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[1] A simple semi-empirical model for the motion of interplanetary ejecta is proposed to advance
the prediction of their arrival times at Earth. It is considered that the driving force and the gravity
are much smaller than the aerodynamic drag force. The interaction with the ambient solar wind is
modeled using a simple expression for the acceleration

:
u = �g(u�w), where w = w(R) is the

distance-dependent solar wind speed. It is assumed that the coefficient g decreases with the
heliocentric distance as g = aR�b, where a and b are constants. The equation of motion is
integrated numerically to relate the Earth transit time and the associated in situ velocity with the
velocity of coronal mass ejection. The results reproduce well the observations in the whole velocity
range of interest. The model values are compared with some other models in which the
interplanetary acceleration is not velocity dependent, as well as with the model where the drag
acceleration is quadratic in velocity

:u = �g2(u � w)ju � wj. INDEX TERMS: 2164 Interplanetary
Physics: Solar wind plasma, 2111 Interplanetary Physics: Ejecta, driver gases, and magnetic clouds,
7513 Solar Physics, Astrophysics, and Astronomy: Coronal mass ejections, 7531 Solar Physics,
Astrophysics, and Astronomy: Prominence eruptions

1. Introduction

[2] Coronal mass ejections (CMEs) are propelled through the
solar corona and launched into the solar wind by the Lorentz force
[see, e.g., Chen, 1989, 1996; Vršnak, 1990, 1992, and references
therein]. Acceleration maximum is usually observed within a
distance of several solar radii [Vršnak, 2001a]. It has been shown
by Vršnak [2001a] that the most abrupt eruptions are related to the
so-called flare sprays which attain the maximum acceleration at
low heights below 1 solar radius (r�). In extreme cases the plane of
sky acceleration is larger than 2000 m s�2, and the velocity grows
at the rate w = �u/�h > 10�2 s�1 (u is the velocity and h is the
height). On the other hand, CMEs that achieve acceleration
maximum at several r� show acceleration of the order of 10–
100 m s�2 and the velocity growth rate of the order of 10�4 s�1.
After the acceleration phase most of CMEs show in coronographic
observations an approximately constant velocity [St. Cyr et al.,
1999].
[3] In the interplanetary (IP) space, fast ejecta decelerate,

whereas the events that are slower than the solar wind experience
a prolonged acceleration: Statistically, CMEs show a larger span of
speeds than IP ejecta at Earth (1 AU), the velocities converge
toward the solar wind speed [see Gopalswamy et al., 2000, and
references therein]. Indirectly, the effect is also reflected in the
difference between transit and in situ velocities of the shocks
driven by the IP ejecta [see, e.g., Watari and Detman, 1998, and
references therein].
[4] In fact, the coronographic observations reveal that in a

significant fraction of fast CMEs the deceleration begins already
in the high corona. St. Cyr et al. [1999] found that about 10% out
of 76 events simultaneously observed by Mauna Loa coronameter
and Solar Maximum Mission coronograph showed a negative

acceleration. Vršnak [2001a] reported a deceleration in 14 out of
44 events (32%) in which the post-acceleration phase was
observed. Twelve of these events were studied in detail by Vršnak
[2001b] (hereinafter called paper 1). Inspecting the data shown in
paper 1 one finds that the observed coronal decelerations of fast
CMEs are at least an order of magnitude higher than the average IP
decelerations found by Gopalswamy et al. [2000] for the events of
similar initial velocities. This indicates that the main deceleration
of fast ejecta takes place in the high corona after the driving force
becomes negligible. On the other hand, a more efficient ‘‘early’’
acceleration of slow CMEs to the solar wind speed can partly
explain shorter 1-AU transit times of such events than predicted by
the constant acceleration model used by Gopalswamy et al. [2000].
Assuming a stronger acceleration in the early phase of the IP
motion provides a higher average velocity of slow events and thus
a shorter model travel time. However, let us note that the transit
times of about 3 days found for some CMEs with observed coronal
velocities between 200 and 400 km s�1 can be fully explained
only by underestimated initial speeds due to projection effects
(N. Gopalswamy et al., Validation and testing of empirical CME
arrival model, submitted to Journal of Geophysical Research,
2001)(hereinafter referred to as Gopalswamy et al., submitted
manuscript, 2001).
[5] In paper 1 it was demonstrated that the deceleration of the

