyle et
al. 1998), correspondingto a velocity increase that is isterst with the theoretical pre-
diction of undamped radially propagating Alfvén waves.(ifn. (hs) /n.(h1)]~/* ~
[exp(—h/Ar)] /" = exp(+h/4rr) ~ exp(1/8) = 1.13, [(Av(ha)/Av(h)] =
28/24 = 1.17). Erdélyi et al. (1998b) detected a similar Alfvén scglin the center-
to-limb variation of the line broadening in transition regilines. Banerjee et al. (1998)
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Figure 8.13: Top: electron density profilew.(h) above a coronal hole measured with
SoHO/SUMER, UVCS, and LASCOMiddle: nonthermal line widthsAv measured with
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(r) (Eq. 8.2.11) (Doyle et al. 1999).
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confirmed the results from Doyle et al. (1998) over a largéghtaange, finding an in-
crease of the nonthermal velocity of the Si VIII line fratzw(h;) = 27 km s™! at
hy = 20 Mm to Av(hy) = 46 km s ! ath, = 180 Mm, over which range the den-
sity decreased from, (h;) = 1.1 x 10 cm 2 to n.(h2) = 1.6 x 107 cm~?; so the
observed velocity increasév(hy)/Av(hy) = 46/27 = 1.70 agrees well with the
theoretical predictiofin, (ha)/n.(h1)]~'/* = (0.16/1.1)~'/* = 1.62. Similar non-
thermal velocities were also measured by Chae et al. (1988a50HO/SUMER, by
Esser et al. (1999) with SOHO/UVCS (nonthermal velocitytwsdof20 — 23 km s~
atr = 1.35 — 2.1Rg), and Doschek et al. (2001) with SOHO/SUMER. Combining
the Si VIII with O VI line width measurements, Doyle et al. @% found that the
Alfvén scaling (Eq. 8.2.11) agrees well only in the heigmge ofh, = 30 — 150 Mm

(r = 1.04 — 1.2R;), suggesting nonlinear evolution of the Alfvén waves at1.2R,
(see Fig. 8.13, bottom). Taking all these spectroscopicsoreanents together, there
seems to be strong support for the presence of fast-modear Ghlfvén) MHD waves
in the open field structures of the solar corona. We will déscilne relevance for coro-
nal heating i 9.

8.3 Global Waves

So far we have considered MHD waves that propagated insigeguédes, either in
coronal loops{ 8.1) or along vertically open structures with radial divemnge § 8.2).
However, waves have also been discovered that propagatecly over the entire
solar surface, very much like the spherical water waves yodyre when you throw
a stone in a pond. Obviously, the origin of these sphericalewas very localized,
caused by a flare oreoronal mass ejection (CMBE} the center of the circular waves.
These global waves were first discovered in chromospheriefdission (calledore-
ton wave} and were recently in coronal EUV images from SoHO/EIT @@dlEIT
wavesy. The big challenge is the physical understanding of the @pg@gation of these
global waves in the complex topology of our corona, whichtiscured by vertical
stratification, horizontal inhomogeneities, and magniestabilities during CMEs.

8.3.1 Moreton Waves, EIT Waves, and CME Dimming

The discovery of global waves goes back to Moreton & Rams8¢@}, who reported
the finding of 7 flare events (out of 4068 flares photographéthirduring 1959/1960)
with disturbances that propagated through the solar atherepver distances of the
order of 500,000 km at speedswof 1000 km s~!. More such reports noted expanding
arc features originating in flares and traveling distandez06,000 km or more with
lateral velocities ofr ~ 500 — 2500 km s~! (Moreton 1961; Athay & Moreton 1961;
Moreton 1964; Harvey et al. 1974), or ~ 330 — 4200 km s™! (Smith & Harvey
1971). Reviews on early ddobservations of this type of flare waves can be found in
Svestka (1976; 4.3) and Zirin (19885 11). Recent observations of a Moreton wave in
Ha and H3 even revealed a velocity increase frem= 2500 km s~! to 4000 km s
(Zhang 2001). Today it is believed, based on the high prapagspeeds which are in
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Figure 8.14:Two global wave events observed with SOHO/EIT ¥5on 1997 Apr 7 (left)
and 1997 May 12 (right). The intensity images (top) were réed before the eruption, while
the difference images (middle and bottom) show differerimstsveen the subsequent images,
enhancing emission measure increases (white areas) andrdintblack areas) (Wang 2000).

the range of coronal Alfvén speeds, that the phenomenorosétdn waves represent
a tracer of a coronal disturbance, rather than a chromoisgirégin (Thompson 2001).

