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Abstract

Solar eruptive phenomena embrace a variety of eruptions, including flares, solar energetic
particles, and radio bursts. Since the vast majority of these are associated with the eruption,
development, and evolution of coronal mass ejections (CMEs), we focus on CME observations
in this review. CMEs are a key aspect of coronal and interplanetary dynamics. They inject
large quantities of mass and magnetic flux into the heliosphere, causing major transient dis-
turbances. CMEs can drive interplanetary shocks, a key source of solar energetic particles
and are known to be the major contributor to severe space weather at the Earth. Studies
over the past decade using the data sets from (among others) the SOHO, TRACE, Wind,
ACE, STEREO, and SDO spacecraft, along with ground-based instruments, have improved
our knowledge of the origins and development of CMEs at the Sun and how they contribute
to space weather at Earth. SOHO, launched in 1995, has provided us with almost continuous
coverage of the solar corona over more than a complete solar cycle, and the heliospheric im-
agers SMEI (2003 – 2011) and the HIs (operating since early 2007) have provided us with the
capability to image and track CMEs continually across the inner heliosphere. We review some
key coronal properties of CMEs, their source regions and their propagation through the solar
wind. The LASCO coronagraphs routinely observe CMEs launched along the Sun-Earth line
as halo-like brightenings. STEREO also permits observing Earth-directed CMEs from three
different viewpoints of increasing azimuthal separation, thereby enabling the estimation of
their three-dimensional properties. These are important not only for space weather prediction
purposes, but also for understanding the development and internal structure of CMEs since we
view their source regions on the solar disk and can measure their in-situ characteristics along
their axes. Included in our discussion of the recent developments in CME-related phenomena
are the latest developments from the STEREO and LASCO coronagraphs and the SMEI and
HI heliospheric imagers.
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Coronal Mass Ejections: Observations 5

1 Introduction

Coronal mass ejections (CMEs) consist of large structures containing plasma and magnetic fields
that are expelled from the Sun into the heliosphere. They are of interest for both scientific and
technological reasons. Scientifically they are of interest because they remove built-up magnetic
energy and plasma from the solar corona (Low, 1996), and technologically they are of interest
because they are responsible for the most extreme space weather effects at Earth (Baker et al.,
2008), as well as at other planets and spacecraft throughout the heliosphere. Most of the ejected
material comes from the low corona, although cooler, denser material probably of chromospheric
or photospheric origin is also sometimes involved. The CME plasma is entrained on an expanding
magnetic field, which commonly has the form of helical field lines with changing pitch angles, i.e., a
flux rope. This paper reviews the best-determined coronal properties of CMEs and what we know
about their source regions, and some key signatures of CMEs in the solar wind. Observations
of Earth-directed CMEs, often observed as halos surrounding the occulting disk of near-Earth
coronagraphs, are important for space weather studies.

Until the early years of this century, images of CMEs had been made near the Sun primarily
by coronagraphs on board spacecraft. Coronagraphs view the outward flow of density structures
emanating from the Sun by observing Thomson-scattered sunlight from the free electrons in coronal
and heliospheric plasma. This emission has an angular dependence which must be accounted for
in the measured brightness (e.g., Billings, 1966; Vourlidas and Howard, 2006; Howard and Tappin,
2009). They are faint relative to the background corona, but much more transient, so some form
of background subtraction is typically applied to identify them. CME-related phenomena such as
flares and prominence eruptions have been known since the late 19th century, and energetic particles
(Forbush, 1946), type II and IV radio bursts (Wild et al., 1954), and interplanetary shocks (Sonnet
et al., 1964) have been observed since the 1940s, 50s and 60s. The first spacecraft coronagraph
observations of CMEs were made by the OSO-7 coronagraph in the early 1970s (Tousey, 1973).
These were followed by better quality and longer periods of CME observations using Skylab (1973 –
1974; MacQueen et al., 1980), P78-1 (Solwind) (1979 – 1985; Sheeley Jr et al., 1980), and SMM
(1980; 1984 – 1989; Hundhausen, 1999). In late 1995, SOHO was launched and two of its three
LASCO coronagraphs still operate today (Brueckner et al., 1995). Finally late in 2006, LASCO was
joined by the STEREO CORs (Howard et al., 2008a). These early observations were complemented
by white light data from the ground-based Mauna Loa Solar Observatory (MLSO) K-coronameter
viewing from 1.2 – 2.9𝑅⊙ (Fisher et al., 1981; Koomen et al., 1974) and green line observations
from the coronagraphs at Sacramento Peak, New Mexico (Demastus et al., 1973) and Norikura,
Japan (Hirayama and Nakagomi, 1974).

Throughout the early years also, at larger distances from the Sun, interplanetary transients were
observed using interplanetary radio scintillation (1964 – present; Hewish et al., 1964; Houminer
and Hewish, 1974; Vlasov, 1981) and from the zodiacal light photometers on the twin Helios
spacecraft (1975 – 1983; Richter et al., 1982; Jackson, 1985). The Helios photometers observed
regions in the inner heliosphere from 0.3 – 1.0 AU but with an extremely limited field of view.
The new millennium witnessed the arrival of a new class of detector, the heliospheric imager,
with the Solar Mass Ejection Imager (SMEI) launched on board the Coriolis spacecraft early in
2003 and the Heliospheric Imagers (HIs) launched on the twin STEREO spacecraft in late 2006.
LASCO has detected well over 104 CMEs during its lifetime (Yashiro et al., 2004; Gopalswamy
et al., 2009b; http://cdaw.gsfc.nasa.gov/CME_list/). SMEI observed nearly 400 transients
during its 8.5 year lifetime (Webb, 2004; Webb et al., 2006; Howard and Simnett, 2008); it was
switched off in September 2011. The number of “events” reported using the HIs is now over 1340
(http://www.stereo.rl.ac.uk/HIEventList.html), although less than 100 have been discussed
so far in the scientific literature.

These mostly white light observations have been accompanied by those of the solar disk at
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coronal wavelengths including the SOHO Extreme Ultraviolet Imaging Telescope (EIT), SOHO
Coronal Diagnostic Spectrometer (CDS) imagers, STEREO Extreme-UltraViolet Imager (EUVI),
and instruments on board the Yohkoh, TRACE, RHESSI, and Hinode spacecraft (see Hudson and
Cliver, 2001), as well as near and beyond 1 AU by in-situ experiments on spacecraft including
the Voyagers, Ulysses, Helios, Wind, ACE, and STEREO. In February 2010 the Solar Dynamics
Observatory (SDO) spacecraft joined the solar disk imaging ensemble, while EIT, Yohkoh, TRACE,
SMEI and Ulysses no longer return scientific data. In addition, important new plasma diagnostics of
CMEs have been obtained from ultraviolet spectroscopy from SOHO (CDS, SUMER, and UVCS,
Hinode (EIS) and SDO (EVE). The UVCS instrument, in particular, which overlaps the same
height range as LASCO C2, has provided a wealth of data on the evolution of hundreds of CMEs
(see review by Kohl et al., 2006). Figure 1 shows a timeline of the launches of spacecraft relevant
to CME study.

1960 1970 1980 1990 2000 2010

Space Age

1976: Helios 2 launched

TIMELINE OF SPACECRAFT

1962: Mariner 2 launched

1962: Vela 3 launched

1963: Mariner 2 concluded

1965: Pioneer 6 launched

1968: Pioneer 9 launched

launched
1971: OSO−7

1973: Skylab

launched

1974: OSO−7
concluded

1974: Helios 1
launched

1977: Voyagers launched

1978: ISEE−3 launched

1979: Solwind launched

1979: Skylab concluded

1973: IMP−8 launched

1981: SMM malfunctioned

1982: Helios concluded

1990: Ulysses
launched

1989: SMM concluded

1987: Pioneer 8 concluded

1985: ICE (ISEE−3) concluded

1985: Solwind concluded

1984: SMM repaired

1982: ISEE−3 Becomes ICE

1980: SMM launched

2004: Pioneer 6 concluded

2003: Coriolis launched

2001: Yohkoh concluded

2001: IMP−8 retired

1998: TRACE launched

1997: ACE launched

1995: SOHO launched

1994: WIND launched

1991: Yohkoh launched 2006: STEREO launched

2006: Hinode launched

2009: Ulysses concluded

2010: SDO launched

Figure 1: Timeline of the history of spacecraft relevant to CME study. Image adapted from Howard
(2011b).

White light observations of CMEs reveal that, even near the sun, the CME can dwarf the
solar disk (see Figure 2). Coronal images of CMEs have also been obtained at radio frequencies,
beginning with the pioneering work at the Culgoora (Australia) Radioheliograph in the 1970s.
Much of this involved the tracking of shocks (via type II bursts) through the corona and into
the heliosphere, but both thermal (Gopalswamy and Kundu, 1992) and non-thermal CME radio
emission (such as type IV bursts) have also been imaged. Figure 3 shows a rare image of a radio
CME from the Nançay (France) Radioheliograph. The onset of CMEs has been associated with
many solar disk phenomena such as flares (e.g., Feynman and Hundhausen, 1994), prominence
eruptions (e.g., Hundhausen, 1999), coronal dimming (e.g., Sterling and Hudson, 1997; Thompson
et al., 1999), arcade formation (e.g., Hanaoka et al., 1994; Hudson and Webb, 1997), and X-ray
sigmoids (e.g., Canfield et al., 1999). However, the vast majority of the ejected energy assumes
the form of mechanical energy carried by the CME and not the associated solar flare, even in the
most energetic cases (Emslie et al., 2004). Many CMEs have also been observed to be unassociated
with any obvious solar surface activity (Howard and Tappin, 2008; Robbrecht et al., 2009a). Most
flares occur independently of CME eruptions and it now seems likely that any flare accompanying
a CME is part of an underlying magnetic process rather than being a direct cause of the CME
launch (Kahler, 1992; Gosling, 1993). Recent models describing the onset and early evolution of
CMEs (e.g., Moore and Roumeliotis, 1992; Antiochos et al., 1999; Fan and Gibson, 2003; Lynch
et al., 2005) provide a variety of mechanisms by which this may be accomplished.

We refer the reader to reviews of these models by, for example, Forbes et al. (2006), rather
than discuss them at length here in this review of CME observations. We also draw the reader’s
attention to other reviews of solar eruptive phenomena and CMEs, including Kahler (1992, 2006),
Webb et al. (1996), Hundhausen (1997, 1999), Low (1997), St Cyr et al. (2000), Webb (2002, 2004),
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Figure 2: Evolution of a “classic” CME observed by the LASCO C2 coronagraph on 2 June 1998. Note the
circular structures just above the prominence, suggesting a flux rope. Image reproduced with permission
from Plunkett et al. (2000), copyright by Springer.
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Figure 3: a) Snapshot map of a radio CME at a frequency of 164 MHz at the time of maximum flux. The
background emission from the Sun has been subtracted. Time variable radio emission from a noise storm
is present to the northwest (upper right). The brightness of the CME is saturated in the corona because
the map has been clipped at a level of 0.04 SFU beam–1, corresponding to a brightness temperature of
2.6 Ö 105 K. The radio CME is visible as a complex ensemble of loops extended out to the southwest (lower
right). Also shown is the spectral index measured at four locations in the radio CME. b) Flux spectra
measured at the four points shown in (a). All flux measurements have been normalized to SFU N−1

beam,
where Nbeam is the 164 MHz beam. Model spectra are also shown. Image reproduced with permission
from Bastian et al. (2001).

Gopalswamy (2004), Gopalswamy et al. (2006b), and Aschwanden (2006). Several recent journal
special issue volumes are devoted to CMEs: LASCO-era CMEs (Kunow et al., 2006), CME and
energetic particles (Gopalswamy et al., 2006a), STEREO results (Christian et al., 2009), and 3-D
measurements (Mierla et al., 2011). In addition, see also the Living Reviews by Schwenn (2006)
and Chen (2011), and other Living Reviews in Solar Physics articles on prominences, flares, space
weather, and other related phenomena. One of us has also recently published an introductory text
on CMEs (Howard, 2011b).
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2 Properties of CMEs

The measured properties of CMEs include their occurrence rates, locations relative to the solar
disk, angular widths, speeds and accelerations, masses, and energies (e.g., Hundhausen, 1992;
Kahler, 1992; St Cyr et al., 2000; Webb, 2002; Yashiro et al., 2004; Gopalswamy et al., 2005,
2006b; Gopalswamy, 2010b; Kahler, 2006; Vourlidas et al., 2010). There is a large range in the
basic properties of CMEs, although some of this scatter is likely due to imaging projection effects
(e.g., Burkepile et al., 2004; Cremades and Bothmer, 2004). Their speeds, accelerations, masses,
and energies extend over 2 – 3 orders of magnitude (e.g., Vourlidas et al., 2002a; Gopalswamy et al.,
2006b), and their angular widths exceed by factors of 3 – 10 the sizes of flaring active regions (e.g.,
Yashiro et al., 2004). Note that the measured values in the above cited publications make the
assumption that all the CME material is in the “plane of the sky”, i.e., in the plane orthogonal
to the Sun-Earth line. Thus, for example, unless a CME is exactly at the solar limb, its derived
properties will be an underestimate and the width an overestimate. Recent developments using
auxiliary data (Howard et al., 2007, 2008b) and the multiple viewpoint capability of STEREO
(e.g., Mierla et al., 2010, and references therein) have attempted to overcome this problem. These
are discussed later. Table 1 summarizes the statistical properties from all of the near-Earth space
borne coronagraph observations of CMEs (summaries of most CME parameters observed by the
STEREO spacecraft are not yet available).

Table 1: Average statistical properties from near-Earth space borne coronagraph observations of CMEs.
Updated from Gopalswamy (2004). a SMM values from Burkepile et al. (2004). b Updated by S. Yashiro
(2011) priv. comm. c Solwind and LASCO masses and energies from Vourlidas et al. (2010).

Coronagraph OSO-7 Skylab Solwind SMMa LASCOb

Epoch 1971 1973 – 74 1979 – 85 1980, 84 – 89 1996 – present
FOV (𝑅⊙) 2.5 – 10 1.5 – 6 3 – 10 1.6 – 6 1.2 – 32
Total # CMEs 27 115 1607 1351 > 10000

Speed (km s–1) – 470 460 349 489
Acceleration (m s–2) – – – – –16 to +5
Width (°) – 42 43 46 47
Mass (1015) gc – 6.2 1.7 3.3 1.3
KE (1030) ergc – – 4.3 8.0 2.0
Mech. E (1030) ergc – – – – 4.2

CMEs can exhibit a variety of forms, some having the classical “three-part” structure (Illing
and Hundhausen, 1985), usually interpreted as compressed plasma ahead of a flux rope followed by
a cavity surrounded by a bright filament/prominence (Figure 2). Other CMEs display a more com-
plex geometry. Some CMEs appear as narrow jets, some arise from pre-existing coronal streamers
(the so-called streamer blowouts), while others appear as wide almost global eruptions. CMEs
spanning very large angular ranges are probably not really global, but rather have a large compo-
nent along the Sun-observer line and so appear large by perspective. These include the so-called
halo CMEs (Howard et al., 1982) – see Section 2.3. The CDAW CME catalog (Yashiro et al., 2004)
defines a “partial halo” as a CME with an apparent position angle range > 120°. Hence, again, the
definition of a CME is restricted by its viewing perspective. Figure 4 illustrates several examples
of partial and full halo CMEs observed by LASCO.

Figure 5 shows images of the same event (the Earth-directed CME from early April 2010)
observed from three different viewpoints. Figure 5b shows the perspective from LASCO, which is
along the Sun-Earth line, where the CME appears as a halo. Figures 5a and c show the same CME
as observed by each STEREO spacecraft, which were separated in longitude by around 70° from

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://www.livingreviews.org/lrsp-2012-3


10 David F. Webb and Timothy A. Howard

LASCO at the time. The event appears in each COR-2 image as a limb CME directed towards the
left (right) relative to STEREO-A (-B). The dramatic change in the appearance of this CME, with
the only physical change being the viewing location, demonstrates the importance of perspective
with respect to measuring CME properties.

Figure 4: Examples of a variety of halo CME observations, clockwise: a frontside full halo (arrow shows
likely source near Sun center); a backside full halo; a partial halo; and an asymmetric full halo. Image
reproduced with permission from Gopalswamy et al. (2003a).

2.1 CME identification and measurement

Traditionally CME observations were obtained by visual inspection of coronagraph images, and
many of these “manual” catalogs of CMEs observed by the P78/Solwind (http://lasco-www.
nrl.navy.mil/solwind_transient.list), SMM C/P (http://smm.hao.ucar.edu/smm/smmcp_
catalog.html), and LASCO C2 and C3 coronagraphs (http://cdaw.gsfc.nasa.gov/CME_list/
index.html) are now on-line (Boursier et al., 2009; Gopalswamy et al., 2009b). These catalogs
have in recent times been augmented by additional on-line catalogs of CMEs detected by automatic
methods. One is the CACTus CME catalog (Robbrecht et al., 2009a), which uses the Hough
transform to detect motion of the brightest structures of CMEs. The SEEDS (Olmedo et al.,
2008) and ARTEMIS (Boursier et al., 2009) catalogs are based on automated detection of CMEs
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TO EARTH TO EARTH

b)a) c)

Figure 5: Images of the same Earth-directed CME obtained from three different viewing locations within
an hour: a) from STEREO/COR2-B on 3 April 2010 at 11:39 UT, b) from LASCO/C2 at 10:55 UT,
and c) from STEREO/COR2-A on the same day at 11:08 UT. At this time (April 2010) the STEREO
spacecraft were approximately 70° in longitude from the Sun-Earth line and ∼ 140° from each other.
The different appearances of this same CME observed at around the same time demonstrate the need to
consider perspective in measuring CME properties.

in the LASCO C2 coronagraph observed at ∼ 2 – 6𝑅⊙. ARTEMIS detects CMEs on synoptic
Carrington maps. CACTus also catalogs CMEs detected by the STEREO COR2 coronagraphs,
which are in near-1 AU solar orbits.