12 studied events is velocity dependent and can be interpreted as a
consequence the drag force (ad hoc attributed therein to the
viscosity). This indicates that the interaction between the moving
magnetic flux rope and the ambient solar wind plays a key role in
the IP motion of CMEs, since at large distances it is expected that
the Lorentz force driving the eruption, as well as the gravity,
become negligible [Chen, 1996].
[6] The moving magnetic flux rope and the ambient magneto-

plasma interact in a complex manner. There are several effects that
should be taken into account. The magnetic flux rope expands; that
is, its cross section increases. The speed, plasma density, and the
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magnetic field of the solar wind change with the distance. The
three-dimensional aspect of the problem is essential, making the
modeling difficult. Furthermore, the magnetic rope is not a rigid
body, and its shape changes because of the coupling. Finally, the
dissipative phenomena associated with the electric resistivity
(providing the reconnection of the magnetic field of the rope with
the solar wind field) and the viscosity could be also important.
[7] The subject was approached in different ways to model

various aspects of the problem [see, e.g., Wu et al., 1981; Dryer et
al., 1984; Osherovich et al., 1993; Vandas et al., 1995, 1996;
Cargill et al., 1995, 1996; Gosling and Riley, 1996]. Let us
emphasize here the numerical simulations by Cargill et al.
[1995, 1996], where the aerodynamic coupling was investigated
and interpreted in detail. The flux rope was driven through the
ambient magnetoplasma applying an ad hoc acceleration. Neglect-
ing the viscosity, it was shown that the effect of the aerodynamic
drag in the case when the external magnetic field is aligned with
the rope’s axis can be expressed well by the acceleration in the
form a = �cDreljVjV/m, where re is the external density, V is the
velocity of the rope, l is its radius, and m = pl2ri is the mass per
unit length of the rope (assumed to be constant). The effective drag
coefficient cD is found to have value on the order of 1.
[8] Since a decrease of the ambient density and magnetic field

and the flux rope expansion were not considered, the results do not
reproduce all relevant aspects of the motion of CMEs. However,
these simulations justify (at least in the absence of the magnetic
reconnection) the application of the mentioned functional form for
the drag (for a discussion, see Cargill et al. [1996]). This then
provides analytical modeling of the IP motion of erupting flux
ropes like, for example, those performed by Chen [1996].
[9] In paper 1 it was shown that the deceleration of the studied

events can be expressed as adrag = �g2ju � wj(u � w), where u is
the eruption speed and w is solar wind speed. Statistically, the
coefficient g2 decreases with the heliocentric distance r at which the
event was measured. The decrease can be approximately repre-
sented by the power law g2 = a2R

�b2 , where R = r/r�. In the
considered radial distance range (say, R < 15) the average values of
constants are found to be a2 � 22 10�6 km�1 and b2 � 2.2.
[10] Comparing with the previously mentioned expression for

the drag acceleration, one finds g2 = cDrel/m = (re/ri)cD/pl. This
relation shows that g2 is directly affected by the CME radial
expansion, i.e., by the increase of l. On the other hand, the
behavior of the ratio re/ri depends on the ambient density decrease
re(r), the leakage of the cold prominence material [see, e.g., Vršnak
et al., 1993], and on the expansion of the CME volume. Let us note
that in the IP space the density of magnetic clouds is not very much
different from its surrounding [Burlaga et al., 1987], whereas in
the corona the ratio is, say, re/ri � 1/10. So the increase of the ratio
re/ri is smaller than the increase of the flux rope radius l, and thus
g decreases with the increasing r.
[11] Using cD � 1 [Cargill et al., 1996] and taking that at R =

10 the flux tube radius is of the order of l � 106 km, one finds g2
� 0.5–5 10�7 km�1 if CME is several times denser than the
ambient corona. Similarly, taking that l is of the order of 105 km at
the height of 1 r�, one finds g2 � 10�6–10�5 km�1. The obtained
values are consistent with those obtained empirically in paper 1
(see Figure 5b therein).
[12] In the following we present a simple semi-empirical model

for the motion of IP ejecta based on the assumption that in the IP
space the dominant force is the aerodynamic drag and that the
coefficient g decreases with the heliocentric distance. The aim is to
advance the prediction of the 1-AU transit times, which in the case
of slow CMEs usually are shorter than predicted by the constant
acceleration model proposed by Gopalswamy et al. [2000]. It will
be demonstrated that the model proposed in the following also
reproduces the in situ velocities measured at 1 AU much better
than the constant acceleration model. Let us stress that in this paper
we consider only the statistical aspect of the problem: The behavior

of g can be significantly different from one case to another because
of different evolution of the flux rope radius l and the ratio re/ri
which can hardly be inferred for individual events. However, in
section 4 we propose the procedure that can be applied in the
individual case studies, in particular, to the events in which the
deceleration can be measured from coronographic observations.

