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[1] Type II radio bursts drift in frequency as shock waves and coronal mass ejections
(CMEs) move through the Sun’s corona and the solar wind. This paper extends the
theoretical models for type II radio bursts of Knock et al. (2001, 2003), Knock and Cairns
(2005), Cairns and Knock (2006) and Schmidt and Gopalswamy (2008). The theory
treats the acceleration of electrons at the shock, formation of electron beams, growth of
Langmuir waves, and conversion of Langmuir energy into radiation. An entirely analytical
and more general formalism is developed, which includes kappa electron velocity
distribution functions for the plasma electrons and the shock-reflected electron beam.
The radiation model also includes the plateauing of the electron beam, which releases
energy for the Langmuir waves. This paper has two parts. First, the new entirely analytical
formalism is presented. Second, first numerical results for synthetic radio images and
synthetic dynamic spectra are discussed, gained by applying our radiation model to MHD
simulations of a shock driven by a CME. The results are compared with earlier analytic
approaches. This work is also applicable to other shock-related emissions in space and
astrophysical plasmas.
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1. Introduction

[2] Propagating shock waves in the solar corona and
interplanetary medium have long been associated with type II
solar radio emission [Wild and Smerd, 1972; Cane et al.,
1981; Nelson and Melrose, 1985; Lengyel-Frey et al., 1997;
Mann and Klassen, 2005]. Strong associations between type
IIs and the shocks ahead of coronal mass ejections (CMEs)
have been shown in recent observations, particularly in the
interplanetary medium. While CMEs can drive shock waves
via a piston mechanism in a plasma [see, e.g., Temmer et al.,
2009], very fast coronal shocks may also be blast waves
ignited by the pressure pulse of a flare [see, e.g., Nindos et al.,
2011]. There is strong evidence that at least some type IIs
are generated in electron foreshock regions upstream of the
shock waves ahead of CMEs [Cane et al., 1981; Reiner et al.,
1997, 1998; Bale et al., 1999; Reiner and Kaiser, 1999;
Pulupa et al., 2010; Cairns, 2011]. These observations have
demonstrated that (1) the emission is consistent with genera-
tion near the upstream electron plasma frequency fp and near
2fp, (2) the source regions travel away from the Sun at speeds
of hundreds of km s�1, as indicated in plots of the inverse

emission frequency versus time [see, e.g., Reiner, 2000],
consistent with a propagating shock, and (3) Langmuir waves
and electron beams occur in the foreshock region ahead of an
active type II-emitting CME-driven shock.
[3] CMEs carry away mass and momentum from the

corona of the Sun and are widely recognized as major tran-
sient events [e.g., Hundhausen, 1999]. Their speeds lie in the
range 100 km s�1 to 3000 km s�1 or more, with masses as
large as 1013 kg [Hundhausen, 1999; St. Cyr et al., 2000;
Gopalswamy, 2006]. Coronagraphs such as the Large Angle
Spectrometric COronagraph (LASCO) [Hundhausen et al.,
1984; Brueckner et al., 1995] on the Solar and Heliospheric
Observatory (SoHO), the Sun Earth Connection Coronal and
Heliospheric Investigation instrument (SECCHI) [Howard
et al., 2008] on the Solar TErrestrial RElations Observatory
(STEREO), and the Atmospheric Imaging Assembly instru-
ment (AIA) [Lemen et al., 2011] on the Solar Dynamics
Observatory (SDO) are imaging CMEs. They can also be
observed as interplanetary CMEs (ICMEs) by spacecraft in
situ [e.g., Klein and Burlaga, 1982; Sheeley et al., 1985;
Crooker et al., 1997]. CMEs moving faster than the local fast
mode speed can drive shocks, which in turn accelerate elec-
trons that produce type II radio bursts [see, e.g., Cane and
Stone, 1984]. These form typically from a heliocentric dis-
tance < 2R⊙ on [e.g., Gopalswamy et al., 2005], where
CME observations are hard to obtain. Moreover, fast CMEs
traverse the inner corona quickly, leaving few captured details
in low cadence images. Thus, a precise prediction of the
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behavior of CMEs for space weather applications requires
a proper knowledge of their properties below �4R⊙ helio-
centric distance [see, e.g., Gopalswamy et al., 2000] and fast
cadence observations from SDO and STEREO.
[4] The standard interpretation of metric and kilometric