Comparisons among the LASCO catalogs have shown significant differences. For example,
Robbrecht et al. (2009a) found that CACTus automatically identified many more events than in
the CDAW (manual) catalog but half of them were narrow (< 20° of apparent angular width). In
addition, as shown in Figure 6, the shapes of the CME rate curves were quite different with the
CACTus and sunspot curves similar, but the CDAW curve flattened out during the cycle decline.
This and other comparisons suggest that the CDAW catalog is affected by observer bias since
it has been compiled by at least four different observers throughout the lifetime of the SOHO
mission. One example of this bias appears in the occurrence rate in later years of the SOHO
mission. Occurrence rate increased greatly after 2004, not because more CMEs were physically
erupting, but rather because a decision was made to categorize very narrow LASCO features,
which were previously disregarded, as CMEs. Another comparison of CME properties of the four
LASCO catalogs shows best agreement between the ARTEMIS and SEEDS catalogs (Boursier
et al., 2009), which better reflect the early stages of CMEs (i.e., within the LASCO C2 field of
view). A recent analysis of LASCO CMEs based on a multiscale method convolving high and
low-pass filters with CME images (Byrne et al., 2009) has shown that multiscale values agree
much better with the generally smaller SEEDS CME widths than with the larger CACTus and
CDAW values. A comparison of the LASCO fast (v > 1000 km s–1) CMEs between the CDAW
and CACTus catalogs shows that the CDAW fast CME widths are considerably wider (Yashiro
et al., 2008b). The CACTus CME width distribution is essentially scale invariant in angular span
over a range of scales from 20 – 120° while previous catalogs present a broad maximum around 30°.
Yashiro et al. (2008b) found that the CACTus catalog has a larger number of narrow CMEs than
CDAW, and that the CDAW catalog missed many narrow CMEs during solar maximum. Another
significant discrepancy was that the majority of the fast CDAW CMEs are wide and originate
from low latitudes, while the fast CACTus CMEs are narrow and originate from all latitudes.
In general, automatic catalogs do not always identify wide CMEs, including halos which are the
most important ones for space weather applications when observing from near the Earth (e.g., see
Figure 8 in Gopalswamy et al., 2010b).
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Figure 6: Daily SOHO LASCO CME rates for Cycle 23 (thin curves: smoothed per month, thick curves:
smoothed over 13 months) from 1997 – 2006. These have been extracted using CACTus (red) and the
CDAW CME Catalog (blue). As reference, the daily and smoothed monthly sunspot number have been
overplotted in gray (produced using the SIDC-Royal Observatory of Belgium). The CME rates have been
adjusted to accommodate for duty cycle. Image reproduced with permission from Robbrecht et al. (2009a),
copyright by IOP.
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The above discussion demonstrates that CME identification and measurement remain somewhat
subjective and no consensus has yet been achieved regarding the establishment of a standard
definition of a CME or of the components within. The original definition of a CME as a new,
discrete brightening in the field of view over a time-scale of tens of minutes which is always observed
to move outward (e.g., Webb and Hundhausen, 1987) is still generally accepted. However, some
workers tend to regard any eruption from the Sun observed in the corona, no matter how faint
or narrow, as a CME while others regard an eruption as a CME only if it has a certain size or
structure. Although a “typical” CME is now thought to involve the eruption of a magnetic flux
rope, the structure and magnitude of any CME magnetic field near the Sun can only be inferred,
since we cannot directly measure coronal magnetic fields. Efforts to make the connection between
magnetic flux ropes measured in-situ with CME structure observed by coronagraphs have been
made, most recently by Howard and DeForest (2012a).

2.2 Frequency of occurrence

The frequency of occurrence of CMEs observed in white light tends to follow the solar cycle in
both phase and amplitude, which varies by an order of magnitude over the cycle (Webb and
Howard, 1994). LASCO has now observed the entire Solar Cycle 23 (1996 – 2008) (Figure 7) and
continues to observe through this current rising phase of Cycle 24. It has detected CMEs at a rate
slightly higher than earlier observations, varying from around one per day around solar minimum
to nearly five per day at solar maximum (St Cyr et al., 2000; Gopalswamy et al., 2005, 2006b). This
has been attributed to the improved sensitivity of LASCO as opposed to any physical difference
between CME activity in Cycle 23 and that in prior cycles. LASCO, for example, observes halo
CMEs (Section 2.3) regularly whereas no prior coronagraph observed more than a few (Howard
et al., 1985, for example, only identified 20 halos out of 998 CMEs observed with Solwind)]. This
demonstrates that a fraction of CMEs were undetectable by coronagraphs prior to LASCO. A 13-
month running average of the LASCO CME rate vs. sunspot number shows that both have double
peaks, but that the CME peak lagged sunspots by many months (Figure 8). This lag has also been
seen in previous cycles and is related to observations that high latitude CMEs arise from polar
crown filaments which have a “rush to the poles” near maximum and disappear (erupt) with a
frequency that slightly lags sunspot numbers at low latitudes (Cliver and Webb, 1998; Gopalswamy
et al., 2003b).

As has been well documented, Solar Cycle 23 had an unusually long decline and flat minimum,
extending the cycle to ∼ 13 years, with the “true” minimum in late 2008 or early 2009 (Hathaway,
2010). Referring back to the updated LASCO CDAW CME rate in Figure 6, Figure 9 tracks the
CME rate from the CDAW, SEEDS and CACTus catalogs from 2007 into 2011 along with the
current and predicted SWPC sunspot number. Despite differences in amplitude, it is clear that
the CME rate continues to be correlated with the sunspot number through its minimum and initial
rise of Cycle 24, with the CME rate minimum in late 2008 or early 2009. The linear relationship
between CME rate and sunspot numbers was first shown by Webb and Howard (1994) and recently
confirmed for Cycle 23 by Robbrecht et al. (2009a) (Figure 10), although some variation over a
solar cycle has been found (Gopalswamy et al., 2010a). In Figure 9 we have added the counting rate
from the STEREO COR1 coronagraphs, demonstrating that the CME rate is relatively constant
despite the increasing longitudinal angle between the STEREO spacecraft and Earth from 0 – 90°
during this period.
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Figure 7: LASCO CME occurrence rate (left) and mean speed (right) from 1996 to 2011 averaged over
Carrington rotations. The large spike in CME speed is due to highly energetic CMEs that erupted in the
late 2003 period. Image adapted from Gopalswamy (2010b), updated by S. Yashiro (2011).

Figure 8: The LASCO CME rate smoothed over 13 Carrington rotations and compared with the solar
sunspot number. Arrows indicate the two maxima in CME rate and sunspot number. Large data gaps
occurred during June 1998 to February 1999. Image reproduced with permission from Gopalswamy (2004),
copyright by Springer.
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Figure 9: Daily CME rate for 2010 – 2011 in the context of the rate through recent solar minimum.
CME data sources: LASCO = manual online CDAW catalog (black - NRL, CUA) and our counts since
January 2010 (light blue); SEEDS = automatic catalog (dotted red) courtesy J. Zhang and J. Bannick
(GMU); CACTus = automatic catalog courtesy E. Robbrecht & B. Bourgoignie (SIDC); STEREO COR1
= manual catalog (green) courtesy C. St. Cyr (NASA) and H. Xie (CUA); Sunspot number (SSN – dark
blue is current, dotted blue is predicted) from NOAA SWPC. CDAW and SEEDS rates are for CME
widths > 20. CDAW, SEEDS, and SSN plots are 13-month, COR1 6-month, and 2010 LASCO counts
6-week running averages. Image courtesy T. Kuchar.
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Figure 10: Daily CME rate vs. SSN both averaged per year. The asterisks refer to rates for Cycle 23
derived from CACTUS (see Table 1). Its absolute scale is shown on the right y-axis. The daily CME rates
derived by Webb and Howard (1994) are plotted with diamonds. Its absolute scale is shown on the left
y-axis. A scaling factor of ∼ 4.7 applies between the CACTus and the Webb and Howard rates. Image
reproduced with permission from Robbrecht et al. (2009a), copyright by IOP.
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2.3 Halo CMEs

Because of their increased sensitivity, field of view and dynamic range, the SOHO/LASCO and
STEREO/COR coronagraphs now frequently observe halo CMEs, which appear as expanding,
circular brightenings that completely surround the coronagraphs’ occulting disks (Figure 4). Ob-
servations of associated activity on the solar disk are necessary to help distinguish whether a halo
CME was launched from the front or backside of the Sun relative to the observer. This has had
limited success, as frontsided CMEs that do not have a solar surface association can be mistaken
for backsided events. Halo CMEs are important for three reasons:

1. The source regions of frontside halo CMEs are likely to be located within a few tens of
degrees of Sun center from the perspective of the observer (Cane et al., 2000; Webb, 2002;
Gopalswamy, 2004; Gopalswamy et al., 2010b). Thus, these regions can be studied in greater
detail than for most CMEs which are observed near the limb, but at the cost of reduced
information about the CME itself because of projection. In recent years several CMEs have
been observed by the “three eyes” of STEREO-B, LASCO and STEREO-A by a variety of
viewing points, thus reducing this latter problem (e.g., Howard and Tappin, 2008; Wood and
Howard, 2009; Robbrecht et al., 2009b; Möstl et al., 2009, 2010; Patsourakos and Vourlidas,
2009).

2. Lacking significant deflections in the interplanetary medium, frontside halo CMEs should
travel with part of their structure approximately along the Sun-observer line, so their internal
material can be sampled in-situ by the observer.

3. When they are Earth-directed (i.e., observed as halos by spacecraft on the Sun-Earth line like
SOHO), they are the key link between solar eruptions and major space weather phenomena
such as geomagnetic storms and solar energetic particle events. This “geoeffectiveness” of
halo CMEs depends on the source location on the disk. CMEs that are aligned near the
relative disk center tend to be more geoeffective while those nearer the relative solar limb
are less so. This center-to-limb variation of the geoeffectiveness has been documented (e.g.,
Gopalswamy et al., 2007). The vast majority of the most intense geomagnetic storms of
Cycle 23, for example, were caused by halo CMEs (Gopalswamy, 2010a). Three spacecraft,
SOHO, Wind and ACE, provide solar wind measurements upstream of Earth, and the twin
STEREO spacecraft provide similar measurements from their perspectives drifting away from
the Sun-Earth line.

Partial and full halo CMEs occur at a rate of about 10% that of all CMEs, but 360° halo CMEs
are only detected at a rate of ∼ 4% of all CMEs. It has been documented (e.g., Gopalswamy
et al., 2010a) that halo CMEs appear to be faster and more energetic than non-halo CMEs. This,
of course, does not imply that halo CMEs are somehow physically different, but rather it shows
that even with LASCO some CMEs are not detected. LASCO does not observe faint (weak)
CMEs near Sun center. Studies investigating this include those involving post-eruptive arcades
(Tripathi et al., 2004), interplanetary transients and shocks (Cane and Richardson, 2003; Howard
and Tappin, 2005), and heliospheric imagers (Howard and Simnett, 2008). All found that between
3 – 7% of the studied CME-associated events were not associated with LASCO CMEs. Howard and
Simnett (2008) further deduced that around 15% of interplanetary transients observed far from the
Sun by SMEI were associated with either very weak CMEs or with those that had measurement
problems, e.g., related to the large height and time separations between the LASCO and SMEI
fields of view. However, this study did not exclusively involve halo CMEs.
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2.4 Locations, widths, geometry

The latitude distribution of the central position angles of CMEs tends to cluster about the equator
around solar minimum but broadens over all latitudes near solar maximum. Hundhausen (1993)
first noted that this CME latitude variation more closely parallels that of streamers and promi-
nences than of active regions or sunspots. This pattern also is closely linked to the variation of the
global solar magnetic field, as exemplified by the tilt angle of the heliospheric current sheet (HCS)
when the Sun makes its transition from solar minimum to maximum. This pattern including the
match between CMEs, prominence eruptions and the HCS has been confirmed with the LASCO
data (Figure 11 – Gopalswamy, 2004; Gopalswamy et al., 2010a). On this figure also note the
sharp decrease in the rate of CMEs and prominence eruptions in ∼ 2006 when the HCS became
flatter below 30° solar latitude.

Figure 11: Latitudes of LASCO CMEs (filled circles) with known solar surface associations (identified
from microwave prominence eruptions) plotted vs time, by Carrington Rotation number. The dotted
and dashed curves represent the tilt angle of the heliospheric current sheet in the northern and southern
hemispheres, respectively; the solid curve is the average of the two. The up and down arrows denote the
times when the polarity in the north and south solar poles, resp., reversed. Note that the high latitude
CMEs and PEs are confined to the solar maximum phase and their occurrence is asymmetric in the northern
and southern hemispheres. PEs at latitudes below 40° may arise from active regions or quiescent filament
regions, but those at higher latitudes are always from the latter. Image adapted from Gopalswamy (2004);
Gopalswamy et al. (2010a), updated by S. Yashiro (2011).
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In pre-SOHO coronagraph observations the angular size distribution of CMEs seemed to vary
little over the cycle, maintaining an average width of about 45° (SMM – Hundhausen, 1993; Sol-
wind – Howard et al., 1985). However, the CME size distribution observed by LASCO and the
CORs is affected by their increased detection of very wide CMEs, especially halos. Including halo
CMEs from January 1996 – June 1998, St Cyr et al. (2000) found the average (median) width of
LASCO CMEs was 72° (50°). Including all measured LASCO CMEs of 20 – 120° in width through
2002, Yashiro et al. (2004) found the average widths to vary, from 47° at minimum to 61° at max-
imum (1999), then declining again. Figure 12 from Gopalswamy et al. (2010a) gives the updated
distributions of LASCO CME speeds and widths. The average width of 41° corresponds to non-
halo (width ≤ 120°) CMEs, whereas inclusion of all CMEs yields an average width of 60°. On
the bottom are the speed and width distributions of all LASCO CMEs with widths > 30°. That
the CACTus automatic catalog contains many more narrow CMEs is illustrated in Figure 13 from
Robbrecht et al. (2009b). Shown on a log-log scale are the CACTus and CDAW width distributions
for each year from 1997 – 2006; CACTus does not measure structures with widths below 10°.
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Figure 12: Speed and width distributions of all CMEs (top) and wider CMEs (W ≥ 30°; bottom). The
average width of wider CMEs is calculated using only those CMEs with W ≥ 30°. Image reproduced with
permission from Gopalswamy et al. (2010a), copyright by Springer.

Along with their white light imaging capabilities, the benefits of polarized images have also
been demonstrated with some instruments. A polarizing strip across a fixed radial was part of the
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Figure 13: Apparent CME width distributions, displayed per year in log-log scale. The CACTus distri-
bution corresponds to the red curve; the CDAW distribution is represented by the light blue curve. The
distributions are not corrected for observing time. Image reproduced with permission from Robbrecht
et al. (2009a), copyright by IOP.

C/P instrument on board SMM and polarizing capabilities were part of the Skylab and Solwind
coronagraphs as well (Sheeley Jr et al., 1980; Crifo et al., 1983). Polaroid filters can help determine
distances of CMEmaterial along the line of sight and, therefore, give an idea of its three-dimensional
structure. This is because the Thomson scattered light that enables us to observe CMEs has a
polarization degree that is dependent on the direction of observation (Billings, 1966; Howard and
Tappin, 2009). In what has become two of only a few studies making use of the SOHO/LASCO
polarizing capabilities, Moran and Davila (2004) and Dere et al. (2005) presented analyses of
LASCO C2 polarized CME observations and showed loop arcades and filamentary structure in six
CMEs. The STEREO coronagraphs provide a constant stream of polarized images enabling for
the first time their regular utility for 3-D property extraction. Publications making use of this
ability include Mierla et al. (2009), Moran et al. (2010), and de Koning and Pizzo (2011).

The STEREO instruments allow us to attempt to remove the projection effects using geometry,
that is to use geometric triangulation on features commonly observed between observers. An early
attempt to do this using LASCO and COR2 data was performed by Howard and Tappin (2008).
They measured two events observed as southwest limb CMEs in LASCO observed in November
2007 when the STEREO spacecraft were each ∼ 20° from the Sun-Earth line (and ∼ 40° from each
other). Figure 14 shows the results from a geometric localization technique, also using LASCO and
COR2 data, devised by de Koning et al. (2009). Rather than attempt to perform 3-D triangulation
on a series of points comprising the CME, they confine the CME to within a polygon bound by the
limits of the CME’s extent. While this does not provide as much information as one may assume
can be obtained with 3-D triangulation, it is actually a powerful technique, as the optical thinness
of CMEs makes it nearly impossible to identify the same point in 3-D space when observing from
different perspectives.