2. Model

[13] The dynamics of an erupting magnetic flux rope is domi-
nantly governed by the Lorentz force, the drag force, and the gravity
[Chen, 1996]. The MHD models of Chen [1989, 1996] and Vršnak
[1990] predict that the Lorentz force attains maximum below
heights of several solar radii, consistent with the observations
[Vršnak, 2001a]. At larger distances it becomes negligible. This
happens primarily because of the increase of the dimensions of the
electric current system. The self-inductance L of the system
increases and, consequently, the total current I decreases to preserve
the associated magnetic flux � = IL (for the discussion of a possible
influence of the reconnection process, see Vršnak [1990]).
[14] Since the gravity can also be neglected (paper 1), the drag

becomes a dominant force in the late phase dynamics of CMEs
[Chen, 1996]. The equation of motion reduces to ½ _u = �adrag. The
acceleration caused by the drag can be expressed in an approximate
form as a1

drag = g1(u � w) [see, e.g., Kleczek and Kuperus, 1969,
and references therein], where u is the CME velocity and w is the
solar wind speed. The empirical results presented in paper 1 and
the numerical simulations by Cargill et al. [1995, 1996] show that
the expression quadratic in velocity a2

drag = g2(u � w)ju � wj
might be more appropriate.
[15] As mentioned in section 1 the coefficient g2 (and, analo-

gously, g1) is a function of r since the radius of the flux rope l and
the density ratio re/ri change with the distance. These dependences
can not be derived straightforwardly and expressed in a simple
explicit form (see various approaches by Vršnak [1990], Osher-
ovich et al. [1993], Vandas et al. [1995], and Chen [1996]).
Therefore we will use the empirical expressions established in
paper 1, relating in a statistical manner the average values of the
parameters g1 and g2 with the heliocentric distance as g1,2 =
a1,2R

�b1;2 , where a and b are empirically determined constants.
[16] Neglecting the Lorentz force and the gravity in late phases of

the flux rope eruption and choosing for the drag the expression linear
in velocity, the kinematics is governed by the equation of motion:

_u ¼ a1R
�b1 u� wð Þ; ð1Þ

where u ¼ _r ¼ _Rr� denotes the radial velocity. Adopting for the
drag the expression quadratic in velocity, the equation of motion
becomes

_u ¼ a2R
�b2 u� wð Þ u� wj j: ð2Þ

Substituting _u ¼ _Rdv=dR into (1) and (2) and using u = _Rrs, one
finds

du
dR

¼ rsa1R
�b1 1� w

u

� �
ð3Þ

and

du
dR

¼ rsa2R
�b2 1� w

u

� �
u� wj j; ð4Þ

respectively.
[17] In the following it will be assumed that (1) or (2) can be

applied also to the motion of IP ejecta. Then, applying some solar
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wind speed model, a numerical integration of (3) or (4) gives u(R)
and so R(t).
[18] Bearing in mind the scatter of data points about the mean

g(R) curves (see Figure 5 in paper 1) the integration was performed
using a range of parameter values a and b. In Figure 1 the IP
motion of CMEs is illustrated by showing the results of a
numerical integration of (3) where different initial velocities u0 =
u(t = 0) and several values of a1 and b1 are applied. The solar wind
model by Sheeley et al. [1997],

w Rð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�

R�2:8
8:1

p
; ð5Þ

was adopted. The asymptotic solar wind speed w0 = 298.3 km s�1

proposed by Sheeley et al. [1997] was replaced in the calculations
by w0 = 400 km s�1 according to measurements of the 1-AU solar
wind velocities [Intriligator, 1977]. Finally, it was assumed that the
driving force is switched off at different heliocentric distances R0 in
the range 5 < R < 30. It was found that the choice of the driving
force switch-off distance R0 plays a minor role in comparison with
the choice of parameters a, b, and w0.
[19] The results for u0 = 1000 km s�1 are shown for different

values of a1 and b1 to illustrate how the choice of these parameters
affects the results. A similar outcome is found integrating (4) and
using an appropriate choice of a2 and b2, e.g., a2 = 5 	 10�6 km�1

and b2 = 1.5, or a2 = 60 	 10�6 km�1 and b2 = 2. Figure 1 clearly
shows a convergence of velocities toward the solar wind speed.
The distribution of velocities of 23 CMEs and the associated IP
ejecta presented by Gopalswamy et al. [2000] shows that the span
of CMEs’ velocities of 150–1050 km s�1 reduced at 1 AU to only
350–650 km s�1. Bold curves in Figure 1 reproduce fairly well
such behavior, indicating that a1 = 2 	 10�3 s�1, b = 1.5, and w0 =
400 km s�1 are a suitable set of parameters to reproduce the
statistical behavior of the overall IP acceleration of ejecta.