type II radio bursts is that they are caused by shock-
accelerated electrons that generate radiation at the local
upstream plasma frequency and its second harmonic [Wild
and Smerd, 1972; Nelson and Melrose, 1985; Cairns,
2011]. An association between interplanetary (hectometric
and kilometric) type II bursts and CME driven shocks is
firmly established, with type II radio emission generated
upstream of the CME-driven shock [Cane et al., 1987;
Reiner et al., 1998; Bale et al., 1999]. An example of a
type II radio tracking facility is the radio receiver RAD2
of the WAVES experiment on board the Wind spacecraft,
measuring between 1.075 MHz and 13.825 MHz [e.g.,
Bougeret et al., 1995], which avoids the ionospheric cutoff
at Earth for radio signals below 10 MHz originating above
about 2–3 R⊙ heliocentric distance. Closer to the Sun,
radio observations can be made by ground-based radio
instruments, e.g., the Nançay radioheliograph, imaging at
five discrete frequencies between 164 MHz and 432 MHz.
Radio type II bursts with a “herringbone” fine structure have
been measured and investigated for many years for instance
with the radio spectralpolarimeter of the Astrophysical
Institute Potsdam (Germany) within the range 40–800 MHz
[Nelson and Melrose, 1985; Mann and Klassen, 2005, and
references therein]. A sharpening of the images can be
obtained by correlating spatially distributed antennas, as done
with the LOw Frequency ARray (LOFAR) that covers plasma
frequencies at distances between approximately 1.3 and
2.3 R⊙ from the Sun’s center [Röttgering et al., 2005], or the
Murchison Widefield Array (MWA) for frequencies between
80 and 300 MHz with an equivalent field of view [Salah
et al., 2005].
[5] Four main steps are involved in the accepted picture

for type II emission [e.g., Nelson and Melrose, 1985; Cairns,
2011]: (1) acceleration of electrons at or near the shock;
(2) accelerated electrons form beam distributions in velocity
space in the foreshock region; (3) beam distributions are
unstable to the generation of Langmuir waves via wave
particle interactions; and (4) some Langmuir energy is cou-
pled into electromagnetic emission, leading to the observed
type II burst. Holman and Pesses [1983], Nelson and Melrose
[1985], Cairns [1986a], and Benz and Golla [1988] have
considered qualitative models for type II production in fore-
shock regions upstream of shocks.
[6] Literature dealing with acceleration processes at fast

mode MHD shocks includes that by Sonnerup [1969],
Toptyghin [1980], Potter [1981], Holman and Pesses
[1983], Webb et al. [1983], Goodrich and Scudder [1984],
Leroy and Mangeney [1984], Wu [1984], and Yuan et al.
[2007]. These works treat electron and ion acceleration for
both reflected and transmitted particles. It is thought that
the type II emission region lies upstream of the shocks
[Cane et al., 1981; Cairns, 1986a; Lengyel-Frey et al., 1997;
Reiner et al., 1998; Bale et al., 1999]. Thus, the reflection
process is of primary concern.
[7] For the decision what electron acceleration process

is relevant, the angle qbn between the upstream magnetic
field direction and the local shock normal is an important

quantity. In the case that the gyroradii of the particles are
large compared with the shock ramp, the acceleration of
reflected electrons by the moving magnetic mirror of quasi-
perpendicular shocks (|qbn| ≥ 45∘) is sometimes called shock
drift acceleration (SDA) [Toptyghin, 1980]. When the gyro-
radii are smaller, the reflection is sometimes called magnetic
mirror reflection instead [Wu, 1984]. The energy comes from
net gradient and/or curvature drift parallel to the sign of the
charge times the convection electric field. The process pro-
duces large relative energy gains when |qbn| � 90�.
[8] The occasional connection of an upstream spacecraft

to two magnetic tangent points (qbn = 90�) on opposite sides
of the spacecraft prior to the shock crossing (with qbn � 86�
at the crossing) is suggested by Bale et al.’s [1999] in situ
observation of a shock associated with an interplanetary
type II. These observations imply ripples of the shock sur-
face [Bale et al., 1999; Knock et al., 2003b; Neugebauer and
Giacolone, 2005; Knock and Cairns, 2005; Pulupa et al.,
2010]. In that case, parts of the shock magnetically
connected to the upstream region need not have the same qbn
as at the shock crossing. The same is likely if the shock is
curved (even without ripples) or if B varies in space. In such
a situation one would expect an upstream region connected
to a whole range of qbn, where one or more points with
|qbn| � 90∘ are present.
[9] Much work has been carried out on the growth of

electron beam-driven Langmuir waves in plasmas [e.g.,
Filbert and Kellogg, 1979; Melrose, 1985; Lacombe et al.,
1988; Cairns and Fung, 1988]. In particular, a stochastic
growth theory (SGT) of plasma waves has been developed
that can successfully explain the Langmuir waves driven
by electron beams producing type III solar radio bursts
[Robinson, 1992; Robinson et al., 1993a; Robinson and
Cairns, 1998b; Robinson and Benz, 2000], thermal waves
in the solar wind [Cairns et al., 2000], and Langmuir waves
driven by electron beams in Earth’s foreshock [Cairns and
Robinson, 1997, 1999; Cairns et al., 2000]. Thus, SGT can
be considered a natural candidate theory for the Langmuir
waves involved in type II foreshock emission.
[10] Holman and Pesses [1983], Cairns [1986a], Benz and