Many workers have now devised geometrical techniques for determining 3-D information on
CMEs, including forward modeling (e.g., Thernisien et al., 2006; Wood et al., 2009), tie-pointing
(e.g., Mierla et al., 2009), and inverse reconstruction (Antunes et al., 2009). Other triangulation
efforts have also been made by (for example) de Koning et al. (2009), Liewer et al. (2009), and
Temmer et al. (2009). The review by Mierla et al. (2010) discusses many of these new and emerging
techniques. Attempts to identify the 3-D structure using triangulation has proven to be difficult,
and techniques that place the CME within a volume bound by a polygon (e.g., de Koning et al.,
2009; Byrne et al., 2010; Feng et al., 2012) may have greater success.
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Figure 14: The 3-D spatial location of the CME on 17 October 2008 at 14:08 UT as calculated using
geometric localization. The CME appeared as a west-limb event in STEREO-A, as an east-limb event in
STEREO-B, and as a halo CME by LASCO. The absence of space weather disturbances at Earth associated
with the CME suggests that it was a backside halo event. The green quadrilaterals indicate the bounding
volume of the CME as a whole; the blue quadrilaterals indicate the bounding volume of the leading-edge
shell. The hash marks on the plots indicate the scale used; the distance between each mark is 1𝑅⊙. The
viewing latitudes and longitudes on the plots refer to the observer’s position in HEEQ coordinates. The
left plot is for an observer hovering over the west limb of the Sun; Earth is on the left-hand side of the
plot. The center plot is for an observer at Earth. The right plot is for an observer looking down onto the
north pole of the Sun; Earth is toward the bottom of the plot. Image reproduced with permission from
de Koning et al. (2009), copyright by Springer.

2.5 Kinematics

Estimates of the apparent speeds of the leading edges of CMEs range from about 20 to> 2500 km s–1,
or from well below the sound speed in the corona to well above the Alfvén speed (Figures 8 and
12). The annual average speeds of Solwind and SMM CMEs varied over the solar cycle from
about 150 – 475 km s–1, but their relationship to sunspot number was unclear (Howard et al., 1986;
Hundhausen et al., 1994). However, LASCO CME speeds did generally track sunspot number
in Solar Cycle 23 (Yashiro et al., 2004; Gopalswamy, 2010b), from 280 to ∼ 550 km s–1 at the
maximum and following it in 2003 (Figure 15). Above a height of about 2𝑅⊙ the speeds of typical
CMEs are relatively constant in the field of view of coronagraphs, although the slowest CMEs
tend to show acceleration while the fastest tend to decelerate (St Cyr et al., 2000; Yashiro et al.,
2004; Gopalswamy et al., 2006b). This may be expected, given that CMEs must push through the
surrounding solar wind, believed to have a speed of around 400 km s–1 in the outer corona.

The early acceleration for most CMEs must occur low in the corona (< 2𝑅⊙). Despite its
increased field of view, only 17% of all LASCO CMEs exhibit acceleration out to 30𝑅⊙ (St Cyr
et al., 2000). St Cyr et al. (1999) compared ground-based Mauna Loa, HI MK3 and SMM obser-
vations of CMEs above 1.15𝑅⊙. These had either constant speed or constant acceleration profiles.
The average acceleration of the events was found to be +264 m s–2, clearly much faster than the
near-zero values of acceleration for LASCO CMEs (Yashiro et al., 2004, and our Table 1). Those
features associated with active regions were found to be more likely to have constant speeds and
those associated with prominence eruptions to have constant accelerations. Using observations of
flare-associated CMEs close to the limb in the LASCO C1 field of view (1.1 – 3.0𝑅⊙), Zhang et al.
(2001, 2004) found a three-phase kinematic profile: a slow rise (< 80 km s–1) over tens of minutes;
a second phase with a rapid acceleration of 100 – 500 m s–2 in the height range 1.4 – 4.5𝑅⊙ during
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Figure 15: Annual mean and median speeds of LASCO CMEs from 1996 – 2010. There are two peaks,
the first near solar activity maximum and the second in 2003. Thus, high speeds were still prevalent during
the early declining phase. Image adapted from Gopalswamy (2004), updated by S. Yashiro (2011).

the flare rise phase; and a final phase with propagation at a constant or declining speed. Gallagher
et al. (2003) and others have narrowed the strong (> 200 km s–1) acceleration region of impul-
sive CMEs to ∼ 1.5 – 3.0𝑅⊙. Using LASCO data, Sheeley Jr et al. (1999) and Srivastava et al.
(1999) found that gradually accelerating CMEs were balloon-like in coronagraph images, whereas
fast CMEs moved at constant speed even as far out as 30𝑅⊙. However, when viewed well out of
the sky plane, gradual CMEs looked like smooth halos which accelerated to a limiting value then
faded, while fast CMEs had ragged structure and decelerate (Sheeley Jr et al., 1999). Yashiro et al.
(2004) found that slow CMEs tend to accelerate and fast CMEs decelerated through the LASCO
field of view, with those around the solar wind speed having constant speeds. Thus, CMEs attain
fast acceleration low in the corona until gravity and other drag forces slow them further out. This
process continues into the interplanetary medium. More recently, the high temporal and spatial
resolution STEREO COR and EUVI and SDO AIA imagery has been used to investigate the initial
formation and kinematics of CMEs erupting from active regions (see, e.g., papers by Zhang et al.,
2012; Liu et al., 2011; Patsourakos et al., 2010b,a; Temmer et al., 2010).

Sheeley Jr et al. (1999) used LASCO data to suggest that there were two dynamical classes
of CMEs: gradual CMEs, which are slower, accelerate in the coronagraph fields of view, and
are preferentially associated with prominence eruptions; and impulsive CMEs, which are faster,
decelerate in the coronagraph fields of view, and are preferentially associated with solar flares.
This appeared to confirm the flare-prominence eruption distinction found by MacQueen and Fisher
(1983) using Mauna Loa, Skylab and SMM data. The tendency for fast CMEs to be associated
with solar flares has been known since the earliest observations of coronagraph CMEs (for example,
Gosling et al. (1976), using Skylab observations of CMEs, found a tendency for faster CMEs to
be associated with solar flares and slower ones to be associated with prominences). However,
prominence eruptions are often associated with two-ribbon flares and flares can be also accompanied
by prominence eruptions, especially in active regions. The basic question then is whether there are
two physically different processes that launch CMEs or whether all CMEs belong to a dynamical
continuum with a single physical initiation process. This issue was revisited at several SHINE
workshops (e.g., Crooker, 2002), with no definitive answer. In addition, Low and Zhang (2002)
proposed a model of two kinds of erupting prominence-CMEs depending on whether they had
normal or inverse magnetic geometries. They found that CMEs arising in normal polarity eruptions
have more energy and higher speeds. To the contrary, in a comparison of flare-associated and non-
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flare CMEs, Vršnak et al. (2005) found considerable overlap of accelerations and speeds between
the two CME groups. While flare-associated CMEs are generally faster than those without flares,
there is also a correlation between CME speeds and flare X-ray peak fluxes, in which CMEs
associated with the smaller flares are similar to CMEs with filament eruptions. This argues for
a CME continuum and against the two-class concept. Yurchyshyn et al. (2005) found that the
speeds of both accelerating and decelerating LASCO CMEs are distributed lognormally, implying
that the speeds of both groups result from many simultaneous processes or from a sequential series
of processes. Recently, Howard and Harrison (2012), using historical observations, argue in favor
of a single launch mechanism and a continuum of energies.

2.6 Masses and energies

CME mass calculations require a conversion from the coronagraph-observed intensity to electron
(and therefore plasma) density using the physics of Thomson scattering. Most workers today follow
the theory outlined in Billings (1966) (the necessary equations conveniently appear on a single page
of this text) but more recent reviews of this theory, along with its adaption for heliospheric imaging
appear in Howard and Tappin (2009), Howard (2011b) and Howard and DeForest (2012b). Masses
and energy calculations of CMEs therefore require difficult instrument calibrations and have large
uncertainties. The average mass of CMEs derived from the older coronagraph data (Skylab, SMM
and Solwind) was a few times 1012 kg (see Table 1). LASCO calculations indicate a slightly lower
average CME mass, 1.6 Ö 1012 kg (Figure 16), likely because LASCO can measure smaller masses
down to the order of 1010 kg (Vourlidas et al., 2002a, 2010, 2011b; Kahler, 2006). Studies using
Helios (Webb et al., 1996) and LASCO (Vourlidas et al., 2000, 2010, 2011b) data suggest that the
older CME masses may have been underestimated because mass outflow may continue well after
the CME’s leading edge leaves the instrument field of view. For example, Vourlidas et al. (2010)
estimated that CME masses may be underestimated by a factor of two and CME kinetic energies
by a factor of 8. LASCO results of the mass density of CMEs as a function of height suggest
that this density rises until ∼ 7𝑅⊙, then levels off – Figure 17). The implication is that CMEs
with larger masses reach greater heights, and are more likely to escape the Sun. Indeed, there is a
population with a mass peak < 7𝑅⊙; these CMEs are less massive and slower and may not reach
IP space. This begs the question whether the outward motion of coronal mass that is not clearly
“ejected” should be called a “CME” or something else. Downward motions of prominence material
during eruptions are common, but similar downward motions of mass in white light CMEs are
rare, though it has been reported (e.g., Tripathi et al., 2007).

Mass estimates of a few CMEs have also been made with radio (Gopalswamy and Kundu, 1993;
Ramesh et al., 2003) and X-ray observations (e.g., Rust and Hildner, 1976; Hudson and Webb,
1997) and, more recently, in the EUV (e.g., Harrison et al., 2003; Aschwanden et al., 2009). Many
X-ray and EUV measurements involve “coronal dimming” (Section 3.4) regions associated with a
CME, and these estimates are usually lower than that of the equivalent white light masses. This is
probably because the material leaving the coronal dimming region is only part of that comprised
in the CME. The radio, X-ray, and EUV techniques provide an independent check on CME masses
because their dependency is on the thermal properties of the plasma (density and temperature) vs
only density in the white light observations. Likewise average CME kinetic energies measured by
LASCO are less than previous measurements, 2.0 Ö 1030 erg (Vourlidas et al., 2010 – Figure 16).
The CME kinetic energy distribution appears to have a power law index of –1 (Vourlidas et al.,
2002a), different than that for flares (–2; Hudson, 1991; Yashiro et al., 2006).

Figure 18 shows plots of the solar-cycle dependence of the LASCO CME mass and kinetic
energy (Vourlidas et al., 2010, 2011b). The bottom panel shows the total CME mass per Carrington
rotation. The mass, mass density, and kinetic energy all have minima in 2007 that are 2 – 4 times
below the 1996 minimum and reflect the unusual extended activity in Solar Cycle 23. The total

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://www.livingreviews.org/lrsp-2012-3


24 David F. Webb and Timothy A. Howard

10 12 14 16 18
Log(Mass) [gr]

0

2

4

6

8

10

12

%
 E

ve
n

ts

26 28 30 32
Log(Kinetic Energy) [ergs]

0

2

4

6

8

10

%
 E

ve
n

ts

26 28 30 32
Log(Mechanical Energy) [ergs]

0

2

4

6

8

10

12

%
 E

ve
n

ts

Figure 16: Histograms of LASCO CME mass distribution (upper left), kinetic energy (upper right), and
total mechanical energy (bottom left) for 7668 events. Also shown are the histograms for events reaching
maximum mass < 7𝑅⊙ (dashed lines) and events reaching maximum mass 7𝑅⊙ (dash-double dot). Not
all detected CMEs have been included because mass measurements require: (i) a good background image,
(ii) three consecutive frames with CMEs, and (iii) CMEs well separated from preceding CMEs. Image
adapted from Vourlidas et al. (2010, 2011b), courtesy A. Vourlidas (2011).

mass reaches a minimum in 2009 and is roughly equivalent to the 1996 minimum. MacQueen et al.
(2001) found that the mass density variation between Solar Cycle 22 minimum and maximum
varied by a factor 4 even in the background corona.

Measuring CMEmasses and energies using white light images farther from the Sun has proven to
be a difficult task (see Section 5.3), due to the lack of calibration information and the uncertainties
imposed by the faintness of the CMEs compared to the background noise. Mass and energy
estimates have also been made from 3-D density reconstructions of a few CMEs observed in the
heliosphere by SMEI (Jackson et al., 2008a, 2010a). The mass estimates generally agree with the
mass of the same CMEs as derived from LASCO data. Some attempts are currently being made
using some highly developed processing techniques with the STEREO SECCHI images. DeForest
et al. (2012) performed some mass measurements on a small disconnection event (i.e., not a CME)
using photometric measurements and the theory of Thomson scattering. The technique is currently
being applied to CME measurements.

The reader must note that as with the kinematical properties, mass calculations are based on
coronagraph images and, therefore, subject to the same problems of projection and perspective.
For example, the CME mass calculations in the CDAW catalog make the assumption that all of
the CME mass is in the sky plane, as has always been the standard assumption. The Thomson
scattering theory from which the density is derived includes a direction term 𝜒, and so the direction
of propagation is an integral component of the density calculations. Traditionally, auxiliary data
such as solar flare or filament location have been used provide an estimate of CME direction but
more recent work making use of the stereoscopic capabilities of STEREO have provided more
accurate measurements (Colaninno and Vourlidas, 2009). Finally, the Thomson scattering theory
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Figure 17: Top: scatter plot of the logarithm of maximum CME mass vs. the height where it was
measured. Two populations are present: CMEs reaching maximum mass < 7𝑅⊙ and CME with maximum
mass > 7𝑅⊙. Bottom: scatter plot of the logarithm of CME surface density (e cm–2) vs. height. The CME
density is constant above ∼ 10𝑅⊙. A histogram with 1𝑅⊙ bins is calculated and the average density
(asterisks) and in each bin is overploted. Note the small spread of the CME density values above ∼ 10𝑅⊙.
Its average value is shown on the plot. The height spread is mostly due to the noise and flatness of the
mass measurements at those heights which tend to shift around the height of the maximum mass. Image
adapted from Vourlidas et al. (2010, 2011b), courtesy A. Vourlidas (2011).

provided by Billings differs somewhat from the initial treatment by Schuster (1879) and Minneart
(1930). An alternative treatment of this theory and it applications to both coronagraphs and
heliospheric imagers can be found in Howard and Tappin (2009), Howard (2011a) and Howard
and DeForest (2012b). This latest theory implies that the sky plane assumption may be more
appropriate than has been previously assumed (see also van Houten, 1950).

A poorly understood topic is that of the energy budget available to the eruption of CMEs and
associated solar activity. The next section discusses many of the phenomena that are known to be
associated with CMEs and all of them require substantial quantities of energy. If we assume that
the total energy arises from magnetic energy stored in the pre-launch corona then we may allocate
an energy budget for the CME and its associated phenomena. Few studies have been conducted to
address this topic, largely because of the difficulty in acquiring accurate measurements of both the
available budget and the energies available from each associated phenomenon. These publications
have revealed that the mechanical energy consumed by the launch and evolution of a CME is
much greater than that of all the associated eruptive phenomena combined. Canfield et al. (1980),
Webb et al. (1980), and Emslie et al. (2004) found the CME mechanical energy to be an order of
magnitude greater than that of the associated flare and to consume the majority of energy available
from the magnetic field. Ravindra and Howard (2010) found the mechanical energy of the CME
was over an order of magnitude greater than that of the associated flare, and that half-to-all of
the energy removed from the magnetic field during the eruption was consumed by the flare-CME-
associated eruption combination. The uncertainties associated with the calculations in all of these
studies, unfortunately, are too large to draw any firm conclusions.
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Figure 18: Solar cycle dependence of the CME mass and kinetic energy. Top left: log CME mass. Top
right: log CME mass density in g R–2. Middle left: log CME kinetic energy. Middle right: CME speed.
All four plots show annual averages. Bottom panel: total CME mass per Carrington rotation. The data
gaps in 1998 and the drop in 1999 are due to spacecraft emergencies. The plot is an update of Figures 14
and 1 in Vourlidas et al. (2010, 2011b) to include events to July 31, 2010, courtesy A. Vourlidas (2011).
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3 Signatures of CME Origins

As stated in the previous section, the early acceleration phase of typical CMEs has mostly ceased
by the time it has reached around 2𝑅⊙. This indicates that over this distance the CME, which
has a mass of the order of 1013 kg must be accelerated to speeds of several hundred km s–1

(and sometimes exceeding 2000 km s–1). Hence, the erupting magnetic structure that becomes
the CME must have access to a mechanism providing vast amounts of energy over a relatively
short time scale. Some theoretical models suggest that this involves an interaction between the
erupting and the surrounding field, perhaps via runaway magnetic reconnection. The CME onset
itself must involve some instability disrupting the equilibrium between the closed magnetic field
in the corona and the tendency of the corona towards its natural state of expansion. We have
thus far been unable to directly observe this mechanism or the instability responsible for its onset,
although we can find clues via near-solar-surface phenomena that are known to be associated with
the initiation of CMEs. These are mostly observed with instruments other than coronagraphs,
typically imagers observing various regions of the electromagnetic spectrum: this makes the direct
association between a CME and the associated phenomena difficult. In this section we review these
phenomena. We also draw the reader’s attention to other recent reviews, including Webb (2002),
Cliver and Hudson (2002), Gopalswamy (2004, 2010b), Kahler (2006), and Howard (2011b).

The release of the stored free magnetic energy that probably drives a CME can take many forms
including (predominantly) mechanical in the form of an expanding CME and erupting filament,
electromagnetic emission in the form of a flare, and also in the acceleration of energetic particles,
magnetic field reconfiguration and bulk plasma motion. We mentioned the energy budget of CMEs
and associated phenomena earlier: the few reports that have discussed this are Canfield et al.
(1980), Webb et al. (1980), Emslie et al. (2004, 2005), and most recently, Ravindra and Howard
(2010).