3. Results

[20] Equations (3) and (4) were integrated numerically to
determine the model transit times (T1AU) and velocities (u1AU) of
ejecta at 1 AU as a function of the initial velocity u0. The initial

velocity range u0 = 200–1500 km s�1 was considered. The solar
wind velocity w(R) described by (5) was applied, with w0 ranging
between 300 and 500 km s�1. A set of values for a and b was used,
bearing in mind the average coronal values obtained in paper 1.
The heliocentric distance at which the deceleration begins was
provisionally taken as R0 = 10. The 1-AU transit time was then
found as T1AU = T 0 + T 0, where T 0 is the travel time obtained
integrating (3) or (4) and T 0 is the time needed to reach R0 by the
constant velocity u0. Let us stress that the results do not change
much for any other reasonable choice of R0, say, in the range 5–30
solar radii.
[21] The curves shown in Figure 2 are the model results

T1AU(u0) and u1AU(u0) for several combinations of a, b, and w0

which are chosen to illustrate a range of parameter values compat-
ible with the observations. Solid circles show the observed arrival
times of the leading edge of the ejecta from the list presented by
Gopalswamy et al. [2000]. Crosses display the values Te = T + t,
where t is the duration of a given IP ejection at 1 AU, i.e., Te
represents the 1-AU transit time for the trailing edge of an IP
ejection.
[22] Analogous results obtained by integrating (4) are shown in

the insets. Comparing these results with those obtained using (3),
one finds that both models reproduce well the observed 1-AU
transit times across the whole initial velocity range. However,
Figure 2b indicates that the model based on (3) shows a better
agreement with the observations when u1AU velocities are consid-
ered. Let us stress that among those shown, only the curves
denoted by 1 in Figures 2a and 2b consistently reproduce the
observed T1AU and u1AU. For example, the curves labeled 3a and
3b in Figure 2a maybe better reproduce the observed arrival times
T1AU than curve 1, but the same set of parameters does not provide
a good match with the observed values of u1AU (see curves 3a and
3b in Figure 2b).
[23] In Figure 3 some other models are compared with the

observations. Beside the models governed by (3) and (4), the
results obtained using a = 0 and a = const [Gopalswamy et al.,
2000] are shown (curves labeled 3 and 4, respectively). Further-
more, the model considering a linear decrease of a(R) is presented
(alin; curve 5), adjusted to reproduce the average accelerations
found by Gopalswamy et al. [2000].
[24] A discrepancy between the a = 0 model and the observa-

tions clearly shows that the drag acceleration is an essential feature
of the IP motion of CMEs. The a = const and alin models are
sufficiently accurate to predict the arrivals of fast CMEs, but slow
CMEs with u0 ] 300 km s�1 arrive 1–2 days earlier than
calculated. Furthermore, the dependence u1AU(u0) is poorly match-
ing the observations in the whole velocity range.
[25] The models based on (3) or (4) reproduce the observations

better than the other models considered: The curves for T1AU(u0)
labeled 1 and 2 in Figure 3a lie by the slow events’ data closer
than the other three. Furthermore, the u1AU(u0) dependence is
much better reproduced (see Figure 3b), especially by the model
based on (3).

4. Discussion and Conclusions

[26] In the proposed model it is taken into account that the main
deceleration of fast IP ejecta occurs in the high corona. The transit
times and velocities at 1 AU can be modeled reasonably well by
using the simplest approximation for the drag acceleration adrag =
�g(u � w). Adopting the empirical model by Sheeley et al. [1997]
for the solar wind velocity and using g = 2R�1.5, the model
reproduces well the observations in the statistical sense.
[27] The calculated dependences T1AU(u0) and u1AU(u0) show

that the 1-AU transit times and velocities in the events of a low
initial speed depend on the solar wind speed more than those
having a high initial speed. Inspecting the consistency of T1AU(u0),
Te(u0), and u1AU(u0) model curves with the observations, it can be
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Figure 1. Motions u(R) modeled using (3) and (5). The
asymptotic solar wind speed was taken as w0 = 400 km s�1, and
different distances of the driving force switch-off were assumed.
Bold lines represent the deceleration with a1 = 2 	 10�3 s�1 and
b = 1.5 for initial velocities of u0 = 1000, 600, 400, and 200 km s�1

