Hard X-ray source motions in the July 23, 2002 γ -ray flare

Säm Krucker, G. J. Hurford, R. P. Lin

Space Sciences Lab, University of California, Berkeley, CA 94720-7450

krucker@ssl.berkeley.edu

ABSTRACT

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is used to study the Hard X-ray (HXR) source motions of the July 23, 2002 γ -ray flare. Above 30 keV, at least 3 HXR sources are observed during the impulsive phase that can be identified with footpoints of coronal magnetic loops that form an arcade. On the northern ribbon of this arcade, a source is seen that moves systematically along the ribbon for more than 10 minutes. On the other ribbon, at least two sources are seen that do not seem to move systematically for more than half a minute, with different sources dominating at different times. The northern source motions are fast during times of strong HXR flux, but almost absent during periods with low HXR emission. This is consistent with magnetic reconnection if a higher rate of reconnection of field lines (resulting in a higher footpoint speed) produces more energetic electrons per unit time and therefore more HXR emission. The absence of footpoint motion in one ribbon is inconsistent with simple reconnection models, but can be explained if the magnetic configuration there is more complex.

Subject headings: acceleration of particles — Sun: flares

1. Introduction

Solar Hard X-ray (HXR) bremsstrahlung from energetic electrons accelerated in the impulsive phase of a flare is observed to be primarily from the footpoints of magnetic loops. The mechanism that accelerates these particles is still not understood. Standard magnetic reconnection models predict increasing separation of the footpoints during the flare (e.g., Priest and Forbes 2002) as longer and larger loops are produced. If the reconnection process results in accelerated electrons (Øieroset et al. 2002), the HXR footpoints should show this motion. The motion is only apparent; it is due to the HXR emission shifting to footpoints of neighboring newly reconnected field lines. Hence, the speed of footpoint separation reflects

the rate of magnetic reconnection and should be roughly proportional to the total HXR emission from the footpoints. Sakao, Kosugi, & Masuda (1998) analyzed footpoint motions in 14 flares observed by Yohkoh HXT, but did not find a clear correlation between the footpoint separation speed and the HXR flux. Recently, however, source motion seen in $H\alpha$ was studied by Qiu et al. (2002). They found some correlation with HXR flux during the main peak, but not before and after.

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI, Lin et al. 2002) allows HXR footpoint motion to be studied in detail. First results from Fletcher & Hudson (2002) analyzing several GOES M-class flares show systematic, but more complex footpoint motions than a simple flare model would predict. In this letter, the HXR source motion in the July 23, 2002 γ -ray flare is investigated (s. Lin et al. 2003 for an overview). The very long duration of HXR footpoint emission of over 10 minutes makes this event favorable for studying footpoint motion. A rough correlation between HXR footpoint separation and the total HXR flux is found.

2. Observations

During the impulsive phase (00:27-00:40 UT), at least three HXR sources can be distinguished above 30 keV in the cleaned images with the highest resolution (clean beam size of 3.3" FWHM) (Figure 1, top): a northern source (f1) in a positive polarity region, and a southern (f2) source and a third source in-between (f3) in a negative polarity region. Furthermore, each of these sources have counterparts seen in EUV and H α . The EUV and H α observations show a two ribbon structure, with the HXR source fl on the northern ribbon, and f2 and f3 on the southern ribbon (White et al. 2003). Thus, these HXR sources appear to be at footpoints of coronal magnetic loops; this is confirmed by MDI observations of whitelight emission from the same three sources. The similar temporal variations of f1 and f2 in their lightcurves as well as in their spectra (Emslie et al. 2003) indicate they are at opposite ends of the same magnetic loop. The magnetic connection between source f3 and the other footpoints is unclear at the present stage of data analysis; f3 shows less spectral variation and its lightcurve stops being similar to f1 a and f2 after 00:30:30 UT, disappearing entirely after ~00:34 UT. Below 30 keV, a coronal source dominates the HXR emission (Lin et al. 2003). During the impulsive phase this source has a thermal spectrum with temperatures around 40 MK (Emslie et al. 2003), i.e., a "superhot" coronal source (Lin et al. 1981).

2.1. Source motion

Cleaned images (pixel size of 0.25") in the 30-80 keV range with a clean beam size of 4.8" FWHM (grids 2 through 8 were used) with time resolution of 26 s and 8 s were used to study the source motions. Not including grid 1 improved the image quality slightly, and

still allowed a clear separation of the different sources. For each source, a two dimensional non-circular Gaussian fit around the maximum was used to determine the source centroid location to an accuracy below the chosen pixel size.