Golla [1988], and Street et al. [1994] attempted to produce
models of type II solar radio bursts, previously, which are
based on the same primary acceleration mechanism. How-
ever, neither calculations of beam distributions throughout
the foreshock, nor studies of the resulting Langmuir waves
and radio emission processes were included in their work.
Fitzenreiter et al. [1990] calculated foreshock beams at a
curved shock analytically. Knock et al. [2001] calculated
foreshock beams, applied SGT, and calculated the radio
emission of type II solar radio bursts for the first time. Their
work included a detailed model for electron reflection and
beam production and was applied to the type II shock
geometry estimated from the observations by Bale et al.
[1999]. The Langmuir wave growth was modeled using
SGT and the conversion of Langmuir wave energy into
freely propagating radio emission using specific nonlinear
three-wave processes. This approach allowed calculation
of the radiation flux at a distant observer for comparison
with observations.
[11] The influence of shock ripples on the dynamical

spectra was further discussed by Knock et al. [2003b], and
shown to produce significant fine structures in time and

SCHMIDT AND CAIRNS: TYPE II RADIO BURSTS, 1 A04106A04106

2 of 18



frequency. Knock and Cairns [2005] and Cairns and Knock
[2006] included the modeling of coronal and interplanet-
ary structures. A further improvement of the model was
achieved by including a data-driven model for the solar wind
with both radial and longitudinal (azimuthal) variations in
plasma parameters, again leading to significant fine struc-
tures and variability of the dynamic spectrum [Florens et al.,
2007]. Hillan et al. [2011] carried out a first detailed com-
parison of this model with observations.
[12] Schmidt and Gopalswamy [2008] replaced the com-

puting-intensive numerical evaluations of phase space inte-
grals for the calculation of reflected beam parameters in the
type II theory [Knock et al., 2001, 2003a, 2003b; Knock and
Cairns, 2005; Cairns and Knock, 2006; Florens et al., 2007]
with analytic results of these beam parameters for Maxwel-
lian electron velocity distributions in the solar wind, and
combined the then completely analytical radiation theory
with MHD simulations of a CME-driven shock. They were
able to simulate the radio map observations of Maia et al.
[2000]. A number of limitations exist for that calculation
and for previous theories for type II bursts [Cairns, 2011].
[13] In the study presented here we revise and extend the

work of Knock et al. [2001, 2003a, 2003b], Knock and
Cairns [2005], Cairns and Knock [2006], and Schmidt and
Gopalswamy [2008] related to radio emission at CME-
driven shocks, extending the foregoing theory with analytic
results for the reflection efficiency, intrinsic electron beam
distribution functions, and plateaued electron distributions,
which result from an erosion of that reflected distribution as
Langmuir waves are generated, for kappa velocity distribu-
tions of electrons in the background solar wind plasma. Note
that kappa distributions have elongated high velocity tails
that better suit solar wind conditions [see, e.g., Maksimovic
et al., 1997]. Our analytic results yield a kinetic theory for
radio emission that can be combined with or bolted onto
MHD simulations of CMEs driving shock waves or to other
shock simulations (MHD or otherwise) in different coronal
or astrophysical systems. Our new calculations correct the
work of Schmidt and Gopalswamy [2008] to remove down-
stream emission, extend the emission theory of Knock and
collaborators to be fully analytic and to fully include kappa
electron distribution functions for the typically nonthermal
solar wind electrons, and also show how to better capture
the front of the shock in the MHD simulation. In particular,
there is no emission arising from the downstream region any
longer, which appeared in the previous bolt-on calculations.
[14] The work presented here uses this new “bolt-on”

theory to predict the radio emission produced upstream of
the nose (most anti-sunward region) of a CME-driven shock.
The shock is predicted using an MHD simulation code.
We obtain a much more refined picture of shock radiation
than in the work by Schmidt and Gopalswamy [2008]. A
full description of the radio results, including radiation
from the flanks of the expanding CME-driven shock is given
in the companion paper (Schmidt, J. M., and I. H. Cairns,
Type II radio bursts: 2. Applications of new analytic form-
alism, manuscript in preparation for Journal of Geophysical
Research, 2012, hereinafter referred to as Schmidt and Cairns,
manuscript in preparation, 2012). The new “bolt-on” theory
should be applicable to other phenomena like a CME interact-
ing with a corotating interaction region, erupting loops in the

corona responsible for decimetric radio bursts, or reconnection-
driven beams.
[15] This paper is structured as follows. In section 2 we

present our new reflection results based on kappa electron
distributions. Section 3 presents our analytic results for the
plateauing effect and the plateaued electron distributions
used to predict the energy flow into the Langmuir waves.
In section 4 we summarize the analytic description of the
Langmuir growth and the production of electromagnetic
radiation, while section 5 introduces our MHD model for
shock excitation. How we identify the shock in the MHD
simulation is explained in section 6. Section 7 presents and
discusses our initial results for simulated radio maps and
dynamic spectra. Section 8 ends with the conclusions
and summary.