EUV spectral observations from the UVCS, CDS, and SUMER instruments on SOHO and
the SOT and EIS instruments on Hinode have helped us to measure the densities, temperatures,
ionization states, and Doppler velocities of CMEs (e.g., Raymond, 2002; Kohl et al., 2006; Landi
et al., 2010). Table 2 is a summary of the spectral lines that have been observed in CMEs by
the UVCS instrument (Kohl et al., 2006). The UVCS instrument is unique in that it can sample
the CME material at relatively high heights, e.g., out to ∼ 10𝑅⊙, in the corona compared to the
other spectrometers. Most CME material observed in UVCS is cool (< 105 K) and concentrated
in small regions (Akmal et al., 2001), although this is not the case for fast CMEs associated with
X-class flares (Raymond et al., 2003). Heating rates inferred from models using UVCS observations
show that heating of the material continues out to 3.5𝑅⊙ and is comparable to the kinetic and
gravitational potential energies gained by the CMEs (Akmal et al., 2001; Landi et al., 2009). The
Doppler information from UVCS combined with the EIT and LASCO images has shown in one
case the unwinding of a helical structure (Ciaravella et al., 2000). Doppler shifts are usually high,
∼ 1000 km–1, within halo CMEs, where compressed or deflected coronal material along the flanks
of a CME is measured. H I Ly𝛼 emission also suggests that dense material is present (Kohl et al.,
2006).

3.1 Coronal streamers and blowouts

CMEs in general are associated with previously closed magnetic field regions in the corona, the
opening of which is a consequence of the eruption. Many CMEs viewed at the solar limb also appear
to arise from large-scale, pre-existing coronal streamers which often overlie active regions (e.g.,
Hundhausen, 1993). Many energetic CMEs actually involve the disruption (“blowout”) of such a
structure, which can increase in brightness and size for days before erupting as a CME (Howard
et al., 1985; Illing and Hundhausen, 1986; Hundhausen, 1993). Possible causes of such disruptions
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Table 2: Spectral lines observed by UVCS in CMEs (Kohl et al., 2006).

Line Wavelength (nm) log10 Tmax Comments

H I Ly𝛼 121.567 4.3 radiative pumping
H I Ly𝛽 102.572 4.3 radiative pumping
H I Ly𝛿 97.254 4.3 radiative pumping
H I Ly𝛾 94.974 4.3 radiative pumping
C II 103.634, 103.702 4.3
C III 97.702 4.9
N II 108.456 4.4
N III 98.979, 99.158 4.8
N V 123.82, 124.280 5.3
O III 59.782 4.9
O V 62.973 5.4
[O V] 121.385 5.4 density-sensitive
O V] 121.839 5.4
O VI 103.191, 103.761 5.5 radiative pumping
Ne VI] 100.584 5.6
Mg X 60.976, 62.493 6.1
Si III 120.651, 130.332 4.4 temperature-sensitive
S V] 119.918 5.2
Si XII 49.937, 52.066 6.3
[Fe XVIII] 97.486 6.8

include the emergence through the surface of new magnetic flux, the dynamical evolution of arcades,
or the shearing of magnetic field lines. Other variants of streamer changes associated with different
types of filament activity have been noted by Gopalswamy et al. (2004a).

A streamer is a bright (dense) structure containing closed and open fields, which help guide
denser, outward-flowing solar wind material. They are observed by coronagraphs (and during solar
eclipses) above the solar limb and are often found above active regions. Blowout CMEs viewed
when the surface eruption is at the solar limb mostly display the classic three-part structure
(Burkepile et al., 2004). In these cases prominence material can actually be followed from at or
near the solar surface (as viewed in the H𝛼 line) into the coronagraph field of view (Figures 2, 19,
and 20), where it forms the bright core of the CME. CMEs exhibit radial velocity dispersion, with
the leading edge being fastest, followed by the speed decreasing through the prominence material
(Webb and Jackson, 1981; Simnett, 2000). The kinematic profiles of erupting prominences and their
associated CMEs are usually similar in that both will exhibit acceleration, deceleration or constant
speed with height. The SMM coronagraph had an H𝛼 filter, which was used for studies of a few
CMEs containing large prominences. Illing and Athay (1986) compared the H𝛼 and white light
images from eight prominence/CMEs finding that some CME prominence masses exceed 1012 kg:
a large fraction of the total CME mass. They also concluded that the prominence material usually
becomes nearly fully ionized as it moves outward through the low corona. UVCS results are
limited in this regard, because its best diagnostics are for plasma typically in the 105 K range. The
brightest UVCS emission seen during CMEs is likely in the core or prominence material. Proton
temperatures and ionization states suggest plasma of 104.5 – 5.5 K, so the material has probably been
heated from the original prominence temperatures and it must be heated continually as it moves
out to counteract cooling and radiative losses (Kohl et al., 2006; J. Raymond, 2011, priv. comm.).
In one event, Ciaravella et al. (2003b) noted that prominence material likely was heated to above
106 K. The cleanest evidence for heated prominence plasma is the EIS result for the 9 April 2008
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event by Landi et al. (2010). Also, many EIT and TRACE observations of erupting prominences
near the surface show them changing from absorption to emission, indicative of heating.

Figure 19: LASCO C2 image from 4 January 2002 image of a Coronal Mass Ejection (CME) showing
detail in the ejected material. The solar limb Sun is represented by the white circle. Available from SOHO
online image gallery: http://sohowww.nascom.nasa.gov/gallery/bestofsoho.html.

3.2 Flares

Throughout most of the history of detailed solar observation (i.e., since ∼ 1850) it was generally
accepted that the solar flare was the cause of interplanetary disturbances and major space weather
effects on Earth. So when interplanetary shocks were discovered by Mariner 2 at the dawn of the
space age (Sonnet et al., 1964), most believed them to be blast waves from solar flares. Likewise,
when CMEs were discovered in 1973, many thought they were also flare-driven. Careful work
through the 1970s and 1980s established that the CME is a separate and, in fact, the central
phenomena responsible for both interplanetary shocks and geomagnetic storms. This was finally
established in the seminal paper by Gosling (1993). Workers now typically regard CMEs and flares
as separate, but related phenomena and not as one being the cause for the other.

There is no one-to-one relationship between CMEs and flares. Many CMEs are associated with
solar flares but many are not, just as most flares are not associated with mass ejection. When
CMEs and flares occur together, the CME onsets seem to precede the flares in many cases, and
the CMEs contain far more total energy than that radiated by the flare itself (Section 2.6). It is
now generally accepted that CMEs and flares are part of a single magnetically-driven “event” and,
therefore, it is more appropriate to consider a unified model that accounts for both. A schematic
of one such unified model is shown in Figure 21 (Lin, 2004). This “standard” flare model has been
developed and refined over the last few decades and has become known as Flux Cancellation or the
Catastrophe model (e.g., Švestka and Cliver, 1992; Shibata et al., 1995; Lin and Forbes, 2000; Lin,
2004). In this model a stressed magnetic arcade that may contain a magnetic flux rope at its core
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Figure 20: Still from a movie showing LASCO C3 images of lightbulb shaped CME on 27 February
2000. Classic three-part structure with outer shell, void and inner bright structure, in this case an
erupting prominence. From SOHO online movie gallery: http://sohowww.nascom.nasa.gov/gallery/

Movies/flares.html. (To watch the movie, please go to the online version of this review article at
http://www.livingreviews.org/lrsp-2012-3.)

begins to rise. A current sheet develops beneath it as external pressure causes oppositely directed
magnetic field lines to converge and reconnect. Some of the liberated energy heats the CME plasma
and adds mass and magnetic flux to it. Other energy is directed downward in the form of shock
waves, energetic particles, and/or rapidly moving plasma. This energy can heat the low-lying or
reconnecting magnetic loops and travel down the loops to the chromosphere, producing the flare.
In some cases, especially if a prominence lifts off slowly, there may be too little energy deposited
in underlying structures to produce a detectable surface brightening, or flare. Typical flares are
“confined” or “compact” and do not have sufficient energy or magnetic topology to open up the
ambient field and produce an eruption or ejection. However, Shibata and colleagues have argued
that impulsive, compact flares might also have narrow, plasma ejections yielding small CMEs.

Other models have been developed to describe the relationship between flares and CMEs. The
so-called Breakout model of Antiochos et al. (1999), for example, involves the launch of the CME
via magnetic reconnection between a core and the surrounding strapping magnetic field, which
produces underlying magnetic reconnection (that may give rise to a flare) later in the process. It
also allows for the passage of the core field past the strapping field, which is an essential process
for ensuring that the net energy throughout the CME eruption is reduced.

Comparisons of low coronal soft X-ray, EUV and radio data with the white light observations
provide many insights into the source regions of CMEs. Previous statistical association studies
indicated that erupting prominences (EPs) and X-ray events, especially of long duration, were the
most common near-surface activity associated with CMEs. Gopalswamy et al. (2003b) showed
that 73% of microwave EPs, and nearly all those attaining high heights, were associated with
CMEs, confirming results first found during Skylab (e.g., Munro et al., 1979). There is a strong
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Figure 21: Schematic diagram of a disrupted magnetic field that forms in an eruptive process (Lin,
2004). Catastrophic loss of equilibrium, occurring in a magnetic configuration including a flux rope,
stretches the closed magnetic field and creates a Kopp–Pneuman-type structure. This diagram is created
by incorporating the traditional two-ribbon flare model (bottom), from Forbes and Acton (1996) with
the CME model (top) of Lin and Forbes (2000). Colors denote the different hierarchies of plasma in the
configuration. Image reproduced with permission from Lin (2004), copyright by Springer.
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correspondence between X-ray ejecta and CMEs. Nitta and Akiyama (1999) found that flares with
X-ray ejecta were always associated with CMEs and the X-ray ejecta corresponded with CME
cores, likely dense, heated prominence material (also see Rust and Webb, 1977).

Although most flares occur independently of CMEs, the fastest, most energetic CMEs do tend
to be associated with bright flares, and reported flares are associated with most frontside, full halo
CMEs (e.g., Webb, 2002; Gopalswamy et al., 2007). This rate may be high because the surface
sources associated with halo CMEs can be clearly viewed near sun center and halo CMEs appear
to be faster and more energetic than average CMEs. Thus, either or both mass motion or ejection
speed seem to be critical for the association of a flare with a CME. This may be because there is
a larger net energy reservoir available for both phenomena.

Sheeley Jr et al. (1983) first showed that the probability of associating a CME with a soft
X-ray flare increased linearly with the flare duration, reaching 100% for flare events of duration
> 6 hours. Confirming previous results with lower statistical validity, Yashiro et al. (2005) found
that the LASCO CME association rate with X-ray flares also increased linearly with the peak
X-ray intensity. Thus, the more energetic the flare, the more likely it was to be associated with
mass ejection. When longitudinal visibility effects were accounted for, Yashiro et al. found that
nearly all flares above the M5 level were associated with CMEs. The SMM CME observations
indicated that the estimated departure time of flare-associated CMEs typically preceded the flare
onsets. Harrison (1986) found that such CMEs were initiated along with weaker soft X-ray bursts
that preceded any subsequent main flare by tens of minutes, and that the main flares were often
spatially offset to one side of the CME. Also, the location of flares is more closely associated
with the footpoint, rather than the center, of the CME (Simnett and Harrison, 1984, 1985). We
note however, that more recent results using the LASCO data reported by Yashiro et al. (2008a)
showed more variation between flare location and CME span, with X-flares usually centered under
the CME. More details about solar flares appear in the Living Review by Benz (2008).

3.3 Erupting prominences

Prominences are observed in coronagraphs often as the bright, central core of the CME structure
(the filament component of the classic three-part CME). They are also observed by instruments that
observe the solar disk, so through erupting prominences a direct comparison between coronagraphs
and solar data can be made. Prominences are believed to be caused by the formation of a flux rope
low in the magnetic structure that eventually erupts to form the CME. Many CME onset models
(e.g., flux cancellation, mass loading) require the presence or formation of a prominence in order
for the CME to erupt.

The latitude distribution of LASCO CMEs peaks at the equator (Section 2.4), but the distribu-
tion of EIT EUV activity including prominence eruptions associated with these CMEs is bimodal
with peaks 30° north and south of the equator (Plunkett et al., 2002). This offset is confirmed
for the distribution of disk source regions associated with halo CMEs (Figure 22). This pattern
indicates that many CMEs involve more complex, multiple-polarity systems (Webb et al., 1997)
such as those modeled by Antiochos et al. (1999). Prominences themselves tend to be offset to
one side of the CME axis and, occasionally, two prominences can erupt under the same CME
canopy (Webb et al., 1997; Simnett, 2000). A particularly good example of the former is shown
in Figures 7 – 11 of Hundhausen (1988) which combine Mauna Loa and SMM H𝛼 and white light
data of a CME (see also Webb, 1992).

Using SOHO LASCO, EIT, and MDI and ground-based H𝛼 data, Cremades and Bothmer
(2004) concluded that a simple scheme can be used to relate CME white light topology to the
heliographic position and orientation of the underlying magnetic neutral line. When the neutral
line is approximately parallel to the solar limb, the CME appears as a linear feature parallel to the
limb having a broad, diffuse inner core. When the neutral line is approximately perpendicular to
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Figure 22: Histograms of “source” longitudes of halo CMEs. Image reproduced with permission from
Webb (2002).

the solar limb, the CME is observed along its symmetry axis, and the core material lies along the
line of sight. Joy’s law implies that the frontside neutral line will typically lie perpendicular to the
east limb and parallel to the west limb. The neutral line and CME orientations are reversed for
the solar backside, so backside CMEs are viewed predominately orthogonally to frontside CMEs
at each limb. These CME orientations are generally valid only for CMEs with source regions in
the active region belts, < 50° heliolatitude. The CME orientations will be different for polar crown
filaments (McAllister et al., 2002; Gopalswamy et al., 2003a) or for CME source regions outside
the active regions, where the neutral lines do not obey Joy’s law. However, in an older, related
study using SMM data, Webb (1988) found no clear pattern between the orientation of filaments,
i.e., neutral lines, and the morphology or widths of associated CMEs.

There have been several recent studies of the kinematics and rotations of prominences using
STEREO EUVI data. Joshi and Srivastava (2011) used a stereoscopic reconstruction technique
to study the motions of two polar crown prominences. They found evidence of two different
motions, a helical twist in the prominence spine and overall non-radial equatorward motion of the
entire prominence structure, and two phases of acceleration during the eruptions. Bemporad et al.
(2011) used the tie-pointing technique with COR1 and EUVI data to reconstruct the 3-D shape
and trajectory of an erupting prominence. They found evidence for a progressive clockwise rotation
of the prominence by ∼ 90°, and helical motion providing evidence for the conversion of twist into
writhe. Finally, (Vourlidas et al., 2011a) used SECCHI and LASCO data with a forward-fitting
model to determine the 3-D orientation of a 3-part CME with embedded prominence. The found
that the CME had a fast rotation rate, and suggested it was possibly due to disconnection of one
of the CME footpoints.

The physical (as opposed to observational, defined earlier) definition of a CME involves material
in a magnetic field that is expelled from the corona (Hundhausen, 1999), so we assume that all the
material observed moving away from the Sun in coronagraphs escapes the corona. However, in a
few CMEs with relatively slow speeds material in bright cores has been observed to collapse back
to the Sun with speeds of ∼ 50 to 200 km s–1 (Wang and Sheeley Jr, 2002). These collapses have
been interpreted in terms of gravitational and magnetic tension forces as well as the drag forces
of the ambient solar wind. It is not clear whether these collapses are only a minor part of some
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CMEs or more generally important for the CME dynamics.

3.4 Coronal dimming to arcade formation

The most obvious coronal signatures of CMEs in the low corona are the arcades of bright loops
that develop after the CME material has erupted (Kahler, 1977 – Skylab; McAllister et al., 1996;
Hudson and Webb, 1997 – Yohkoh; Hanaoka et al., 1994 – radio; Tripathi et al., 2004 – EIT).
Prior to the eruption, an S-shaped structure called a sigmoid can develop, typically observed in
X-rays, sometimes in association with a filament activation. A sigmoid is indicative of a highly
sheared, non-potential coronal magnetic field, and might be an important precursor to certain
types of CMEs (e.g., Canfield et al., 1999). However, McKenzie and Canfield (2008) point out that
X-ray sigmoids actually consist of separate J-shaped loops that support a bald-patch separatrix
surface model for sigmoids. Eventually an eruptive flare can occur within or in the proximity of the
sigmoid, resulting in the bright, long-duration arcade of loops. Sterling et al. (2000) call this process
“sigmoid-to-arcade” evolution. These arcades suggest the eruption and subsequent reconnection
of strong magnetic field lines associated with the CME system. Tripathi et al. (2004) found that
nearly all (92%) EIT post-eruptive arcades from 1997 – 2002 were associated with LASCO CMEs
(Figure 23). Recent analyses of Hinode XRT and SDO AIA data reveal new information of the
space and temperature evolution of arcades (e.g., Reeves et al., 2010; Reeves and Moats, 2010;
Reeves and Golub, 2011), which help to further constrain the “standard” eruptive flare model
(e.g., Section 3.2 and Figure 20).

Figure 23: Erupting prominence, dimming regions and arcade associated with a fast CME on 12 Septem-
ber 2000. Top: SOHO EIT 195 Å running-difference images; bottom: CME leading edge and erupting
prominence (EP) seen in SOHO LASCO C2 images. Image reproduced with permission from Tripathi
et al. (2004), copyright by ESO.
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Coronal dimming is the reduction in intensity on the solar disk across a large area, observed in
X-ray, EUV and more recently in H𝛼, and coincident in timing with the launch of a CME above.
Measurements imply that the reduction in intensity is due to the evacuation of mass from the low
corona (Hudson and Webb, 1997) and not a temperature change (e.g., Harrison and Lyons, 2000;
Harrison et al., 2003). The dimming regions can be much more extensive than any associated
flaring activity and can map out the apparent base of the associated CME (Thompson et al.,
2000; Harrison et al., 2003). They have also been shown to extend deep into the corona and
possibly the chromosphere and photosphere (McIntosh et al., 2007), thereby indicating that the
initial terminology of “transient coronal hole” is probably more physically appropriate. Coronal
dimmings are good indicators of the area on the Sun corresponding to the CME and of the behavior
of the local magnetic fields following the CME launch. It is likely that at least part of the mass
observed leaving the low coronal dimming region becomes part of the CME (e.g., Webb et al.,
2000a), but what part and how much are uncertain. In a recent survey of six STEREO events
observed as dimmings by EUVI and as CMEs by COR2, Aschwanden et al. (2009) found a nearly 1:1
correspondence between the EUV and white light masses. The self-similar evolution of the mass
from the low to outer corona was also successfully modeled. For their sample of EIT dimming
events, Reinard and Biesecker (2008) found mean lifetimes of 8 hours, with most disappearing
within a day. Other results suggest that there may be two types of dimming, “core” dimmings
directly associated with the source active region and flare, and “secondary” dimmings farther away
that may be associated with loop motions or evacuation (e.g., Attrill et al., 2010).