Figure 2 shows that the northern footpoint (f1) moves in a linear motion roughly parallel to the apparent neutral line along the ribbon with a velocity up to $\sim 50\,\mathrm{km\,s^{-1}}$. The velocities along and perpendicular to the line of motion are derived by differentiation using 3-point Lagrangian interpolation. Since the direction of motion is roughly along constant longitude, projection effects are small along the direction of the main motion, but could be significant perpendicular to it. However, the observed motion perpendicular is very small (Figure 3); during the first minutes no perpendicular motion is seen, with a standard deviation of $\sim 0.08''$ for the 26 s cadence images ($\sim 0.16''$ for the 8 s cadence). This standard deviation is used as an upper limit for the uncertainty in the centroid location in Figure 3. The centroids of the 26 s and 8 s cadence images agree well (Figure 3 left and middle); however, details of sudden movements (best seen at 00:30:28, 00:31:48 UT, and 00:38:12 UT) are lost in the 26s cadence data. These sudden jumps often occur at times near the rise of individual HXR peaks. The velocities derived from the 8s cadence images are therefore somewhat higher, while some peaks in the 26 s cadence data are less pronounced (e.g., 00:38:12 UT) or even averaged out (e.g., 00:30:28 UT). MDI white light observations mentioned earlier show the same source motion as seen in HXR, but with less accuracy and at lower cadence. The H α observations show a more complex source than seen in HXR, but also reveals a similar source motion.

The other footpoints located on the southern ribbon do not move in the same way. The southern source (f2) shows a more complex, elongated source structure sometimes even showing a double peak (e.g., image at 00:28:45 UT in Figure 1, top left). A more detailed analysis is need to determine the significance of this double structure. The centroid position of f2 is plotted in Figure 2 (left). During the first minutes (00:27-00:34 UT), f2 is mostly dominated by emission around (-870,-245). For times with a double source it occasionally happens that the maximum emission is coming from the other source slightly ($\sim 4''$) to the north-east. However, no systematic source motion is seen. With the later peaks after 00:35 UT, the centroid of f2 is at a significantly different position, towards the east (for simplicity, this source is still labeled f2 although it might be independent of the earlier source f2). Also during this later time, no clear systematic source motion is seen; the averaged source location is around (-874.9,-239.8) with a standard deviation of 0.6". The third source f3 does not show systematic motion in the same direction for more than half a minute at a time, but the centroids are also roughly located along the ribbon. During the time of the strongest emission (00:29-00:30 UT) f3 stays fixed around (-875.6,-230.0) within a standard deviation of 0.2".

The gradual "superhot" coronal source moves in a similar direction as the northern footpoint (f1) with a comparable speed (Figure 3, right). Before 00:28:30 UT, an initially coronal, non-thermal source (Lin et al. 2003) dominates; afterwards the newly emerging "su-

perhot" coronal emission dominates, resulting in an apparent shift of the observed centroid locations towards the "superhot" source. After 00:28:30 UT, the actual source motion of the "superhot" source is seen.

The motion of the northern footpoint f1 clearly correlates with the time profile of the HXR footpoint (Figure 3). During the initial peaks in HXR (00:27:30-00:29:30 UT), the source motion is fast. Around the dip in HXR flux at 00:30:20 UT, the motion is very slow or even absent, then it increases again during the following HXR peak at 00:30:40 UT. For the following minutes with relatively low HXR emission the f1 moves slowly and even seem to stop between 00:33:00-00:34:30 UT. Then, with the new HXR peak at 00:35 UT, it starts moving again, although with a delay of ~30 s. After ~00:36 UT, it slows down before it increases again during the HXR peak around 00:38:30 UT. In the velocities derived from 26 s cadence data, there is a rough correlation between the absolute values of the velocities and the total HXR flux. However, the relation between the velocities and the HXR flux is not linear; the fluxes of the larger peaks between 00:27-00:30 UT is almost three times the fluxes of later peaks after 00:34 UT but the observed velocities are only slightly smaller for the later, weaker peaks. The velocities derived from the 8 s data reveal more detail, showing that the source motion are often largest in the rise to the peak (best seen at 00:30:28, 00:31:48 UT, and 00:38:12 UT).