2. Reflection Results

[16] Figure 1 shows the definitions of the shock para-
meters used. The shock front can be seen as the thick line,
which is a location for an entropy jump and a steep increase
of the plasma density and magnetic field strength in the
MHD simulations. The vectors n and t are unit vectors
normal and tangential to a distinctive point on the shock
front. The shock itself has a velocity in the normal direction.
A velocity component in the tangential direction is possible
too, when the local shock is on the flank region of a ballis-
tically moving CME. The region of the plasma into which
the shock is moving is the upstream region. Specifically, the
direction “upstream” means “directed upstream away from
the shock”. The region behind the shock’s magnetic mirror
is the downstream region. The vector u denotes the velocity
of the plasma relative to the shock, and B is the magnetic
field vector that intersects the shock at a specific point.
The angle qbu is between u and B, and the angle qbn is the
angle between B and the shock normal n.
[17] For this geometry, assuming a Maxwellian velocity

distribution for solar wind electrons moving into the
shock, Knock et al. [2001] derived the reduced (integrated
over perpendicular velocity) electron distribution function
reflected at the shock front

Fr vkr
� � ¼ h vk

� �
F vk
� �

; ð1Þ

where h(vk) is the reflection efficiency, F(vk) the reduced
distribution function of incident electrons with speed vk
parallel to the magnetic field,

vkr ¼ �vk � 2vWH
k þ u cos qbu; ð2Þ

is the (parallel) velocity component of a reflected electron in
the direction of the magnetic field, vk

WH = � vd tan qbn is the
parallel component of the relative velocity between the solar
wind frame and the de Hoffmann-Teller rest frame of the
shock, where vd = |� (u � B) � B/B2| is the bulk drift
velocity of the upstream plasma perpendicular to the mag-
netic field B (and the convection electric field E = � u � B),
and u cos qbu is the bulk speed of the upstream plasma par-
allel to the magnetic field. The quantity vc = vd tan qbn = vk

WH

is also called the cutoff speed for shock reflection [Cairns,
1987a], since any reflected electron that escapes upstream
of the shock must have been accelerated to at least the
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speed vc with which the shock moves along �B through
the solar wind.
[18] Equations (1) and (2) are based upon conservation

of the magnetic moment and energy in the shock’s de
Hoffman-Teller frame, in which the convection electric field
vanishes on both sides of the shock. Reviews of the physics
exist elsewhere [e.g.,Wu, 1984; Cairns, 2011] and only final
results are given here. Equation (2) expresses momentum
conservation of electrons reflected at the shock’s magnetic
mirror in the Hoffman-Teller frame. The reflection effi-
ciency at the shock is defined as

h vk
� � ¼

Rc
vlc

2pv? f vk; v?
� �

dv?

Rc
0
2pv? f vk; v?

� �
dv?

; ð3Þ

where c is the speed of light and f(vk, v?) is the electron
velocity distribution incident on the shock. The shock’s
magnetic jump and the cross-shock electrostatic potential
define a loss-cone for electrons reflected from the shock, as
shown in Figure 2. The quantity vlc is the minimum per-
pendicular speed of the loss cone for reflected electrons with
speed vk. The conservation of magnetic moment and energy
in the de Hoffman-Teller frame imply that

v2lc ¼
vk � vd tan qbn
� �2 þ 2

me
eDF′

B2=B1 � 1
; ð4Þ

where vk is taken in the shock’s rest frame. Here, eDF′ is an
electrostatic cross-shock potential, which contributes to the
electron acceleration, and B2 and B1 are the magnetic field
strengths downstream and upstream of the shock, respec-
tively. Ideally, B2 and DF′ are the overshoot values. As
usual e and me are the electron charge and mass, respec-
tively. Thus h(vk) is the ratio of the number of electrons
incident on the shock with speed vk that are outside the loss
cone (defined by the macroscopic electric and magnetic
fields) with v? between vlc and c, and the total number of
electrons incident on the shock with speed vk. Note that
if the minimum perpendicular speed of the loss-cone vlc for

a given vk in the reflection process becomes larger, then a
smaller number of electrons is reflected, and the reflection
efficiency becomes smaller.
[19] Figure 2, taken from Yuan et al. [2008], shows

the electron velocity distribution upstream of a quasi-
perpendicular shock with qbn = 85∘, obtained by following
test particle electrons through the E and B fields predicted
by a 1 D hybrid simulation. The Maxwellian electron veloc-
ity distribution incident on the shock is the distribution on
the positive vk axis in this figure. The dotted line is the ideal
loss cone for the reflected electrons (negative vk) when only
magnetic effects are included, and the dash-dotted line is the
actual loss cone for the same shock when the electrostatic
cross shock potential is included, which is distorted to a
hyperboloid. We can see clearly that the reflected electrons
occur at v? values above the hyperbolic line along the neg-
ative vk axis. The small population of electrons between the
hyperbolic line and the vk axis are due to leakage of elec-
trons from the downstream region. The quantity vlc is the
value of v? on the loss cone for a given vk value.
[20] Using conservation of magnetic moment and energy,

and isotropic Maxwellian electron velocity distribution func-
tions, it can be shown [Knock et al., 2001] that

h vk
� � ¼ 1� erf

vlc
ve

ffiffiffi
2

p
� �

þ vlce�v2lc=2v
2
e

ve
ffiffiffiffiffiffiffiffi
p=2

p : ð5Þ

Here, the error function erf xð Þ ¼ 2=
ffiffiffi
p

pð Þ Rx
0
e�t2dt . This

reflection efficiency depends on the thermal electron speed
ve = (kBTe/me)