Surveys of solar activity associated with frontside halo CMEs have been made primarily with
low coronal images from the SOHO EIT and Yohkoh Soft X-ray telescope (SXT) instruments,
although surveys with STEREO and Hinode are emerging. The activity associated with halo
CMEs includes the formation of dimming regions, long-lived loop arcades, flaring active regions,
large-scale coronal waves and filament eruptions (Figure 24). Webb (2002) found that 2/3 of
halo CMEs were associated with either or both filament eruptions and dimmings, and Reinard
and Biesecker (2008) found that about half of all frontside halo CMEs have dimmings. Coronal
dimming has not been observed as frequently as other associated eruptive phenomena but the
most recent, very sensitive results (e.g., Schrijver and Title, 2011) from SDO imply that dimming
is more common than measurements from previous instruments have implied.

3.5 Coronal waves

The frequent detection of coronal waves observed in EUV was an exciting discovery from the
SOHO EIT observations (e.g., Thompson et al., 1998). They were originally termed EIT waves,
but are now often referred to as EUV waves or, more generally, as coronal waves. These waves
were originally considered to be a candidate for a CME-associated Moreton wave. According to
the theory by Uchida (1968), a flare may trigger an impulse that will propagate along the solar
surface as a fast traveling front with an increase in emission. In the photosphere and chromosphere
it can best observed in H𝛼 as a Moreton wave. However, the EUV (EIT) waves propagate across
the solar disk at typical speeds of 200 – 400 km s–1 (Thompson and Myers, 2009), slower than the
1000 km s–1 typical of Moreton waves. Observational evidence, such as the association of Type
II radio bursts with coronal waves, suggests that at least some of them may be fast-mode MHD
shocks. Although Biesecker et al. (2002) found a CME associated with nearly every EIT wave,
it is accepted that not all CMEs are associated with waves. For example, Webb (2002) found
that only about half of frontside halo CMEs have EIT waves, and Cliver et al. (2005) found that
there are ∼ 5 times as many frontside CMEs as EIT waves. Thus, their nature is still under
intense debate, Competing models include fast-mode MHD waves, slow-mode waves or solitons,
and “pseudo waves” related to a current shell or successive restructuring of field lines at the CME
front. Details of observations and models can be found in recent reviews (Warmuth, 2007; Vršnak
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Figure 24: A filament eruption and post-eruption arcade near Sun center on 17 February 2000 (top). It
was associated with a symmetrical LASCO halo CME (bottom). Image reproduced with permission from
Tripathi et al. (2004), copyright by ESO.

and Cliver, 2008; Wills-Davey and Attrill, 2009; Gallagher and Long, 2011).

The relatively poor cadence (∼ 12 minutes) of the EIT observations of propagating EUV dis-
turbances were partially alleviated by STEREO EUVI imagery. These have shown that the EUV
wave kinematics are more consistent with coronal MHD waves (e.g., Long et al., 2008; Patsourakos
and Vourlidas, 2009). Using the Atmospheric Imaging Assembly (AIA) on SDO, Liu et al. (2010)
show that there can be multiple wave components with rippling effects. In one of the best ob-
served wave events using the AIA EUV images, it was found that the shock and metric type II
burst appeared simultaneously (Gopalswamy et al., 2012). Also the wave propagation can be in-
hibited and possibly reflected from coronal holes (e.g., Gopalswamy et al., 2009c). Veronig et al.
(2010) presented evidence from STEREO/EUVI observations that the wave initially appears as a
dome-shaped spherical structure surrounding the CME. Chen and Wu (2011) interpret an EUV
event using SDO/AIA data as consisting of a fast mode wave followed by a slower disturbance.

3.6 Shock waves and SEPs

If the speed of a CME exceeds the local Alfvén speed in the corona and interplanetary medium it
can drive a forward shock. Type II radio bursts, caused by Langmuir waves forming as a result of
plasma motion ahead of a shock, are associated with CMEs. Type IV bursts, especially “moving”
bursts associated with CMEs, imply magnetic plasma ejections, possibly associated with EPs, and
nonthermal particles from field-line reconnection. Studies performed using SOHO data seem to
confirm that metric type II bursts arise from shock waves driven by CMEs (Cliver et al., 1999)
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although the association between metric type II bursts and solar activity has been established since
their discovery in the 1950s. Type II bursts in various wavelength domains appear to be organized
by the kinetic energy of the CMEs: metric type II bursts (< 2𝑅⊙) are associated with CMEs
with above-average kinetic energy; those extending into decameter-hectometric (DH) wavelengths
(> 2𝑅⊙) have moderate CME kinetic energy; and type II bursts seen in both the metric and DH
domains and extending to kilometric (km) wavelengths (covering the entire Sun-Earth distance) are
associated with CMEs of the largest energy. This hierarchical relationship implies that all type II
bursts are associated with CMEs, i.e., mass ejecta (e.g., Gopalswamy et al., 2005). More details
about solar radio events will appear in an upcoming Living Review; also see Schwenn (2006).

Historically, identifying shocks in white light coronagraph images has been very difficult. Kinks
in streamers deflected by CMEs and changes in type II dynamic spectra have been used to infer
the existence of shocks on the flanks of CMEs. Sharp, bright rims ahead of fast CMEs occasionally
observed by LASCO are now considered by some to be evidence of shocks (e.g., Vourlidas et al.,
2003; Ontiveros and Vourlidas, 2009; Vourlidas and Ontiveros, 2009). The kinematics of a spherical
shock ahead of a bubble CME has been determined in EUV data from SDO-AIA (Ma et al., 2011).

Ultraviolet spectroscopy provides an unambiguous means to observe coronal shocks and deter-
mine their properties (Kohl et al., 2006). Shock compression causes an immediate increase in the
emissivity of dominant ions, and the bulk motion of the shocked plasma causes Doppler dimming
of H I Ly𝛼 and O VI lines. Electron heating causes a more gradual change in the ionization state,
and heating of the ions can be measured through line width increases. However, since the shocked
gas passes quickly through the UVCS slit, the signatures of only a few shocks have been reported.
In all these cases broad O VI profiles were detected and the O temperatures were > 108 K.

Using SOHO and radio observations of a fast CME, Bemporad and Mancuso (2010) were able
to provide a complete characterization of pre- and post-shock plasma physical parameters in the
corona. The UVCS slit was centered at 4.1𝑅⊙ in the flank of the expanding CME, the highest UV
detection of a shock obtained so far with UVCS. The white-light and EUV data were combined
to estimate the shock compression ratio, plasma temperature, and the strength of the magnetic
fields. For the compression ratio of 2.06, the coronal plasma was heated across the shock from an
initial temperature of 2.3 Ö 105 K up to 1.9 Ö 106 K, while the magnetic field was compressed
such that its strength increased from ∼ 0.02 G to ∼ 0.04 G. Magnetic and kinetic energy density
increases at the shock were comparable and more than two times larger than the thermal energy
density increase.

CME-driven shocks can accelerate electrons and ions producing solar energetic particle (SEP)
events. The close association between SEP events and fast CMEs implies that SEPs are accelerated
by CME-driven shocks (Reames, 1999). Early work with solar energetic particles in the 1960s
suggested that a two-stage acceleration process must take place to achieve the energies observed
in these particles (Wild et al., 1963), a process later confirmed using in-situ data in the 1980s and
1990s (e.g., Gloeckler et al., 1994). The first stage, up to around 100 keV for electrons, is provided
by the flare, and the rest provided by a fast magnetohydrodynamic (MHD) shock, now believed to
be produced by the CME. A few hundred large SEP events have been recorded during the SOHO
period, most of them occurring around the solar maximum (e.g., Gopalswamy et al., 2008). The
associated CMEs were fast (average speed ∼ 1500 km s–1), apparently wide (mostly full halos) and
decelerating (possibly due to coronal drag). Large SEP events with the most energetic particles,
ground level enhancements (GLEs – e.g., Forbush, 1946), are associated with the fastest CMEs
(> 2000 km s–1; Gopalswamy et al., 2008). The fastest particles can arrive at Earth only minutes
after the impulsive flare and associated shock. A comparison of the LASCO fast (v > 1000 km s–1)
CMEs between the CDAW (manual) and CACTus (automatic) catalogs shows that the CDAW
CME widths are considerably wider (Yashiro et al., 2008b), but nearly all of the CMEs associated
with GLEs are halos (W > 180°) in both catalogs. The source regions of the SEP-associated CMEs
are generally located in the Sun’s western hemisphere, because the particles travel along the Parker
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spiral interplanetary field lines. The SEP-CME distribution is different from that of the CMEs
producing geomagnetic storms (Figure 25). Thus, all frontsided fast and wide CMEs are potentially
important for Earth’s space weather. An important SOHO result is that the high-intensity SEPs
are associated with active regions that are associated with repeated CMEs, suggesting that CME
interactions may be important in accelerating the particles in large SEPs (e.g., Gopalswamy et al.,
2004b).

Emslie et al. (2004) have shown that the CME kinetic energy is by far the largest component
in the energy budget of an eruption. As much as 10% of the CME kinetic energy might go into
SEPs, suggesting that CME-driven shocks are very efficient particle accelerators (Mewaldt, 2006).
More details about Solar Energetic Particles will appear in an upcoming Living Review; also see
Schwenn (2006).

Figure 25: Locations of associated solar surface activity related to CMEs that produce major (Dst ≤
−100 nT) geomagnetic storms (left) and large SEP events (right). The circle sizes represent the significance
of the resultant event (Gopalswamy, 2010b).

3.7 Evidence of reconnection and current sheets

In Section 3.2, we discussed the Flux Cancellation flare-CME model involving field line reconnec-
tion. A consequence of this process is the formation of a current sheet that connects the outgoing
CME/flux rope with the reforming coronal loop arcade near the surface (Figure 21). Evidence for
this seems to have been observed by a number of instruments. Yohkoh/SXT and Hinode/XRT
observations have provided substantial X-ray evidence of current sheet formation, such as cusp-
shaped loops (Shibata, 1999) and supra-arcade downflows (SADs – McKenzie and Hudson, 1999,
2001; Sheeley Jr et al., 2004; Savage et al., 2010), of post-CME reconnection occurring over long-
duration flares. The supra-arcade downflows are downward motions that have been observed in
Yohkoh, TRACE, Hinode, and SOHO SUMER above post-CME flare arcades. SADs have trajec-
tories which slow as they reach the top of the arcade, consistent with post-reconnection magnetic
flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy
magnetic configuration. Savage et al. (2010) showed for a single XRT event following a limb CME
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that SADs can also appear as shrinking loops rather than downflowing voids. In that event, for the
first time both the current sheet and the outgoing CME were imaged in soft X-rays and followed
into the LASCO C2 field of view.

Sui and Holman (2003) first discussed a hard X-ray event observed by RHESSI that showed
a compact X-ray source above the top of a roughly vertical current sheet in which they claimed
magnetic reconnection was occurring. Subsequently, Sui et al. (2005), Saint-Hilaire et al. (2009),
and others have analyzed similar events in which the coronal sources appear to move both down-
wards and outwards with time. The hard X-ray emission indicates a very hot source, ∼ 107 – 8 K,
with the outgoing packet associated with the magnetic X-point where oppositely-directed field lines
reconnect. The downward source is likely hot plasma from the most-recently reconnected arcade
loops that are shrinking, as well observed in the soft X-ray observations.

The current within the current sheet is confined to a surface. In MHD theory, an electric
current passing through part of the volume of a fluid tends to be expelled by magnetic forces from
the fluid, compressing the current into very thin layers within the volume. We now have growing
evidence for the existence of such current sheets in the corona trailing CMEs when the observing
conditions are appropriate. Following earlier studies of concave-outward structures and reforming
helmet streamers after CMEs, Webb (1995; 2004) analyzed SMM CMEs with concave-outward
bright regions, finding that about half were followed by coaxial, bright rays suggestive of newly
formed current sheets lasting for several hours and extending more than five solar radii into the
outer corona.

With the advent of LASCO data, cases of CMEs with rays and Y-shapes were reported by
Simnett et al. (1997), and St Cyr et al. (2000) found such features in one third to one half of
all LASCO CMEs. Bright narrow features with enhanced temperatures (3 – 6 Ö 106 K), densities
(∼ 5 Ö 107 cm–3 at 1.5𝑅⊙), and abundances of elements with low first ionization potentials (FIPs)
were observed with the UVCS following slow (∼ 180 km s–1; Ciaravella et al., 2003b) and very
fast (1800 km s–1; Ko et al., 2003; Lin et al., 2005) CMEs. Figure 26 shows enhanced images of
the 18 November 2003 event; the CME had a concave-outward, flux-rope like appearance followed
by a rapidly brightening ray (Lin et al., 2005). Blobs moved along the ray at ∼ 1000 km s–1

suggesting bursty reconnection in the current sheet, as MHD modeled for example by Riley et al.
(2007). Figure 27 shows an example of SOHO observations of a classic three-part CME with narrow
enhanced Fe XVIII emission centered under the CME where the current sheet should lie (as in
the standard-flare-model cartoon sketched at the bottom of the figure). Yokoyama et al. (2001),
Simnett (2004), Sheeley Jr and Wang (2007), Vršnak et al. (2009), and Savage et al. (2010) also
identified bi-directional flows in SOHO and Hinode images moving away from a common point in
the low to mid-corona that were interpreted in terms of reconnecting current sheets.

Ciaravella and Raymond (2008) were the first to combine UVCS and white light data to derive
both the density and thickness in a current sheet, rather than assuming one to estimate the other.
Bemporad and Mancuso (2010) derived turbulent speeds and their evolution in time, which is the
main constraint for turbulent current sheet models. In these and other results (e.g., Lin et al., 2009),
the thickness of the current sheet was calculated to be much larger than classical or anomalous
resistivity would predict, possibly indicating an effective resistivity much larger than anomalous
resistivity, such as that due to hyperdiffusion. The Petschek reconnection mechanism (Petschek,
1964) and turbulent reconnection is consistent with these results.

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://www.livingreviews.org/lrsp-2012-3


40 David F. Webb and Timothy A. Howard

Figure 26: A very fast CME with flux-rope structure followed by a narrow ray on 18 – 20 November
2003. The ray also shows evidence of bursty reconnection in the current sheet (bottom panels). Image
reproduced with permission from Lin et al. (2005).
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Figure 27: A LASCO “Light-bulb CME” on 23 March 1998 (see Ciaravella et al., 2003a). The UVCS
slit at 1.5𝑅⊙ reveals hot Fe XVIII emission trailing the CME, an expected spectroscopic signature of a
current sheet. Image courtesy A. Ciaravella.
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3.8 “Problem” and “stealth” CMEs

So-called “problem” geomagnetic storms lack historically obvious signatures of related solar activ-
ity, such as flares and large disappearing filaments (e.g., Dodson and Hedeman, 1964; McAllister
et al., 1996, and references therein). An event on 6 – 10 January 1997 was the first such problem
storm for which the antecedent CME was actually observed (Webb et al., 2000b). The associated
solar surface activity was so weak and unimpressive that, had the faint LASCO halo CME not
been observed, the storm would not have been forecast. During the LASCO period, partial or full
halo CMEs that had no obvious surface association were usually attributed to “backside” events
directed away from the Sun-Earth line (e.g., Demastus et al., 1973; Munro et al., 1979; Webb and
Hundhausen, 1987). Non-halo CMEs occurring near the limb were mostly attributed to unseen
sources behind the limb.

The absence of solar surface activity with observed CME activity is not a new observation
Howard and Harrison (2012). In fact such observations were part of the evidence concluding the
Solar Flare Myth, evidence that had been accumulated with many datasets through the 1970s and
1980s. The launch of STEREO in 2006, however, afforded us the opportunity to study the origins
of CMEs simultaneously from multiple lines of sight. Robbrecht et al. (2009a) presented a study of
a streamer blowout CME without a clear source region. The STEREO spacecraft were sufficiently
widely separated (53°) that the CME and its source region could be viewed edge-on in STEREO A
and face-on in STEREO B. STEREO B saw the CME as a faint halo and it was detected in-situ as
a magnetic cloud 5 days later. Robbrecht et al. suggested that the CME originated high enough
up in the corona such that no surface signatures were evident. Subsequently, Ma et al. (2010)
performed a statistical study of all CMEs observed during the first 8 months of 2009 when the
STEREO lines of sight were nearly perpendicular to each other. They found that about a third
of the CMEs were “stealth”, having no distinct surface association, and tending to be slow, i.e.,
< 300 km s–1. Faint coronal changes could be detected in about half of the stealth CMEs, again
suggesting a higher launch site. It is noted that this period was during the recent unusual extended
solar minimum, so the fraction of such CMEs may be different at other times. The term “stealth
CME” is making an appearance more frequently in publications and online CME catalogs. Howard
and Harrison (2012) in a recent review paper suggest caution on the usage of such a term.