3. Discussion

The RHESSI HXR observations of the July 23, 2002 γ -ray flare shows footpoint emissions above 30 keV originating from the ribbons of a magnetic arcade, whereas a coronal source dominates below 30 keV. One footpoint source (f1) moves systematically for more than 10 minutes, but others do not. This is not what would be expected from simple reconnection models, but consistent with earlier findings (e.g., Sakao 1994, Fletcher & Hudson 2002). The measured velocities of up to $\sim 50 \, \mathrm{km \, s^{-1}}$ are comparable to the values reported by Sakao, Kosugi, & Masuda (1998). The "superhot" coronal source moves with a similar speed and in a similar direction as the moving footpoint (f1). Contrary to simple reconnection models, the direction of motion is roughly along the ribbon and not perpendicular to it. This indicates that the reconnected magnetic field lines are highly sheared. The continuous motion along a straight line suggests that footpoints of the newly reconnected loops in the northern ribbon just lie next to the previously reconnected loop.

The lack of systematic footpoint motion for more than half a minute in the other ribbon implies a much more complicated magnetic configuration of the field lines connecting the reconnection site and the footpoints. One end of the newly reconnected field lines may not be simply rooted adjacent to the previously flaring footpoint, but might be connected to a different location along the ribbon. Hence, the observed HXR source does not show systematic motion, instead occasionally jumping to a different location. The magnetic field

at the southern ribbon is indeed complex as revealed by the MDI magnetogram, while the northern ribbon shows a smaller sized, simply shaped positive polarity region.

Thus, we find a general correlation between the motion and the HXR flux of one footpoint: The source moves during times of strong HXR emission, but slows down during times of low emission. This is consistent with more energetic electrons being produced and therefore more HXR emission when there is more rapid reconnection, as observed as more rapid apparent motion of footpoints. At the same time, there are also other energy releases, in $H\alpha$ emission and in long-lived soft X-ray emission, which appear related to reconnection but without HXRs and electron acceleration. How and why particle acceleration occurs is still unkown at present; A treatment of these questions and of flare energetics will be left for future analysis.

We would like to thank Brian Dennis and Hugh Hudson for reading of the manuscript and their helpful comments. This work was supported by NASA grant NAS5-98033-05/03.

REFERENCES

Emslie, A.G., Kontar, E.P., Krucker, S, Lin, R.P., 2003, ApJ Letter, this issue

Fletcher, L.; Hudson, H.S., 2002, Solar Physics, 210, 307

Lin, R. P.; Schwartz, R. A.; Pelling, R. M.; Hurley, K. C, 1981, ApJL, 251, L109-L114

Lin, R.P. et al., 2002, Solar Physics, 210, 3-32

Lin, R.P. et al., 2003, ApJ Letter, this issue

Øieroset, M., Lin, R.P., Phan, T.D., Larson, D.E., and Bale, S.D., 2002, Physical Review Letters, 89, 19

Priest, E.R. & Forbes, T.G, 2002, Astronomy Astrophysics Revs. 10, 313

Qiu, J.; Lee, J.; Gary, D.E.; Wang, H., 2002, Apj, 565, 1335

Sakao, T., 1994, Ph.D. Thesis

Sakao, T.; Kosugi, T.; Masuda, S., 1998, In ASSL Vol. 229: Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, 273

White, S.M.; Krucker, S.; Shibasaki, K.; Yokoyama, T.; Kundu, M.R., 2003, ApJ Letter, this issue

This preprint was prepared with the AAS IATEX macros v5.0.