1/2, where kB is Boltzmann’s constant and Te is
the electron temperature.
[21] The number density nb of the reflected electron beam,

the mean parallel velocity vb of the reflected electrons (e.g.,
the beam speed), and the standard deviation Dvb of the
parallel velocities of the reflected electrons from the mean
value are given by the moments

nb ¼
Z∞
vc

Fr vkr
� �

dvkr; ð6Þ

vb ¼
Z∞
vc

vkrFr vkr
� �

dvkr; ð7Þ

v2kr
D E

¼
Z ∞

vc

v2krFr vkr
� �

dvkr; ð8Þ

Dvb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2kr
D E

� v2b

r
: ð9Þ

Note that in the plasma rest frame the parallel speeds of the
reflected electrons range from vc to c (approximated by ∞
here), which defines the limits of these moment integrals.
Schmidt and Gopalswamy [2008] evaluated (6), (7), and (9)
analytically for a Fr(vkr) that is a product of a Maxwellian
with the reflection efficiency (5).
[22] Now, we discuss our new analytic approach to the

reflection process using kappa electron velocity distribution
functions. Following for example Knock et al. [2003a],

Figure 1. Definitions of the shock parameters. The thick
line represents the shock surface.
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electrons can be modeled with normalized kappa velocity
distribution functions

fk vk; v?
� � ¼ G kþ 1ð Þ

G k� 1
2

� � p�3=2v�3
e 1þ

v2k þ v2?
v2e

 !� kþ1ð Þ
; ð10Þ

where vk and v? are the velocity components parallel and
perpendicular to the magnetic field. These distribution
functions have enhanced high velocity tails extending to ∞,
whose height or strength depends on k. They are known to
describe well electron distributions observed in the solar wind
[see, e.g., Maksimovic et al., 1997], and reasonable values
are 2 ≤ k ≤ 5. A detailed derivation (Appendix A) leads to the
reduced distribution function outside the loss cone,

Floss�cone ¼
Zc
vlc

2pv? fk vk; v?
� �

dv? ð11Þ

≈
G kþ 1ð Þ
G k� 1

2

� � p�1=2 v
�1
e

k
1þ

v2k þ v2lc
v2e

 !�k

: ð12Þ

Equivalently, we obtain the incident reduced electron
distribution

Fi vk
� � ¼ Z

c

0

2pv? fk vk; v?
� �

dv? ð13Þ

≈
G kþ 1ð Þ
G k� 1

2

� � p�1=2 v
�1
e

k
1þ

v2k
v2e

 !�k

; ð14Þ

moving toward the shock from upstream. Thus, the
reflection efficiency can be expressed as:

h vk
� �

≈
v2e þ v2k þ v2lc

v2e þ v2k

 !�k

ð15Þ

for kappa electron distribution functions. Since the reflected
electron distribution Fr(vk) is the reflection efficiency times
the velocity distribution incident on the shock, we find

Fr vk
� �

≈
G kþ 1ð Þ
G k� 1

2

� � p�1=2 v
�1
e

k
1þ

v2k þ v2lc
v2e

 !�k

; ð16Þ

where vlc
2 is the function in (4). Thus far the analysis is for

electrons in the de Hoffman-Teller frame. Now (16) is
applied to a population of reflected beam electrons in the
shock frame in which vk ranges from vc = vd tan qbn to infinity,
since electrons are accelerated to at least the cutoff speed vc
by reflection. Outside this range Fr(vk) is zero for this pop-
ulation. We can consider this property by multiplying (16)
with a Heaviside step-function H(vk, vc), which is zero for
vk < vc and one for vk ≥ vc:

Fr vk
� �

≈
G kþ 1ð Þ
G k� 1

2

� � p�1=2 v
�1
e

k
1þ

v2k þ v2lc
v2e

 !�k

H vk; vc
� �

: ð17Þ

[23] Figure 3 shows the reflection efficiencies in the
de Hoffman-Teller frame: hM(vk) (dotted line) according
to the original Knock et al. [2001] and Schmidt and
Gopalswamy [2008] approach, using Maxwellian distribu-
tions and given by (5), and hK(vk) (solid line) according
to the new approach, using kappa distribution functions
and given by (15). Parameters used in Figure 3 and in the
simulation in sections 5–7 are Te = 3 � 104 K, B1 = 4 nT,
B2 = 8 nT, vd = 700 km s�1, and qbn = 45∘, resulting in
ve = 674 km s�1, and vc = 700 km s�1. We have chosen
k = 2.5, which is a typical value for the solar wind based on
an extensive study of ULYSSES electron measurements
[see, e.g., Maksimovic et al., 1997]. Furthermore, we used
the approximation eDF′ ≈ 2kBTe(B2/B1 � 1) from Kuncic
et al. [2002].
[24] We see that hM(vk) is a slightly distorted Maxwellian