Recent observations by SoHO/EIT (Fig. 8.14) have provideaimbiguous evi-
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Figure 8.15:Left: propagation model of a Moreton wave (Uchida 1968jght: iso-Alfvéen
speed contours calculated for a coronal portion throughchvlai Moreton wave propagates
(Uchida et al. 1973).

dence for global waves, initiated by flares and CMEs. One @fitist events was ob-
served during the Earth-directed CME of 1997-May-12, whiets characterized as a
bright wavefront propagating quasi-radially from the szeuregion, leaving a dimmed
region behind, and having a radial speedvof= 245 + 40 km s™! (Thompson et
al. 1998a). More observations of such global waves follofs@th SoHO/EIT (Thomp-
son et al. 1999; 2000a; Klassen et al. 2000; Biesecker e0aR)2 The catalog of 19
EIT wave events compiled by Klassen et al. (2000) investigi#te correlation of ra-
dio type Il events with EIT waves. Radio type Il bursts ardéwd to trace coronal
shock waves and were found to have speeds pf 300 — 1200 km s~!, much faster
than the EIT waves which were found to have speeds0f ~ 170 — 350 km s,
Biesecker et al. (2002) investigated correlations betwldénEIT wave events and as-
sociated phenomena (CMEs, flares, and radio type Il buifi#fs —Davey & Thomp-
son (1999) observed a global wave with a high spatial reisoiutsing TRACE 195
and traced the detailed trajectories of the propagating\virnts, finding anisotropic
deviations from radial propagation and speed variatiomsfr ~ 200 km s~! to 800
km s7!, clearly illustrating the inhomogeneity of the coronal mewn. Two cases of
global waves have been analyzed where the wave front of Momgaves in kv and
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Figure 8.16:Simulation of the EIT wave event of 1997 April 7 (Fig. 8.14) ayray-tracing
method of fast-mode MHD waves. The color range indicatesevepeeds > 500 km s7!
(black) and lower speeds (white). Gaps appear in the wawsfiaftert > 45 min when waves
become reflected back into the chromosphere (Wang 2000).

EIT waves were found to be co-spatial, both experiencingmseguent deceleration,
which was interpreted in terms of a fast-mode shock (“blastef) scenario (Warmuth
et al. 2001), rather than in terms of CME-associated magfietd adjustment.

An intriguing feature of global waves seen with EIT is the diing region (e.g.,
Thompson et al. 2000b), which the wave front leaves behied, (8.g., Fig. 8.14).
If the global wave would be just a compressional wave frorteasity enhancement
would occur at the front and a rarefaction slightly behindjlesthe density would be
restored in the trail of the wake. The fact that a long-termrding occurs behind the
global waves indicates that material has been permanenmtipved behind the wave
front, probably due to the vertical expulsion of the acconyag CME. This scenario
is strongly supported by recent Doppler shift measureme@sV and He |, indicating
vertical velocities ofr = 100 km s~! in the dimming region that was feeding the CME
(Harra & Sterling 2001, 2003).
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Figure 8.17:MHD simulation of a CME where a piston-driven shock formsre énvelope of
the expanding CME, according to the model of Chen & Shiba@0R0The simulated case has
Bo = 0.25 andv,..pe = 100 km s~ 1. Top: global evolution of the density (greyscale), magnetic
field (solid lines), and velocity (arrows).ower panel:local evolution in the lower corona and
chromosphere, where the initial magnetic field is shown witld lines (Chen et al. 2002).

8.3.2 Modeling and Simulations of Global Waves

Global waves in the solar corona were modeled early on ingexha spherically ex-
panding fast-mode MHD shock wave, from which the shock fisrdetected as an
EIT wave, while the upward propagating shock is manifestedhdio type Il bursts
(Uchida 1974), whereas the Moreton waves seendnrépresent the chromospheric
ground tracks of the dome-shaped coronal shock front (l&chtdal. 1973). Uchida
(1974) derived the wave equations for such a sphericallpaating fast-mode MHD
wave in a radially diverging magnetic field (similar§®.2.1) and calculated the wave
propagation in the WKB approximation (an example of a catah of propagating
wave fronts is shown in Fig. 8.15 left). Furthermore, obedrslectron density distribu-
tions and magnetograms were used to constrain models ofcthalgvave propagation
(Fig. 8.15 right) and the trajectories of the accompanyatio type Il bursts and More-
ton waves (Uchida et al. 1973; Uchida 1974). The scenarioflafre-produced initial
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Figure 8.18:Evolution of the horizontal density(z) distribution obtained in the MHD simu-
lation shown in Fig. 8.17, with an increment in time. Note tve wave features: a fast coronal
Moreton wave and a slower broader EIT wave front (Chen etQfl2R

pressure pulse that triggers a fast-mode shock propaghtioggh the corona, the so-
calledblast-wave scenarjavas further simulated with a full numerical MHD code by
Steinolfson et al. (1978), the ignition of the resulting skavas modeled by Vrsnak &
Lulic (2000a,b), and the formation of the expelled blobsha toronal streamer belt
were further modeled with LASCO observations by Wu et al0@0