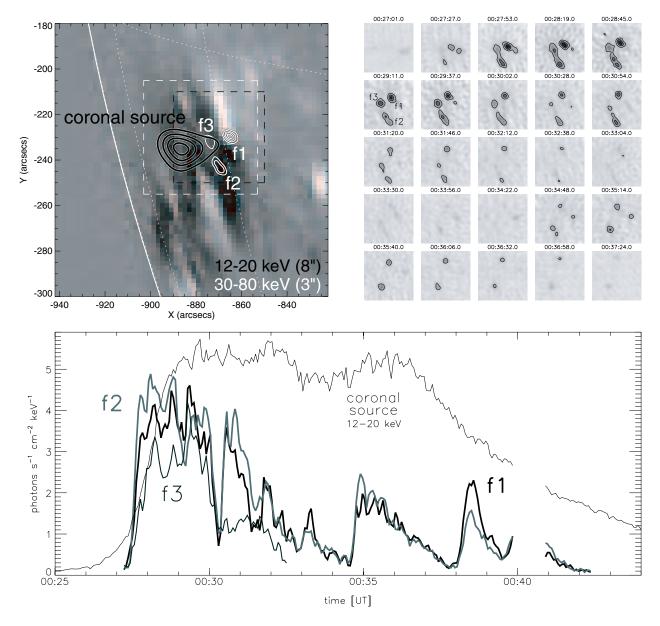


Fig. 1.— Location and temporal variation of the different HXR sources seen during the main phase of the γ -ray flare of July 23, 2002: (top left) The three main footpoint sources f1, f2, and f3 (white contours, 30–80 keV, clean beam size of 3.3" FWHM) and the coronal source (black contours, 12–20 keV, clean beam size of 9.6" FWHM) taken at 00:28:15UT are superposed on the pre-flare MDI magnetogram (00:12UT). Contour levels are 30, 50, 70, 90% of the maximum emission. The white box marks the field-of-view of the images shown in Figure 2. (top right) Cleaned images (30–80 keV, clean beam size of 3.3" FWHM) taken with 26 second integration time. The shown field-of-view of 40"by 40" with the center pixel at (-870,-235) is marked in black in the image to the left. Images are scaled to the maximum emission in the time series. For a clearer representation, contour levels at 20, 50, 80% of the absolute maximum of the same images are shown as well. (bottom): Time profiles of individual footpoints at 30–80 keV (thick curves) and the coronal source at 18–25 keV (thin black, divided by 1500) taken from images at 4 s cadence.

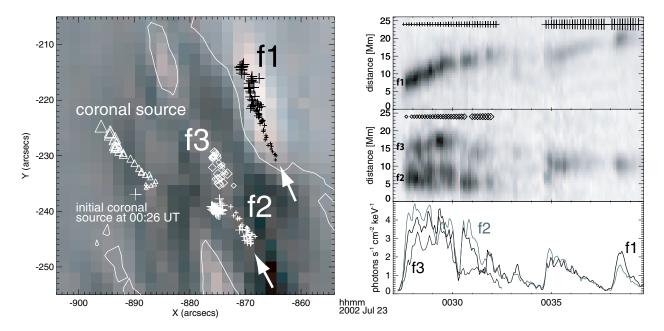


Fig. 2.— (left) Temporal evolution of the HXR footpoints f1 (black crosses), f2 (white crosses), and f3 (white diamonds) at 30-80 keV and the coronal source (white triangles) at 18-25 keV. The centroid positions of the different sources taken every 8 seconds for the footpoints and every 26 seconds for the coronal source are shown on an MDI magnetogram in which the apparent neutral line is shown in white; extreme values are ± 600 G. (cf. Figure 1, top right). The increasing size of the symbols represents times from 00:26:35 to 00:39:07 UT. The centroid of the initial coronal source at 00:26 UT is marked with a white cross. (right) HXR profiles along the two ribbons at 30-80 keV (top and middle panel) and along the main direction of motion of the coronal source at 18-25 keV (bottom). Black is enhanced emission. The directions corresponding to these profiles are given by arrows in the image on the left.

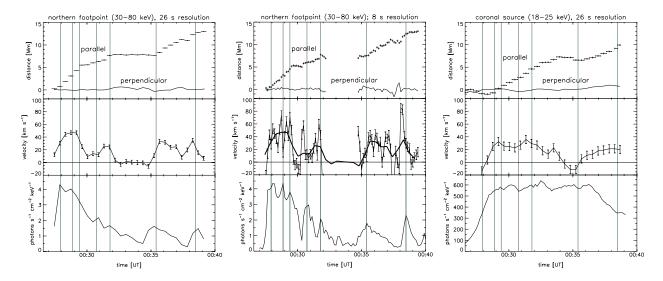


Fig. 3.— The motion of the northern footpoint f1 (in 26s resolution on the left, and 8s resolution in the middle) and the coronal source (26s resolution). For each three plots, three panels are shown: (top) the traveled distance parallel and perpendicular to the main direction of motion (cf. Figure 2, left), (middle) the velocity along the main direction of motion, and (bottom) the total flux. For temporal comparison, vertical gray lines mark the times of HXR peaks selected from the 8s resolution time profile. Due to the lower statistics in the 8s resolution images, a clear source location could not be determined for all times and so some data points are missing. The derived velocities from the 26s cadence images are also shown as thick black line in the figure for the 8s data for comparison.