that has a maximum of about 0.26 at vk ≈ 7.0 � 105 m s�1,
rapidly decreases for larger vk, and is smaller than 0.01 for
vk ≥ 2.6 � 106 m s�1. This means that in the Maxwellian
theory electrons are reflected best when vk ≈ ve, but reflec-
tion of faster electrons is rare.
[25] In contrast, hK(vk) starts with about 0.01 at vk = 0,

which is much smaller than hM(0) ≈ 0.17, and increases to a
maximum of about 0.25 at about vk = 3 � 106 m s�1 ≈ 4ve.
For vk > 3 � 106 m s�1, hK(vk) decreases again. We can
determine the limit as hK(vk → ∞) = (B2/(B2 � B1))

�k, which
is about 0.177 for our choice of parameters. This shows that
in the theory with kappa functions the reflection of electrons
becomes effective for vk on the order of two or three times
the local electron thermal speed and larger. The difference
between the results for Maxwellian and kappa distribution is
due to the relative lack of electrons with large vk for the
Maxwellian distribution.
[26] It is not a contradiction that the areas below the

curves of hM(vk) and hK(vk) do not have a unit value, since
reflection efficiencies are not to be confused with distribu-
tion functions. Reflection efficiencies denote the probability
of a reflection of an electron for each value of vk indi-
vidually, assuming that electrons with this vk exist in
the distribution.

Figure 2. Simulated electron velocity distribution in the
shock normal frame upstream of a shock with qbn = 85�,
Alfvén Mach number MA = 7.7, and sonic Mach number
Ms = 5.0, taken from Yuan et al. [2008]. Dash-dotted and
dotted lines show the loss cones defined by the shock’s
magnetic mirror with and without, respectively, the cross-
shock potential. Reflected electrons occur at vk < 0 and
downgoing electrons at vk > 0. Here vthe = ve is the
upstream electron thermal speed.
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[27] Figure 4 shows the reflected reduced electron distri-
bution FrK(vk) (solid line), predicted by (17) for an upstream
kappa electron velocity distribution, and FrM(vk) (dotted
line), predicted by (1), (5) and an upstream Maxwellian
electron velocity distribution. Both distributions are in the de
Hoffman-Teller rest frame of the shock. We see that FrK(vk)
peaks near a value �1.2 � 10�8 s m�1 at the cutoff speed vc.
Then, FrK(vk) decreases continuously and approaches the
vk axis very slowly for large vk.
[28] In comparison, FrM(vk) has a local maximum of about

2.16� 10�7 s m�1 at vk ≈ 9 � 105 m s�1 ≈ 1.5ve, well above
FrK(vk). For larger values of vk, FrM(vk) decreases faster than
FrK(vk), being practically zero for vk > 2.4 � 106 m s�1. In
contrast, for vk > 2.4 � 106 m s�1, FrK(vk) has still signifi-
cant values and extends in a very elongated high vk tail.
[29] This shows that in the case of a Maxwellian distri-

bution significant numbers of beam electrons have parallel
speeds up to a few times the cutoff speed, where the average
speed of the beam electrons is slightly above the cutoff
speed for these parameters. For a kappa distribution there are
fewer beam electrons with speeds near a few times vc, but

significant numbers of beam electrons with much higher vk.
Thus, incident kappa electron distributions are more effec-
tive in producing higher energy electrons, even though
the relative energy gain is unchanged for a given vk, since
the kappa distribution has more high vk particles than the
Maxwellian [e.g., Knock et al., 2003a].

3. Plateauing Results

[30] The reflected electron beam distribution constitutes a
“bump” on the tail of the background electron distribution
that can drive Langmuir waves via the conventional beam or
“bump-on-tail” instability [see, e.g., Filbert and Kellogg,
1979; Cairns, 1987b]. The instability is driven by a positive
gradient ∂Fr(vk)/∂vk of the reduced electron distribution
function Fr(vk), and the growth rate is proportional to the
value of ∂Fr(vk)/∂vk at the wave phase speed. The energy
for the Langmuir waves to grow comes from the electron
beam. This energy extraction causes beam electrons to move
toward lower kinetic energy and vk. Quasilinear theory treats
the relaxation of the electron distribution function and the
growth of the waves quantitatively (see, e.g., the review
of Melrose [1985]). Assuming spatial homogeneity and a
delta function beam, quasilinear theory predicts that the
system evolves to a state in which 2/3 of the initial beam
kinetic energy 1

2menbv2b goes to the waves and 1/3 is retained
by the electrons, whose distribution function is flattened into
a plateau in vk space [Melrose, 1985]. This plateau has
∂Fr(vk)/∂vk = 0, and thus the growth rate for Langmuir
waves vanishes. Warm beams have less energy available for
wave growth, now with the estimate ≈ 1