3.9 Precursors of CMEs

A currently popular paradigm is that the activation of coronal magnetic fields leading to a CME
begins well before the appearance of any associated surface activity such as flares or erupting
prominences. Some of the energy released during a CME could drive precursor activity, and there
is some evidence of precursor activity tens of minutes to hours before the onset of surface activity
and even before CME onset (see Webb, 1992 and Gopalswamy et al., 2006b for a recent review
called “The Pre-CME Sun”).

Jackson and colleagues described evidence for two kinds of coronal precursors occurring before
the onset of Skylab CMEs. The first were called “forerunners”, large, faint regions of enhanced
brightness that were found to rim the CMEs themselves (Jackson and Hildner, 1978). The outer
boundaries of the forerunners maintained a constant offset of 1 – 2𝑅⊙ from the CME. The reality
of such features would be significant for two reasons:

1. The volume of the affected corona would be much larger than the subsequent CME;

2. The onset of the material ejection would begin higher in the corona and earlier than previously
thought.

Jackson (1981) noted that in some events forerunner material was actually in motion prior to the
associated surface activity. However, using Solwind data, Karpen and Howard (1987) concluded
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that forerunners were either an artifact of the contouring process used or were structures not
separate from the CME itself. Although this controversy was never fully resolved, with the larger
dynamic range of LASCO rims of material detected ahead of fast LASCO CMEs are now considered
evidence of shock waves, and emission can be detected ahead of slower speed CMEs as low-level
brightness enhancements due to the expanding streamer (see Section 3.6).

A second type of CME precursor reported by Jackson et al. (1978) was the statistically signif-
icant temporal clustering of Culgoora type III radio bursts an average of 6 hours before Skylab
CME onsets. Culgoora radioheliograph positional data revealed that these same type IIIs clus-
tered spatially at the limb within 20° of the centroid of the CME. Recently, Jackson et al. (2010c)
reported that imaging measurements from the French Nançay radio array showed similar activity
before some solar disk events such as on 26 April 2008, but definitive studies are clearly necessary.

Data nearer the time of CME onset indicate the existence of precursor activity before some, but
not all CMEs. During the SMM era it was found that the departure times of flare-associated CMEs
often preceded flare onsets. Harrison (1991) concluded that CME onsets preceded any subsequent
associated H𝛼 or X-ray flares by an average of 17 minutes. CME onsets were associated with
precursor X-ray arches having large scale sizes of ∼ 105 km and interconnecting two active regions.
In addition, most X-ray flares observed by the SMM HXIS instrument were preceded by weak soft
X-ray bursts, but more recent results using soft X-ray and EUV data do not show such a clear
pattern (Harrison, 1991; Harrison et al., 1990; Yashiro et al., 2008a).

As discussed in Section 3.4, an S or reverse S-shaped structure called a sigmoid sometimes de-
velops, and can be associated with a filament’s activation. Like the filaments themselves, sigmoids
are indicative of sheared coronal magnetic fields. Since many CME onset models require a magnetic
shear to be established for the field to erupt, these sigmoids may be a precursor of a CME. It is
well known that various kinds of filament/prominence activity precede the eruption of the filament
itself by tens of minutes. Since erupting prominences are the most common type of surface activity
associated with CMEs and appear as bright cores within many CMEs (Webb and Hundhausen,
1987), pre-eruptive filament activity is a form of CME precursor. Tens of minutes before their
eruption, some large filaments darken and get broader (e.g., Martin, 1980). The cancellation of
magnetic flux near filament channels can also build energy prior to an eruption, a process already
referred to as Flux Cancellation (Martin and Livi, 1992). Kahler et al. (1988) found that the
eruption of H𝛼 filaments began before the onset of associated flare impulsive phases, suggesting
that these erupting filaments, and by analogy the CMEs associated with them, were driven before
and independently of the flare and its impulsive phase.

Some of the most massive and energetic CMEs are the so-called streamer blowout events, which
were first described in detail by Sheeley Jr et al. (1982) and Illing and Hundhausen (1986). The
preliminary statistics of streamer-blowout CMEs observed by LASCO were presented by Vourlidas
et al. (2002b). In such events, a pre-existing streamer typically increases in brightness for one
to several days before erupting as a CME (Figure 2). Following the CME, the so-called helmet
streamer disappears, and is often replaced by a thin ray and later a reforming helmet (Kahler and
Hundhausen, 1992). These events appear on white light synoptic charts as “bugles”: portions of
the streamer belt that brighten and widen with time until they disappear during a CME (Figure 28
– Hundhausen, 1993). Most streamer blowouts involve a pre-existing prominence sitting within a
coronal void or cavity; this then erupts to form the classic “three-part” CME structure. Thus, the
early filament/prominence activations discussed above are probably related to streamer swellings
and blowouts.
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Figure 28: Coronal synoptic maps from the SMM C/P coronagraph showing the white light emission
at a height of 3.4𝑅⊙ over the east (top) and west (bottom) limb. The coronal streamer belt is evident
on these maps. Narrow vertical streaks on the maps indicate CMEs. These were first called “bugles” by
Hundhausen (1993), since streamer-blowout CMEs appear on synoptic maps as vertical streaks usually
preceded by brightening and widening streamers. Such bugle shapes are left-facing on synoptic maps
because time runs from right to left. The locations and widths of all CMEs on this rotation are marked
by dashed boxes. Image adapted from Hundhausen (1993), courtesy J. Burkepile, NCAR/HAO.
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4 CME Models

As mentioned earlier, in the early years, most of the solar physics community believed that CMEs
were shock waves caused by solar flares. Although this belief has since been disproven (refer to
Kahler, 1992 and Gosling, 1993 for reviews debunking the “Solar Flare Myth”), some remnants still
remain in some circles, particularly those outside the solar physics community. Early mathematical
models (and some still in use today) regard solar mass ejections as eruptive solar flares in opposition
to the majority of flares which are “confined”. Because the corona is a highly conducting medium,
the plasma is essentially “frozen in” to the magnetic field such that for an eruption to occur, the
field lines must open up to allow the plasma to escape. But flares and CMEs can have very different
properties, not least their spatial scales, and CMEs can occur without flares, so most researchers
now consider flares and CMEs to be different aspects of magnetic field reconfiguration on the Sun.
For details of CME models in general, see the Living Review by Chen (2011). Here we describe
only those models that pertain to material eruption (see, e.g., Aschwanden, 2006 and Forbes et al.,
2006 for reviews).

Contemporary models describing the launch and early evolution of CMEs must overcome two
major physical obstacles:

1. How to provide vast quantities of energy over a short time period (mentioned previously);

2. How to physically justify the CME as an opening of a magnetic field when the completely open
field state is higher in energy than the pre-erupted closed state (the so-called Aly–Sturrock
limit).

While the physical mechanism to launch the CME may vary between models, the overall picture
is essentially the same: A magnetic field configuration held in equilibrium is disrupted somehow,
causing the system to erupt. The initial configuration typically involves an underlying sheared
field often called the core (e.g., Moore and Roumeliotis, 1992) held down by an overlying strapping
field. The onset mechanism itself that causes the eruption is actually less important – eventually
one will occur. It may take the form of magnetic reconnection or even a simple field reconfiguration
could accomplish an equilibrium disruption. The core then erupts beyond the strapping field.

The most recent modeling work in this area (e.g., Rachmeler et al., 2009) has focused on the
question of what happens to the strapping field when the CME erupts. Until recently it was
accepted that the strapping field must be stretched by the erupting core, which must presumably
stretch it out to infinity. This, however, violates the Aly–Sturrock limit meaning it has been
difficult to explain physically why a CME would spontaneously move to a more energetic state.
This problem has been overcome with the use of 3-D models. In three dimensions, the core can
erupt without stretching the strapping field along with it – instead it can simply push the strapping
field aside as it erupts. Hence, in 3-D the Aly–Sturrock limit does not pose a problem.

To overcome the first obstacle, that of energy provision, a number of models have emerged.
Some, such as the breakout model (e.g., Antiochos et al., 1999; Lynch et al., 2008), involve runaway
magnetic reconnection between the erupting core and the strapping field, while others, such as the
kink instability (e.g., Török and Kleim, 2003, 2005; Fan and Gibson, 2004) involve the twisting
of the core field. Figure 29 shows a 3-D diagram of the kink instability, also showing how the
strapping field is pushed aside to make way for the erupting core.

After the CME has erupted the magnetic field left behind eventually closes, probably via some
form of large-scale magnetic reconnection. The recent models of this process describe the late
phase of CMEs reasonably well (cf. Švestka and Cliver, 1992). Kahler and Hundhausen (1992)
found that the bright structures following many SMM CMEs are streamers probably newly-formed
by reconnection. Observations from Yohkoh and from MLSO of the reformation of a giant helmet
streamer also provide strong evidence of reconnection following CMEs (Hiei et al., 1993). As
discussed earlier, the white light and spectroscopic evidence for current sheets trailing CMEs also
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Figure 29: Sequence showing the three-dimensional evolution of the coronal magnetic field via the kink
instability model. The heavy blue/green lines represent the kinked flux rope, which erupts through the
overlying strapping magnetic field (red). This field is pushed aside during this process. Image reproduced
by permission from Fan (2005), copyright by AAS.
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provide support for the reconnection of the surface fields. Reeves and Moats (2010) have examined
the relationships among the CME kinematics, thermal energy release and soft X-ray emissions
using the Lin and Forbes (2000) loss-of-equilibrium model, finding good correlations among the
parameters.

An extensive survey of post-eruptive arcades in SOHO/EIT 195 Å images has shown that every
arcade is associated with a LASCO CME (Tripathi et al., 2004). These observations have been
interpreted in terms of a basic model of reconnecting magnetic fields behind a magnetic flux rope
and over a magnetic arcade (e.g., Lin, 2004), which results in a disconnection of CME fields from
the Sun, as shown in Figure 21. This model has been called the CSHKP model to reflect its
provenance. The acronym stands for Carmichel, Sturrock, Hirayama, Kopp, and Pneuman, each
of whom developed configurations which have now evolved into a “standard” model that continues
to be supported by observations and simulations (see Švestka and Cliver, 1992, for the original
CSHKP description). Correlations found between inferred magnetic reconnection rates in arcades
and the speeds of associated CMEs provide further confirmation of the model (Jing et al., 2005).
Radio imaging of the moving and quasi-stationary type IV bursts can provide upper limits to the
current sheet length by bracketing the reconnection region (Pick et al., 2005).

Most of the models intended to describe the origin and propulsion of CMEs are not sufficiently
developed to compare with observations. Many of them involve force free equilibria which cannot
realistically describe the complex evolution of the pressure, magnetic and gravitational forces act-
ing on a magnetically closed coronal structure (e.g., Hundhausen et al., 1994). The class of models
which require a thermal or pressure pulse (i.e., flare) as driver no longer seem viable (cf. Dryer,
1994). For instance, such models are not consistent with CMEs that exhibit significant accelera-
tions over large distances. Causes of the evolution of these coronal structures, especially streamer
configurations, include the emergence of magnetic flux, the dynamical evolution of arcades (Mikić
and Linker, 1994), and the shear of field lines across inversion lines (Wolfson and Low, 1992; Mikić
and Linker, 1994). However, no strong consensus has yet emerged.

Models attempting to describe CME evolution at large distances from the Sun can be catego-
rized in order of their increasing complexity. It is important to note that the most complex model
does not necessarily indicate the more accurate; sometimes the simpler description can be the most
appropriate. We divide models for CME evolution into three categories: 1) A disturbance in the
ambient solar wind, 2) an embedded lump of plasma, and 3) an embedded magnetic flux rope. All
of these essentially begin with the same foundation, that of a background solar wind into which
some form of anomaly is introduced.

The first category, that of a disturbance in the solar wind, is really a derivative of the original
idea that CMEs were blast waves from flares. This has since been proven to be a physically
incorrect description of CMEs, but nonetheless some of these models have been able to sometimes
reproduce well the appearance and propagation characteristics of CMEs. This is probably because
at large distances from the Sun the most prominent observable feature is the built-up solar wind
material in the sheath, which is governed by the theory of interplanetary shock propagation. The
most popular of these models include the Shock Time Of Arrival (STOA) model (Dryer and Smart,
1984), its later version ISPM (Smith and Dryer, 1990), and HAFv2 (Hakamada and Akasofu, 1982;
Fry et al., 2001).

The second category, which consists of a lump of material embedded into the solar wind, takes
simple and more complex forms, but essentially is based on the assumption that the embedded
material responds hydromagnetically to the surrounding solar wind. The simplest description is
that of aerodynamic drag, where the CME speed is governed by momentum transfer between it and
the solar wind until a kinematic equilibrium is reached. Examples of this include Cargill (2004)
and Tappin (2006). A more complex version of this is the ENLIL model (Odstrčil, 2003) which
takes into consideration plasma density, CME structure and extrinsic magnetic field as well as the
kinematic properties of the CME and solar wind.
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The third category treats the CME as a magnetic flux rope which is embedded into the solar
wind. These models attempt to include the magnetic interaction between the CME and the
interplanetary magnetic field (e.g., Chen, 1996; Manchester IV et al., 2005).

It is important to note that the models discussed above describe the evolution of the CME once
it is some distance away from the Sun, i.e., they do not describe the physics of the onset and early
evolution. The assumption is that the physics become simplified once the CME has escaped the
gravitational and magnetic pressure forces at or near the Sun.
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5 CMEs in the Heliosphere

CMEs carry into the heliosphere large amounts of coronal magnetic fields and plasma, which
can be detected by remote sensing and in-situ spacecraft observations. Here they are known
as interplanetary CMEs or ICMEs (Zhao and Webb, 2003; Dryer, 1994). The term ICME or
“interplanetary CME” was originally devised as a means to separate the phenomena observed far
from the Sun (e.g., by in-situ spacecraft) and those near the Sun (e.g., by coronagraphs). However,
in the SMEI and STEREO era, where CMEs can now be tracked continuously from the Sun to
1 AU and beyond, the term has become largely redundant. Consequently, in a recent workshop on
remote sensing of the heliosphere in Wales (June 2011) it was decided to no longer use the term
ICME, and in this review we drop the term.

The passage of CME material past a single spacecraft is marked by distinctive signatures,
but with a great degree of variation from event to event (e.g., Gosling, 1993). These signatures
include transient interplanetary shocks, depressed proton temperatures, cosmic ray depressions,
flows with enhanced helium abundances, unusual compositions of ions and elements, and magnetic
field structures consistent with looplike topologies. Many of these signatures were first identified
in the plasma which followed an IP shock by several hours and was considered to be the piston
(CME) driving the shock. Some signatures can also be observed elsewhere in the solar wind where
they may identify relatively slower CMEs not driving shocks.

Often observed in in-situ data are highly structured magnetic field configurations corresponding
to the arrival of a CME. The field assumes the structure of a spiral (or helix), and is accompanied
by other signatures including strong magnetic field with low field variance, low plasma beta, and
low temperature. Such structures were called magnetic clouds by Burlaga et al. (1981) citing early
theoretical work dating back to the 1950s (Morrison, 1954). Figure 30 shows a schematic of such
a cloud impinging on the Earth in May 1997. Such a structure is often modeled as a flux rope,
which is a series of helical field lines like the coils of a spring with pitch angles increasing toward
the outer edge. Since, as we have seen, many if not all CMEs are now considered to contain flux
ropes, it is logical to expect magnetic clouds to form the core of CMEs. In a recent report, one
magnetic cloud observed in-situ was tracked continuously back to its coronagraph origins and it
was found to be the cavity component of the three-part CME structure (Howard and DeForest,
2012a). This reinforced the largely-accepted view that the cavity component was the CME flux
rope (e.g., Forsyth et al., 2006). Theoretical work involving the development of cavities includes
Fuller et al. (2008).

Models have been developed for the force free (e.g., Lepping et al., 1990; Lynch et al., 2005)
and non-force free (Hu and Sonnerup, 2001) states of magnetic clouds observed in-situ, the latter
also known as the Grad–Shafranov technique. Around 30% (Gosling et al., 1991) to 50% (Cane
et al., 1997) of CMEs observed in-situ show a clear signature of a magnetic cloud. It remains
unknown whether the remainder does not show the signature because the imbedded flux rope is
less structured, is absent, or whether the spacecraft did not pass through the flux rope component
(i.e., skirted its flank).

Some magnetic clouds have been associated with solar filament disappearances. Since filament
plasma is embedded in helical, horizontal magnetic fields, the close association of CMEs with
filament eruptions and shearing fields near the surface also supports the view that flux ropes form
the core of CMEs. One idea is that the interior fields of a rising, sheared CME reconnect, resulting
in an ejected flux rope and new, closed coronal loops at the Sun. In several studies magnetic clouds
have been found to have the same orientation and polarity as associated erupting filaments at the
Sun. Furthermore, larger filaments always have twist in the same sense in a given hemisphere,
even though the hemispherical polarity reverses every solar cycle. Filament eruptions and CMEs
may be important ways that the Sun sheds magnetic helicity, as well as flux built up over the solar
magnetic cycle.
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Figure 30: Schematic drawing of modeled flux rope on 15 May 1997, including estimate of its dimensions
and orientation with respect to the ecliptic plane; the axis of the cloud lay nearly in the ecliptic plane and
pointed toward the east. Also drawn is the Sun-Earth line at time of cloud passage by Wind near the L1
point. Image reproduced with permission from Webb et al. (2000b), copyright by AGU.