(curves labeled 1a, 2, 3, and 4, respectively). The curves labeled 1b
and 1c represent the motion with a1 = 10�3 s�1, b = 1.5 and a1 = 2
	 10�3 s�1, b = 1, respectively, using u0 = 1000 km s�1.
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Figure 2. Comparison of the model results obtained using (3) with the observations. The results are shown for b1 =
1.5. Bold, shaded, and thin solid lines (denoted as 1, 2a, and 3a) represent a1 = 2 	 10�3 s�1 with w0 = 400 km s�1,
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Te(u0), respectively. (b) The CME transit velocities u1AU are shown versus the initial velocity u0. Open circles
represent the observed values u1AU(u0).
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concluded that in the statistical sense the model results fit the best
to a part of the IP ejecta that is somewhere between the leading and
trailing edge, possibly associated with the location of the magnetic
field maximum of the magnetic cloud [Burlaga, 1988].
[28] The solar wind transit times amount to Tw = 5.8, 4.3, and

3.5 days for w0 = 300, 400, and 500 km s�1, respectively. The
group of low-velocity events (u0 ] 400 km s�1) in Figure 2a,
having transit times shorter than the solar wind of, say, w0 = 500
km s�1, can not be straightforwardly explained by the proposed
model. A possible explanation is that the CME velocity was
underestimated because of, for example, projection effects
(Gopalswamy et al., submitted manuscript, 2001) or because they
were still accelerating at the end of coronographic measurements.

If so, the actual initial velocities u0 of these events were larger than
considered, and the data points representing them in Figure 2a, in
fact, should be shifted to the right, closer to the model curves.
Another possibility is that in these events the solar wind speeds
were close to 600 km s�1, corresponding to Tw = 2.9 days.
[29] The solar wind speed is a highly variable parameter and on

the spatial/time scale of an IP ejection it can vary as much as ±100
km s�1 (for the complexity of the problem, see Burlaga et al.
[1987]). The wind speed measured at only one point (Earth), prior
to the arrival of an ejection, might be thus taken only as a very
crude estimate for the effective wind speed. Using such a value for
the model input can introduce in some cases larger errors than
using an average wind speed w0 � 400 km s�1.

1

2

3

4

5

6

7

8

0 200 400 60 0 8 00 100 0 1 20 0
v0 (k m s-1 )

T
1A

U
(d

ay
s)

a)

3
4

5

200

300

400

500

600

700

800

0 200 400 600 80 0 1 00 0 1 20 0
v0 (k m s-1 )

v
1A

U
(k

m
s-1

)

b)

3 4
5

1

1

2

2
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the curves labeled 1 in the main graphs of Figure 2). The shaded lines (labeled 2) represent the results based on (4) for
a2 = 60 	 10�6 km�1 b2 = 2 (the same as the curves labeled 1 in the insets in Figure 2). The thin, dotted, and dashed
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[30] So, just the uncertainty in the values of the model input
parameters u0 and w0 introduces itself an error in estimating the 1-
AU arrival time which can be up to ±1 day. The scatter of the
observed values T1AU at a given u0 (Figure 2a) is comparable with
the estimated error, indicating that the mentioned effects probably
represent a basic limitation in predicting the transit time of IP ejecta
in general.
[31] A specific drawback of the proposed model is an uncer-

tainty in the value of the parameter g. The values used are based on
an average scaling law. In individual case analyses, distinct values
of the coefficients a and b should be assigned to each particular
event: They depend on the initial value and the evolution of the
flux rope radius l and the density ratio re/ri. This could be at least
partly performed when an initial deceleration can be measured
directly from the coronographic observations. Suppose that a CME
is observed in the radial distance range between Rb and Re,
decelerating from the velocity ub to ue. In such a case the value
g0(�R ) can be estimated at �R = (Rb + Re) / 2 from the deceleration
rate D(½�R )= (�u/�r)�R, applying the procedure described in paper
1. Then the value of g0 can be used to adjust appropriately the
value of a in (1) or (2). Furthermore, the solar wind velocity
measurements in the considered period should be checked. If the
speed prior to the arrival of the ejection was rather stable, it should
be used as a hopefully good estimate for w0.
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structive comments and suggestions leading to a substantial improvement
of the paper.
[33] Janet G. Luhmann thanks the referees for their assistance in
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Vršnak, B., Eruptive instability of cylindrical prominences, Sol. Phys., 129,
295–312, 1990.
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Vršnak, B., Deceleration of coronal mass ejections, Sol. Phys., 202, 173–
189, 2001b.
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