2menbvbDvb [Melrose,
1985; Robinson et al., 1994; Robinson and Cairns, 1995].
[31] Figure 5 shows the configuration in velocity space

of the quasilinear plateauing effect. The reflected electron
beam distribution Fr(vk) given by (16), starts from the
cutoff speed vc and is superposed on the reduced distribution
Fi(vk) of the background electrons given by (14). The total
electron distribution FT(vk) = Fr(vk) + Fi(vk) has ∂FT(vk)/
∂vk|vk=vf > 0 for the steep rise starting at vc and is unstable
to the growth of Langmuir waves with phase speed vf. Such
electrons lose energy, moving to lower vk and reducing the

Figure 5. Configuration of electron distributions and the
plateauing effect. The generation of Langmuir waves erodes
the peak of the total distribution Fr(vk) + Fi(vk) and leads to a
flat plateau between parallel speeds a and b for which the
areas A = B due to particle number conservation.

Figure 4. Beam distributions FrM(vk) (dotted line) and
FrK(vk) (solid line) for incident Maxwellian and kappa
distributions, respectively. While FrM(vk) is practically zero
above a few vc, FrK(vk) exhibits a very elongated high
velocity tail.

Figure 3. Reflection efficiencies hM (dotted line) for
Maxwellian distributions and hK (solid line) for kappa dis-
tribution functions. While hM is centered around the ther-
mal electron speed, hK is largest for large vk. Parameters
used are k = 2.5, Te = 3 � 104 K, B1 = 4 nT, B2 = 8 nT,
vd = 700 km s�1, and qbn = 45∘, resulting in ve = 674 km s�1,
and vc = 700 km s�1.
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slope ∂FT(vk)/∂ vk|vf and so the Langmuir growth rate. This
conversion process comes to an end when the peak of FT(vk)
is eroded completely, leading to a plateau with ∂FT(vk)/
∂vk = 0 in the regime to the left of and adjacent to the
eroding peak. The energy for the excited Langmuir waves is
taken from the electrons with ∂FT(vk)/∂vk > 0 in the beam
velocity distribution.
[32] The corresponding plateau is indicated in Figure 5 as

the horizontal line between the values a and b on the vk axis.
As the waves grow, electrons with vk such that ∂FT(vk)/
∂vk > 0 lose energy and move into the plateau for which
a ≤ vk ≤ vc, ∂FT(vk)/∂vk ≈ 0, and the growth rate is close to
zero. The total number of the electrons is conserved in this
process. Then the plateau has the property that the area A for
vk > vc is equal to the area B for vk < vc. This property can be
used to calculate the edges a and b of the plateau explicitly,
as outlined in Appendix B. The analytic formulae for a and b
depend on the shock parameters and the background elec-
tron distribution. Once a and b are known, we obtain the
beam density, beam velocity and beam width [Knock et al.,
2001, 2003a, 2003b; Knock and Cairns, 2005; Schmidt
and Gopalswamy, 2008] as

nb ¼ Fi að Þ b� að Þ; vb ¼ 1

2
aþ bð Þ; Dvb ¼ b� a: ð18Þ

These beam parameters enter the analytic theory of
Robinson and Cairns [1998a, 1998b] for the calculation of
the radio emissivities and flux, which we summarize in the
next section.
[33] Mapping of the calculated beam, Langmuir, and radio

wave properties in the foreshock proceeds as follows. At
each point outside the shock front, starting just upstream of
the shock, we determine the path of the electron beam in the
solar frame using

vpath ¼ vbbþ vd; ð19Þ

where b = B/|B| is the unit vector of the magnetic field, and
vd is the local E � B drift velocity. Reconstructing the paths
of the electron beams yields a mesh of lines covering the
upstream region of the shock, on each of which we compute
the radiation excited. Dynamic spectra are then constructed
by taking the volume emissivity of each cell in the radiation
field times the volume of that cell and summing over all
cells, taking into account travel to the observer, as described
in Section 4.

4. Growth of Langmuir and Radio Waves

[34] As summarized in Section 3 and elsewhere, electrons
can be energized by shock wave acceleration in a highly
structured and temporally evolving plasma. When the beam
speed vb of the accelerated electrons exceeds about two
times the thermal speed of the electrons, Langmuir plasma
waves L can be excited efficiently via the beam plasma
instability [e.g., Melrose, 1985].
[35] There are three nonlinear processes considered to

produce radio emission at fp and 2fp [e.g., Cairns and
Melrose, 1985; Nelson and Melrose, 1985; Cairns, 1987b;
Robinson and Cairns, 1998a; Knock et al., 2001; Cairns,
2011]. (1) The beam-driven Langmuir waves L produce
backscattered Langmuir waves L′ and ion acoustic waves S