Since the in-situ signatures of CMEs are well described in several recent reviews (Schwenn, 2006;
Zurbuchen and Richardson, 2006; Richardson and Cane, 2010), we will not discuss them further
here. We will, however, discuss the remote sensing of CMEs, especially as achieved recently by the
new class of white light imagers: heliospheric imagers.

5.1 Remote sensing of CMEs at large distances from the Sun

Several techniques have been developed to remotely detect and track disturbances related to CMEs
in the interplanetary medium (e.g. Jackson, 1992). These have utilized radio and white light
wavelengths to detect and image these structures. The techniques are kilometric radio observations
from space and metric radio interplanetary scintillation (IPS) observations from the ground. The
kilometric observations can track the emission typically from strong shocks traveling ahead of fast
CMEs. Such instruments have been flown on the ISEE-3 and Ulysses spacecraft and are currently
on board Wind and STEREO.

5.2 Interplanetary scintillation (IPS) observations

The IPS technique relies on measurements of the fluctuating intensity level of a large number of
point-like distant meter-wavelength radio sources. They are observed with one or more ground
arrays operating in the MHz–GHz range. IPS arrays detect changes to density in the (local)
interplanetary medium moving across the line of sight to the source. Disturbances are detected by
either an enhancement of the scintillation level and/or an increase in velocity. When built up over
a large number of radio sources a map of the density enhancement across the sky can be produced.
The technique suffers from relatively poor temporal (24-hour) resolution and has a spatial resolution
limited to the field of view of the radio telescope. For example, high-latitude arrays such as the
long-deactivated 3.5 ha array near Cambridge in the UK could not observe sources in the mid-high
latitude southern hemisphere. Scattering efficiency also poses a limitation on IPS measurements as
increasing the frequency at which to measure the sources allows an observer to detect disturbances
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closer to the Sun. Higher frequencies means fewer sources, however, so the spatial resolution is
effectively decreased. Finally, ionospheric noise limits viewing near the Sun and near the horizon,
and a model-dependence for interpreting the signal as density or mass. Workers have, however,
been working with these difficulties for 50 years and a number of techniques have evolved to extract
reliable CME measurements using IPS. Recent papers involving such measurements include Jones
et al. (2007), Bisi et al. (2008), Jackson et al. (2010b), Tappin and Howard (2010), and Manoharan
(2010).

5.3 Heliospheric imagers

Today’s heliospheric imagers are the successors to the zodiacal-light photometers (Leinert et al.,
1975) on the twin Helios spacecraft flown in solar orbits in the 1970s and early 1980s. SMEI,
in particular, was designed to exploit the heliospheric remote sensing capability demonstrated
by that instrument (Jackson, 1985; Webb and Jackson, 1990). Unlike Helios, which could only
observe a few narrow strips across the sky, this new generation of imager could observe large
areas simultaneously. SMEI was the first such imager, developed as a proof-of-concept U.S. Air
Force experiment for operational forecasting. Launched in January 2003 on the Coriolis spacecraft,
SMEI imaged nearly the entire sky in white light once per 102-minute spacecraft orbit, using three
baffled camera systems. Individual frames are mapped into ecliptic coordinates to produce a nearly
complete sky map (Figure 31). SMEI was deactivated in September 2011 and over its 8.5 year
lifetime it observed nearly 400 CMEs (e.g., Webb et al., 2006; Howard and Simnett, 2008) many
of which were Earth-directed (e.g., Tappin et al., 2004; Howard et al., 2006; Webb et al., 2009)
allowing the comparison with in-situ spacecraft and prediction of arrival times and speeds. Unlike
with in-situ spacecraft, however, SMEI enabled the comparison with coronagraph events in any
direction, enabling large-scale tracking and 3-D reconstruction. Figure 32 is a movie of a halo-type
CME that was tracked by SMEI until it produced a major geomagnetic storm at Earth.

SMEI was used for CME tracking (Tappin et al., 2004; Webb et al., 2006; Howard et al., 2006,
2007), space weather forecasting (Howard et al., 2006; Webb et al., 2009; Howard and Tappin, 2010),
and 3-D reconstruction (Tappin and Howard, 2009; Jackson et al., 2010b). SMEI observations have
been compared with coronagraph and in-situ spacecraft measurements (Tappin et al., 2004; Tappin,
2006; Howard et al., 2006, 2007; Howard and Simnett, 2008; Webb et al., 2009) and compared with
IPS observations (Jackson et al., 2008b; Bisi et al., 2008). While SMEI observed the entire sky
beyond 20° elongation, its field of view was often obscured by energetic particle saturation during
its passage through the magnetospheric polar caps and the South Atlantic Anomaly, and by hot
pixel degradation.

In October 2006, the twin STEREO spacecraft were launched carrying the Heliospheric Imagers
(HIs) (Howard et al., 2008a; Eyles et al., 2009). The HIs are part of the SECCHI suite of imaging
telescopes on each spacecraft and view the inner heliosphere starting at an elongation of 4° from
the Sun. HI-1 has a FoV of 20°, from 4 – 24° elongation (∼ 12 – 85𝑅⊙), and HI-2 of 70°, from
∼ 19 – 89° elongation (∼ 68 – 216𝑅⊙). There is a 5.3° overlap between the outer HI-1 and inner
HI-2 FoVs. The HIs do not cover the entire position angle (PA) range around the Sun, but observe
up to a 90° range in PA, usually centered on the ecliptic and viewing either east (HI-A) or west
(HI-B) of the Sun. They do not suffer the same problems with particle saturation as SMEI did, but
are constrained by their fields of view about the ecliptic plane. Combined with the coronagraphs,
the HIs do provide for the first time a continuous view from the Sun to around 1 AU and the
stereoscopic viewpoints enable the possibility for 3-D reconstruction using the coronagraphs and
HI-1.

The STEREO spacecraft share similar ∼ 1 AU orbits about the Sun as the Earth but separate
from the Sun-Earth line by 22.5° per year. STEREO-A (Ahead) leads the Earth in its orbit, while
STEREO-B (Behind) lags. Figure 33 is a schematic showing the fields of view of the SECCHI
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Figure 31: A composite all-sky image from SMEI taken in February 2003. An equal-area Hammer–Aitoff
projection centered on the Sun with North and South ecliptic poles at top and bottom. The dark circle
is a zone of exclusion 20° in radius usually centered on the Sun. The inset box shows a large, loop CME
in May 2003 superimposed on the all-sky image. CMEs can only be detected in the SMEI data by careful
subtraction of backgrounds that include particle contamination because of its Earth orbit (for details see,
e.g., Webb et al., 2006).

Figure 32: Still from a movie showing Orbit difference images of an Earthward halo from SMEI. Halo
was visible as an arc over ≥ 150° of sky (arrows). Blacked-out areas are due to shuttering of bright sunlight
and CCD noise from particles in Coriolis’ 840 km circular Earth orbit. (To watch the movie, please go to
the online version of this review article at http://www.livingreviews.org/lrsp-2012-3.)
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telescopes. Figure 34 is a movie that illustrates these views from all the telescopes during a series
of CMEs in early April 2010 that produced several geomagnetic storms at Earth (Davis et al.,
2011). The bottom shows the B and A views of the EUVI disk, COR1 and COR2 coronagraph
imagers out to 15𝑅⊙, and the upper set shows the HI-1 and -2 fields viewing east (left, HI-A) and
west (right, HI-B) of the Sun beyond the EUVI, COR1, COR2 set shown to scale. Most of the
early work involving the STEREO-HIs and CMEs have focused on their detection and tracking,
and comparison with in-situ spacecraft. Publications include Harrison et al. (2008); Davies et al.
(2009); and DeForest et al. (2011).

As shown in Figures 33 and 34, the STEREO/SECCHI instrument suite provides an uninter-
rupted view from the Sun to around 90° elongation. While they do not have the full PA coverage of
SMEI, their location outside the Earth’s magnetosphere removes noise sources that decreased the
quality of SMEI images, such as energetic particle saturation from the cusp and South-Atlantic
anomaly, glare from the moon, and the aurora. A number of large-scale solar wind transients
have been tracked through the SECCHI field of view, including CMEs (e.g., Harrison et al., 2008;
Davis et al., 2009; Möstl et al., 2010), corotating interaction regions (e.g., Sheeley Jr et al., 2008;
Rouillard et al., 2008; Tappin and Howard, 2009), and solar wind “puffs” (e.g., Rouillard et al.,
2010) and “blobs” (e.g., Sheeley Jr et al., 2009; Sheeley Jr and Rouillard, 2010).

The most recent scientific developments using SECCHI data involve a processing pipeline that
reduces many sources of noise (starfield, F corona) from the dataset. This has permitted the
tracking and measurement of features that were previously inaccessible. Analyses of these pipeline
data are still in the preliminary stages, but early results include observations and measurements of
CME flux ropes (Howard and DeForest, 2012a) and disconnection events (DeForest et al., 2012).
Figure 35 shows an image from a HI-2 movie from DeForest et al. (2011), the movie is also included
in this paper.

Figure 33: The fields of view of the STEREO SECCHI HI telescopes flanking that of the
SOHO/LASCO C3 instrument. The SECCHI EUVI, COR1, and COR2 telescopes are Sun-pointed like
LASCO but the COR2 field extends to only half that of C3. Image adapted from Harrison et al. (2008).

The important difference between heliospheric imagers and coronagraphs is that 3-D informa-
tion is available in heliospheric imagers that is not available in coronagraphs. This is because
the assumptions imposed on coronagraphs (Thomson scattering assumptions, low angles) are not
adequate at large elongations and across large distances. This increases the difficulty of the analy-
sis, but makes available additional information on the structure and kinematics of the CME. This
thereby removes the need for auxiliary data to provide this information. The theory describing
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Figure 34: Still from a movie showing Combined views from all of the STEREO SECCHI telescopes during
a series of CMEs in early April 2010. The bottom panels show the ST-B and ST-A views of the EUVI
disk, COR1 and COR2 imagers out to 15𝑅⊙, and the upper set shows the HI-1 and -2 fields viewing east
(left, HI-A) and west (right, HI-B) of the Sun beyond the EUVI, COR1, COR2 set shown to scale. From
the online data at: http://secchi.nrl.navy.mil/index.php?p=movies. (To watch the movie, please go
to the online version of this review article at http://www.livingreviews.org/lrsp-2012-3.)
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Figure 35: Still from a movie showing STEREO/HI2-A images following the latest data processing
pipeline for SECCHI (DeForest et al., 2011). (To watch the movie, please go to the online version of this
review article at http://www.livingreviews.org/lrsp-2012-3.)

this ability is developed by Howard and Tappin (2009). More recently, papers are beginning to
emerge that consider the 3-D structure of the CME, including Wood and Howard (2009), Lugaz
et al. (2009, 2010), and Howard and Tappin (2009, 2010). Techniques involving the extraction of
3-D properties from heliospheric image data are reviewed by Howard (2011a).
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6 Conclusions

6.1 Summary

We have discussed the origins and characteristics of coronal mass ejections and their associated
phenomena. These have been discussed as occurring near the Sun in terms of their basic coronal
properties and what we know about their source regions, and their manifestation in the heliosphere
and near Earth. Kinematically there appears to be a continuum of accelerations and speeds of
CMEs ranging from gradually accelerating CMEs that have smooth and balloon-shaped profiles,
to rapidly accelerating CMEs that are less homogeneous and move through the outer corona at
relatively constant speed. The rate of occurrence of CMEs correlates with solar activity, but the size
scales of CMEs are much larger and their latitude distributions different than those of near-surface
activity like flares or active regions. CMEs arise in large-scale closed coronal structures, especially
helmet streamers, which blow out and reform. Statistically, CMEs are most frequently associated
with erupting filaments and X-ray long duration events, and not optical flares. However, new X-ray
and EUV data are helping reshape our ideas on these associations. Large-scale coronal arcades are
frequently observed, and may result from reconnection of closed field systems opened by CMEs
, and indeed long current sheets are now observed connecting the arcade and the rising CME.
The size scales and field strengths of these associated systems are a function of latitude. Thus,
CMEs involve the destabilization of large-scale coronal structures which result in reconfiguration
of the larger-scale, weaker fields at higher latitudes and of the smaller-scale, stronger fields at low
latitudes. The magnetic structures involved with the source regions of CMEs can be complex and
multipolar. The earliest X-ray signatures of the onset of a CME in the low corona appear to
include outward-moving loops and the dimming or depletion of coronal material before and above
the bright arcade. Against the disk the arcades are preceded by S-shaped structures associated
with and aligned along the axis of filaments, which erupt forming cusp-shaped arcades. EUV waves
are now frequently observed in association with CMEs.

CMEs carry into the heliosphere large quantities of coronal magnetic fields and plasma which
are detected by remote sensing and in-situ spacecraft observations. Measured at a single spacecraft,
this material has distinctive plasma and magnetic field signatures with a large amount of variation.
One of the most important signature classes is of magnetic clouds which are thought to be the flux
ropes embedded in CMEs and have been identified, for one case, as originating from the cavity
component of the three-part coronagraph CME. These carry strong, directional fields that can be
very geoeffective. As carriers of such magnetic structures, CMEs may provide an important way
for the Sun to shed the magnetic flux and helicity that is built up over the solar magnetic cycle.

In terms of space weather, CMEs are now identified as a crucial link between activity at the Sun
and its propagation through the heliosphere to the Earth and other locations. The interplanetary
manifestations of CMEs can result in extensive transient disturbances that, when directed Earth-
ward, can cause major geomagnetic storms at Earth. In addition, significant particle and radiation
hazards at Earth can arise from CMEs launched from western solar longitudes and, thus, are not
necessarily Earth-directed (see Figure 24). The association of erupting filaments and magnetic
clouds with CMEs has led to the view that flux ropes form the cavity of a CME and help drive
it outward. Halo CMEs are important in terms of forecasting space weather and enhancing our
understanding of CMEs and flux ropes. It appears that shocks and magnetic clouds are also likely
to be detected at Earth following such solar events. Moderate storms not associated with CMEs
are usually caused by Earth passage through the heliospheric current sheet (HCS) and related
corotating interaction regions (CIRs). More details about space weather appear in two respective
Living Reviews (Schwenn, 2006; Pulkkinen, 2007).
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6.2 Unsolved problems

Several enigmatic or outstanding problems remain regarding the origin, propagation, and helio-
spheric consequences of CMEs. We conclude this review by discussing several of these that we feel
are the most important needing to be resolved.

The CME initiation follows storage of energy in closed magnetic field regions on the Sun over
a certain period of time but we do not know what triggers the release of that energy. The stored
energy that is released during eruption is the free energy available to be released in the form of
CMEs, flares, and other eruptive phenomena. The magnetic source of the CME has to build up
the free energy. Identification of the signatures of this energy build-up is a crucial step in deciding
whether and when a CME will occur. During the build-up phase, minor energetic events occur,
but it is difficult to know whether a pre-eruption energy release is a true precursor or a separate
eruption. We also do not know how the free energy is apportioned among the subsequent flare
energy and the CME mechanical energy. We do know, however, that flares occur without observed
CMEs, just as many CMEs are not always accompanied by flares. Flares accompanying CMEs are
generally of lower temperature compared to flares not accompanied by CMEs. This may indicate
that the many smaller flares without CMEs may contribute to coronal heating (Yashiro et al.,
2006), while CMEs carry away the mass and magnetic field into the heliosphere. Based on the
highest mass (1014 kg) and speed (∼ 3500 km s–1) observed one can estimate a maximum kinetic
energy of ∼ 6 Ö 1034 erg. Assuming that only a fraction of the stored energy is released in a single
episode and that the CME derives all of its energy from a single active region, we can set a limit
of ∼ 1036 erg for the maximum free energy available in a solar active region. This is consistent
with the size and magnetic field strengths in solar active regions (Kahler, 2006).

CMEs are subject to propelling and retarding forces in the corona and interplanetary medium
(see, e.g., Vršnak et al., 2004). The propelling force is not properly identified yet. Solar gravity and
the drag force due to momentum exchange between CMEs and the ambient medium constitute the
main retarding forces. The net result is that most CMEs tend to acquire the speed of the ambient
solar wind at large distances from the Sun. This can be quantified as an effective interplanetary
acceleration (Gopalswamy et al., 2000, 2001). However, CMEs come in all sizes and shapes and
the ambient solar wind also is highly variable. The propagation of CMEs is also affected by the
presence of preceding CMEs (Lyons and Simnett, 2001), especially during solar maximum years
when CMEs occur in quick succession (Gopalswamy, 2004). CMEs may also be deflected by other
CMEs and by nearby coronal holes (Gopalswamy et al., 2009a) and the CME itself may contain
some intrinsic driving property (Howard et al., 2007). We need a proper quantification of these
effects to accurately predict the arrival of a CME at a desired location in the heliosphere, once
its launch has been observed and the initial speed measured. Another issue is the true speed
with which CMEs propagate toward a location in the heliosphere. Coronagraphs measure speeds
in the sky plane, but the travel time prediction needs space speed. For example if we consider
CMEs heading towards Earth, we need to de-project the sky-plane speed and re-project it along
the Sun-Earth line. There have been several attempts to convert the sky plane speed into Earth-
directed speed using cone models with reasonable success, but more work is needed (Xie et al.,
2006; Michalek et al., 2006; Howard et al., 2008b).

Even though the fastest CMEs produce energetic particles, we do not fully understand why
some seemingly energetic events produce only low levels of SEPs. There are clear indications
that particle acceleration is a complex issue with multiple sources (shocks and flares) and multiple
factors deciding the acceleration efficiency (Kahler, 2001; Gopalswamy, 2004; Kahler and Vourlidas,
2005). We do not know what the flare and shock contributions are for a given SEP event. We also
do not know how the ambient medium consisting of previously ejected CMEs, shocks, and SEPs
determines the properties of a subsequent event.