A realistic numeric simulation of the EIT signature of glblfast-mode MHD
waves was realized by Wang (2000). Fig. 8.16 shows the résult specific event
(21997 April 7), where the global magnetic field was consediby a photospheric
magnetogram and the EUV emission by EIT ]ZQB‘nages (Fig. 8.15, left). The fast-
mode MHD wave speed is defined by the dispersion relationngineEq. (7.1.32),
which has the quadratic solution (see Eq. 7.1.35 for theiapegse of = 0),

Vit + \/(vf4 +¢2)? — 4vi 2 cos? 6| . (8.3.1)

1
VphZE

Wang (2000) used the distribution of phase spegd§B(r, 6, )] constrained by the
photospheric magnetic fieB(r, 6, ») as a lower boundary condition and calculated
the propagation of fast-mode wave fronts using a ray-tgagiathod (Fig. 8.16), which
closely ressembles the observations (Fig. 8.15, left).s@tsimulations reproduce the
initial horizontal speeds of ~ 300 km s™! of observed EIT waves, which are then
found to decelerate to = 50 — 200 km s~! in weak-field regions. The speeds simu-
lated by Wang (2000) are consistent with the observed ElTesidwt are abo& — 3
times lower than those simulated by Uchida (1974) for Maret@aves. This discrep-
ancy was reconciled by a numeric MHD simulation which minadSME by an initial
strong upward-directed external force on a fluxrope, whighed the evacuation of
the fluxrope with subsequent magnetic reconnection und#ém(&ig. 8.17; Chen et
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al. 2002; see model of Chen & Shibata 2000). A piston-drieack appears strad-
dling over the fluxrope, which moves upward with a super-8ifispeed ofr ~ 360
kms~!, while near the solar surface, the piston-driven shock wegees to a finite am-
plitude MHD fast wave. The evolution of the horizontal déypslistribution is shown in
Fig. 8.18, where two wave-like features are seen: (1) apidtiven shock wave with
a speed ofr ~ 400 km s™!, which corresponds to the coronal Moreton wave, and (2)
a second wave with an initial speedwf= 115 km s~!, which becomes increasingly
blurred with time and corresponds to the EIT wave. This satioh explains the fast
Moreton wave in terms of a shock wave that comes from the edipgrCME, not from
the flare itself, while the EIT wave front is explained in tarof an adjustment to the
successive opening of CME field lines (Délannée & Aulati@®9; Délannée 2000).

Other numerical simulations of global waves explore thbikta of active regions
under the impact of global waves (Ofman & Thompson 2002) egtbbal distribution
of the coronal magnetic field (at the height of propagating ®éaves) and the coronal
viscosity (Ballai & Erdélyi 2003), a new discipline thatghit be called'global coronal
seismology’

8.4 Summary

Propagating MHD waves have moving nodes, in contrast to stating modes with
fixed nodes. Propagating MHD waves result mainly when disturances are gen-
erated impulsively, on time scales faster than the Alfén or acoustic travel time
across a structure.

Propagating slow-mode MHD waves (with acoustic speed) haween recently
detected in coronal loops using TRACE and EIT, usually beingaunched with
3-minute periods near sunspots, or with 5-minute periods aay from sunspots.
These acoustic waves propagate upward from a loop footpoirdnd are quickly
damped, never being detected in downward direction at the gposite loop side.
Propagating fast-mode MHD waves (with Alfien speeds) have recently been dis-
covered in a loop in optical (SECIS eclipse) data, as well aa radio images (from
Nobeyama data).

Besides coronal loops, slow-mode MHD waves have also beematged in plumes
in open field regions in coronal holes, while fast-mode MHD waes have not yet
been detected in open field structures. However, spectroguic observations of line
broadening in coronal holes provide strong support for the etection of Alfvén
waves, based on the agreement with the theoretically predied scaling between
line broadening and density,Av(h) o n.(h) /4.

The largest manifestation of propagating MHD waves in the slar corona are
global waves that spherically propagate after a flare and/oICME over the entire
solar surface. These global waves were discovered earlier Ha, called Moreton
waves, and recently in EUV, called EIT waves, usually accongmied with a coronal
dimming behind the wave front, suggesting evacuation of canal plasma by the
CME. The speed of Moreton waves is about three times faster #n that of EIT
waves, which still challenges dynamic MHD models of CMEs.