We need to more fully understand how the remotely-sensed CMEs evolve into CMEs observed
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in-situ in the solar wind. Magnetic clouds observed within CMEs in the solar wind have specific
magnetic properties, notably their flux rope structure. But flux rope structures near the Sun
can only be inferred, although the three-point views from the STEREOs and LASCO and the
continous field of view of SECCHI from the corona into the inner heliosphere have improved our
understanding. Prominences are themselves thought to be flux ropes near the Sun, but observations
in the interplanetary medium are not compatible with that. Magnetic clouds are observed with high
charge states implying high temperature (several million K) at the source, whereas prominences
are cooler structures with a temperature of only ∼ 8000 K. Such cool prominence material is
rarely observed in-situ, another unsolved problem. Coronal cavities observed in eclipse pictures
and inner coronal images in X-rays and EUV are thought to contain flux ropes, but an alternative
explanation is that these are highly sheared magnetic structures. Recent quantitative comparison
between reconnected flux at the eruption site and the azimuthal flux in flux ropes in the solar
wind suggest that the two fluxes are approximately the same (Qiu et al., 2007), implying that the
flux ropes are formed during the eruption process rather than present in the pre-eruption state.
White-light CME observations mainly provide information on the mass content of the CME, but
very little on the magnetic structure. Many related observations (magnetic and other) need to
be pooled to try to obtain the magnetic structure of CMEs. Another related issue is whether
all CMEs contain flux ropes, and the related question of whether all interplanetary CMEs are
magnetic clouds? If they are, that implies a definite magnetic structure, from which one can infer
the onset time of geomagnetic storms for space weather purposes. The magnetic cloud structure
indicates a definite leading and trailing field orientation, which decides the day-side reconnection
with Earth’s magnetic field that ultimately results in the magnetic storm. While flux ropes in the
interplanetary medium have a well defined magnetic field strength and structure, the same cannot
be said about CMEs near the Sun. At present, we have to infer the nature of interplanetary CMEs
based on the magnetic properties of solar active regions at the photospheric or chromospheric
levels, but the eruption itself starts in the corona.

High temporal and spatial resolution images are needed to identify and study pre-eruption
signatures, which is crucial to predicting the onsets of CMEs. We still lack a quantitative under-
standing of how the magnetic complexity in a source region relates to CME productivity. Since
vector magnetograms provide key information on the free energy available in active regions, they
need to be developed and the results assimilated into various models, including MHD. Finally,
the developing science of helioseismic subsurface imaging of sunspots and active regions suggests
important clues to the build-up of energy in active regions that can lead to large flares and CMEs
(e.g., Webb et al., 2011).
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Reeves, K.K., Linker, J.A., Mikić, Ž. and Forbes, T.G., 2010, “Current sheet energetics, flare emissions,
and energy partition in a simulated solar eruption”, Astrophys. J., 721, 1547–1558. [DOI] (Cited on
page 34.)

Reinard, A.A. and Biesecker, D.A., 2008, “Coronal Mass Ejection–Associated Coronal Dimmings”, Astro-
phys. J., 674, 576–585 (Cited on page 35.)

Richardson, I.G. and Cane, H.V., 2010, “Near-Earth interplanetary coronal mass ejections during solar
Cycle 23 (1996-2009): Catalog and summary of properties”, Solar Phys., 264, 189–237. [DOI] (Cited
on page 50.)

Richter, I., Leinert, C. and Planck, B., 1982, “Search for short term variations of zodical light and optical
detection of interplanetary plasma clouds”, Astron. Astrophys., 110, 115–120 (Cited on page 5.)
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D.F., Bemporad, A., Landini, F., Schettino, G., Jacobs, C. and Suess, S.T., 2009, “Morphology and
density structure of post-CME current sheets”, Astron. Astrophys., 499, 905–916 (Cited on page 39.)

Wang, Y.-M. and Sheeley Jr, N.R., 2002, “Observations of core fallback during coronal mass ejections”,
Astrophys. J., 567, 1211–1224. [DOI] (Cited on page 33.)

Warmuth, A., 2007, “Large-scale Waves and Shocks in the Solar Corona”, in The High Energy Solar
Corona: Waves, Eruptions, Particles, (Eds.) Klein, K.-L., MacKinnon, A.L., vol. 725 of Lecture Notes
in Physics, pp. 107–138, Springer, Berlin; New York. [DOI], [Google Books] (Cited on page 35.)

Webb, D.F., 1988, “Erupting prominences and the geometry of coronal mass ejections”, J. Geophys. Res.,
93, 1749–1758. [DOI] (Cited on page 33.)

Webb, D.F., 1992, “The solar sources of coronal mass ejections”, in Eruptive Solar Flares, Proceedings of
Colloquium No. 133 of the International Astronomical Union, held at Iguazú, Argentina, 2 – 6 August
1991, (Eds.) Švestka, Z., Jackson, B.V., Machado, M.E., vol. 399 of Lecture Notes in Physics, pp.
234–247, Springer, Berlin; New York. [DOI], [ADS] (Cited on pages 32 and 42.)

Webb, D.F., 2002, “CMEs and the solar cycle variation in their geoeffectiveness”, in From Solar Min to
Max: Half a Solar Cycle with SOHO , Proceedings of the SOHO 11 Symposium, 1 – 15 March 2002,
Davos, Switzerland. A symposium dedicated to Roger M. Bonnet, (Ed.) Wilson, A., vol. SP-508 of ESA
Special Publications, pp. 409–419, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 6, 9,
17, 27, 32, 33, and 35.)

Webb, D.F., 2004, “CMEs observed in the heliosphere by the Solar Mass Ejection Imager (SMEI)”, Eos
Trans. AGU , 85, SH11A-03 (Cited on pages 5 and 6.)

Webb, D.F. and Cliver, E.W., 1995, “Evidence for Magnetic Disconnection of Mass Ejections in the
Corona”, J. Geophys. Res., 100, 5853–5870. [DOI] (Cited on page 39.)

Webb, D.F. and Howard, R.A., 1994, “The solar cycle variation of coronal mass ejections and the solar
wind mass flux”, J. Geophys. Res., 99, 4201–4220. [DOI] (Cited on pages 13 and 16.)

Webb, D.F. and Hundhausen, A.J., 1987, “Activity associated with the solar origin of coronal mass ejec-
tions”, Solar Phys., 108, 383–401. [DOI] (Cited on pages 13, 42, and 43.)

Webb, D.F. and Jackson, B.V., 1981, “Kinematical analysis of flare spray ejecta observed in the corona”,
Solar Phys., 73, 341–361. [DOI] (Cited on page 28.)

Webb, D.F. and Jackson, B.V., 1990, “The identification and characteristics of solar mass ejections observed
in the heliosphere by the HELIOS 2 photometers”, J. Geophys. Res., 95, 20,641–20,661. [DOI] (Cited
on page 51.)

Webb, D.F., Cheng, C.-C., Dulk, G.A., Martin, S.F., McKenna-Lawlor, S., McLean, D.J. and Edberg, S.J.,
1980, “Mechanical energy output of the 5 September 1973 flare”, in Solar flares: A monograph from
Skylab Solar Workshop II , (Ed.) Sturrock, P.A., pp. 471–499, Colorado Associated University Press,
Boulder, CO (Cited on pages 25 and 27.)

Webb, D.F., Howard, R.A. and Jackson, B.V., 1996, “Comparison of CME masses and kinetic energies near
the sun and in the inner heliosphere”, in Solar Wind Eight , Proceedings of the Eighth International Solar
Wind Conference, Dana Point, California, USA, 25 – 30 June 1995, (Eds.) Winterhalter, D., Gosling,
J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M., vol. 382 of AIP Conference Proceedings, pp. 540–543,
American Institute of Physics, Woodbury, NY. [DOI] (Cited on pages 6 and 23.)

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://dx.doi.org/10.1086/338757
http://dx.doi.org/10.1007/978-3-540-71570-2_6
http://books.google.com/books?id=-bOCpB71FDkC&pg=PA107
http://dx.doi.org/10.1029/JA093iA03p01749
http://dx.doi.org/10.1007/3-540-55246-4_105
http://adsabs.harvard.edu/abs/1992LNP...399..234W
http://adsabs.harvard.edu/abs/2002ESASP.508..409W
http://dx.doi.org/10.1029/94JA02731
http://dx.doi.org/10.1029/93JA02742
http://dx.doi.org/10.1007/BF00214170
http://dx.doi.org/10.1007/BF00151686
http://dx.doi.org/10.1029/JA095iA12p20641
http://dx.doi.org/10.1063/1.51442
http://www.livingreviews.org/lrsp-2012-3


80 David F. Webb and Timothy A. Howard

Webb, D.F., Kahler, S., McIntosh, P. and Klimchuk, J., 1997, “Large-scale structures and multiple neutral
lines associated with coronal mass ejections”, J. Geophys. Res., 102, 24,161–24,174. [DOI] (Cited on
page 32.)

Webb, D.F., Cliver, E.W., Crooker, N.U., St Cyr, O.C. and Thompson, B.J., 2000a, “Relationship of
halo coronal mass ejections, magnetic clouds, and magnetic storms”, J. Geophys. Res., 105, 7491–7508.
[DOI] (Cited on page 35.)

Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P. and
Rust, D.M., 2000b, “The origin and development of the May 1997 magnetic cloud”, J. Geophys. Res.,
105, 27,251–27,260. [DOI] (Cited on pages 42 and 50.)

Webb, D.F., Burkepile, J., Forbes, T.G. and Riley, P., 2004, “Observational evidence of new current sheets
trailing coronal mass ejections”, J. Geophys. Res., 108, 1440. [DOI] (Cited on page 39.)

Webb, D.F., Mizuno, D.R., Buffington, A., Cooke, M.P., Eyles, C., J., Fry, C.D., Gentile, L.C., Hick, P.P.,
Holladay, P.E., Howard, T.A., Hewitt, J.G., Jackson, B.V., Johnston, J.C., Kuchar, T.A., Mozer, J.B.,
Price, S., Radick, R.R., Simnett, G.M. and Tappin, S.J., 2006, “Solar Mass Ejection Imager (SMEI)
observations of coronal mass ejections (CMEs) in the heliosphere”, J. Geophys. Res., 111, A12101. [DOI]
(Cited on pages 5, 51, and 52.)

Webb, D.F., Howard, T.A., Fry, C.D., Kuchar, T.A., Mizuno, D.R., Johnston, J.C. and Jackson, B.V.,
2009, “Studying geoeffective interplanetary coronal mass ejections between the Sun and Earth: Space
weather implications of Solar Mass Ejection Imager observations”, Space Weather , 7, S05002. [DOI]
(Cited on page 51.)

Webb, D.F., Cremades, H., Sterling, A.C., Mandrini, C.H., Dasso, S., Gibson, S.E., Haber, D.A., Komm,
R.W., Petrie, G.J.D., McIntosh, P.S., Welsch, B.T. and Plunkett, S.P., 2011, “The global context of
solar activity during the Whole Heliosphere Interval campaign”, Solar Phys., 274, 57–86. [DOI] (Cited
on page 58.)

Wild, J.P., Murray, J.D. and Rowe, W.C., 1954, “Harmonics in the spectra of solar radio disturbances”,
Aust. J. Phys., 7, 439–459. [DOI] (Cited on page 5.)

Wild, J.P., Smerd, S.F. and Weiss, A.A., 1963, “Solar bursts”, Annu. Rev. Astron. Astrophys., 1, 291–366.
[DOI] (Cited on page 37.)

Wills-Davey, M.J. and Attrill, G.D.R., 2009, “EIT waves: A changing understanding over a solar cycle”,
Space Sci. Rev., 149, 325–353. [DOI] (Cited on page 36.)

Wolfson, R. and Low, B.C., 1992, “Energy buildup in sheared force-free magnetic fields”, Astrophys. J.,
391, 353–358. [DOI] (Cited on page 47.)

Wood, B.E. and Howard, R.A., 2009, “An empirical reconstruction of the 2008 April 26 coronal mass
ejection”, Astrophys. J., 702, 901–910. [DOI] (Cited on pages 17 and 55.)

Wood, B.E., Howard, R.A., Thernisien, A., Plunkett, S.P. and Socker, D.G., 2009, “Reconstructing the
3D morphology of the 17 May 2008 CME”, Solar Phys., 259, 163–178. [DOI] (Cited on page 20.)

Xie, H., Gopalswamy, N., Ofman, L., St Cyr, O.C., Michalek, G., Lara, A. and Yashiro, S., 2006, “Improved
input to the empirical coronal mass ejection (CME) driven shock arrival model from CME cone models”,
Space Weather , 4, S10002. [DOI] (Cited on page 57.)

Yashiro, S., Gopalswamy, N., Michalek, G., St Cyr, O.C., Plunkett, S.P., Rich, N.B. and Howard, R.A.,
2004, “A catalog of white light coronal mass ejections observed by the SOHO spacecraft”, J. Geophys.
Res., 109, A07105. [DOI] (Cited on pages 5, 9, 19, 21, and 22.)

Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G. and Howard, R.A., 2005, “Visibility of coronal
mass ejections as a function of flare location and intensity”, J. Geophys. Res., 110, A12S05. [DOI]
(Cited on page 32.)

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://dx.doi.org/10.1029/97JA01867
http://dx.doi.org/10.1029/1999JA000275
http://dx.doi.org/10.1029/2000JA000021
http://dx.doi.org/10.1029/2003JA009923
http://dx.doi.org/10.1029/2006JA011655
http://dx.doi.org/10.1029/2008SW000409
http://dx.doi.org/10.1007/s11207-011-9787-5
http://dx.doi.org/10.1071/PH540439
http://dx.doi.org/10.1146/annurev.aa.01.090163.001451
http://dx.doi.org/10.1007/s11214-009-9612-8
http://dx.doi.org/10.1086/171350
http://dx.doi.org/10.1088/0004-637X/702/2/901
http://dx.doi.org/10.1007/s11207-009-9391-0
http://dx.doi.org/10.1029/2006SW000227
http://dx.doi.org/10.1029/2003JA010282
http://dx.doi.org/10.1029/2005JA011151
http://www.livingreviews.org/lrsp-2012-3


Coronal Mass Ejections: Observations 81

Yashiro, S., Akiyama, S., Gopalswamy, N. and Howard, R.A., 2006, “Different power-law indices in the
frequency distributions of flares with and without coronal mass ejections”, Astrophys. J., 650, L143–
L146. [DOI] (Cited on pages 23 and 57.)

Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N. and Howard, R.A., 2008a, “Spatial relationship
between solar flares and coronal mass ejections”, Astrophys. J., 673, 1174–1180. [DOI] (Cited on
pages 32 and 43.)

Yashiro, S., Michalek, G. and Gopalswamy, N., 2008b, “A comparison of coronal mass ejections identified
by manual and automatic methods”, Ann. Geophys., 26, 3103–3112. [DOI] (Cited on pages 11 and 37.)

Yokoyama, T., Akita, K., Morimoto, T., Inoue, K. and Newmark, J., 2001, “Clear evidence of reconnection
inflow of a solar flare”, Astrophys. J., 546, L69–L72. [DOI] (Cited on page 39.)

Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H. and Gopalswamy, N., 2005, “Statistical distribu-
tions of speeds of coronal mass ejections”, Astrophys. J., 619, 599–603. [DOI] (Cited on page 23.)

Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R. and White, S.M., 2001, “On the temporal relationship
between coronal mass ejections and flares”, Astrophys. J., 559, 452–462. [DOI] (Cited on page 21.)

Zhang, J., Dere, K.P., Howard, R.A. and Vourlidas, A., 2004, “A study of the kinematic evolution of
coronal mass ejections”, Astrophys. J., 604, 420–432. [DOI] (Cited on page 21.)

Zhang, J., Cheng, X. and Ding, M., 2012, “Observation of an evolving magnetic flux rope before and
during a solar eruption”, Nature Commun., 3, 747. [DOI] (Cited on page 22.)

Zhao, X.P. and Webb, D.F., 2003, “Source regions and storm effectiveness of frontside full halo coronal
mass ejections”, J. Geophys. Res., 108, 1234. [DOI] (Cited on page 49.)

Zurbuchen, T.H. and Richardson, I.G., 2006, “In-situ solar wind and magnetic field signatures of inter-
planetary coronal mass ejections”, Space Sci. Rev., 123, 31–43. [DOI] (Cited on page 50.)

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3

http://dx.doi.org/10.1086/508876
http://dx.doi.org/10.1086/524927
http://dx.doi.org/10.5194/angeo-26-3103-2008
http://dx.doi.org/10.1086/318053
http://dx.doi.org/10.1086/426129
http://dx.doi.org/10.1086/322405
http://dx.doi.org/10.1086/381725
http://dx.doi.org/10.1038/ncomms1753
http://dx.doi.org/10.1029/2002JA009606
http://dx.doi.org/10.1007/s11214-006-9010-4
http://www.livingreviews.org/lrsp-2012-3

	Introduction
	Properties of CMEs
	CME identification and measurement
	Frequency of occurrence
	Halo CMEs
	Locations, widths, geometry
	Kinematics
	Masses and energies

	Signatures of CME Origins
	Coronal streamers and blowouts
	Flares
	Erupting prominences
	Coronal dimming to arcade formation
	Coronal waves
	Shock waves and SEPs
	Evidence of reconnection and current sheets
	``Problem'' and ``stealth'' CMEs
	Precursors of CMEs

	CME Models
	CMEs in the Heliosphere
	Remote sensing of CMEs at large distances from the Sun
	Interplanetary scintillation (IPS) observations
	Heliospheric imagers

	Conclusions
	Summary
	Unsolved problems

	Acknowledgments
	References