via electrostatic (ES) decay: L → L′ + S. (2) Stimulated by
the ES decay products S, L waves decay into radio waves T
just above fp and ion acoustic waves S′ via electromagnetic
(EM) decay: L → T(fp) + S′. (3) The coalescence of beam-
driven L and backscattered L′ Langmuir waves produce
radio waves just above 2fp : L + L′→ T(2fp). Decay processes
are thought to be more likely than coalescence processes,
since decay processes require only a single population of
nonthermal waves to produce nonthermal product waves,
whereas coalescence processes require both participating
populations to be nonthermal [e.g., Cairns and Melrose,
1985, and references therein].
[36] Stochastic growth theory (SGT) takes the ideas of

inhomogeneities and incomplete quasilinear relaxation
several steps further [e.g., Robinson, 1992; Robinson et al.,
1993b; Cairns and Robinson, 1997, 1999; Robinson et al.,
2004, 2006]. It assumes that a wave-particle system is very
close to a state of marginal stability when averaged over time
and volume. Further, the wave gain G tð Þ ¼ ln E tð Þ=E0ð Þ ¼Rt
�∞

g tð Þdt is assumed to be a stochastic variable. Here E(t) is

the wave electric field at time t, E0 is a reference field, and
g(t) is the Langmuir growth rate. This leads to the waves
being intrinsically bursty. Also, the logarithmic dependence
of G on the wavefield enables a qualitative explanation of
the production of waves with a wide range of wavefields,
from quasithermal to those approaching or exceeding the
thresholds for nonlinear processes. Presupposing that many
fluctuations in g and G occur during some characteristic
time for the waves, then the Central Limit Theorem predicts
that the probability distribution G (and so logE) will be a
Gaussian [e.g., Robinson, 1992].This feature has been vali-
dated in a large number of applications [e.g., Cairns and
Robinson, 1997, 1999; Robinson et al., 2004, 2006].
[37] In one model for achieving an SGT state for electron

beam-driven Langmuir waves the beam moves through an
inhomogeneous plasma which has multiple evolving sites
where wave growth is favored. This leads to enhanced
localized growth and modification of the particle distribu-
tions inside the sites, while the beam rebuilds between
growth sites due to faster electrons outrunning slow ones
and increasing ∂Fr(vk)/∂vk [e.g., Robinson, 1992; Robinson
et al., 1993b; Cairns and Robinson, 1997].
[38] In addition, SGT provides a quantitative prediction

for the amount of energy entering the Langmuir waves
irrespective of the details of the wave growth and saturation.
In detail, the total time derivative of the free energy available
from quasilinear relaxation of the electron beam equals the
power flux entering the Langmuir waves, yielding in steady
state [e.g., Robinson et al., 1994; Knock et al., 2001]

d

dt
WL ¼ v ⋅

∂
∂r

nbvbDvb
3

� �
≈
nbv2bDvb

3l
: ð20Þ

[39] In (20) WL = ϵ0EL
2/2 is the electric energy in the

Langmuir waves with the permittivity of free space ϵ0, and
the factor 3 comes from multiplying the quasilinear predic-
tion that 2/3 of the initial available kinetic energy reaches the
waves with the 1/2 for the definition of kinetic energy. The
approximation in (20) includes replacing the derivative with
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vb/l, where l is the distance from the shock to the observer
location along the trajectory for vk = vb [Knock et al., 2001].
[40] Using SGT, Robinson and Cairns [1998a, 1998b]

derived volume emissivities jM for the fundamental (M = F)
and second harmonic (M = H) plasma radiation produced by
the above nonlinear processes from Langmuir waves excited
by an electron beam. In particular, they found

jM rð Þ ≈ FM

DWM

nbmev3b
3l rð Þ

Dvb
vb

; ð21Þ

where DWM is the solid angle over which the emission is
spread, i.e., DWF = p/4 and DWH = 2p [see, e.g., Knock
et al., 2001], nb is the beam number density, vb is the beam
speed, l(r) is the distance along the beam path from the shock
to the location r at heliocentric distance r, and Dvb is the
width of the beam distribution in velocity phase space. The
conversion efficiencies for fundamental and harmonic radi-
ation via the foregoing nonlinear Langmuir processes are
[Robinson et al., 1994; Robinson and Cairns, 1998b; Dulk
et al., 1998; Knock et al., 2001; Mitchell et al., 2004]

FF ≈ 72
ffiffiffi
3

p gL′
gS

v3e
c3

vb
Dvb

e�u2c

uc
ffiffiffi
p

p zF ; ð22Þ

FH ≈
18

ffiffiffi
3

p

5gt

ffiffiffiffiffiffiffiffiffiffi
mi

gtme

r
v2bv

3
e

c5
vb
Dvb

zH ; ð23Þ

respectively. The expressions involving uc in (22) are the
escape factor for fundamental radiation subject to scattering
by density irregularities and absorption by linear mode con-
version, where uc = 2.1 is a typical value [e.g., Robinson and
Cairns, 1998a]. Also, gL′/gS is the ratio of the damping rates
of the product waves in the electrostatic Langmuir wave
decay process, gt = 1 + 3Ti/Te, where Ti is the ion (proton)
temperature, mi is the mass of the ions, and the zM factors are
the respective fractions of Langmuir waves that are kine-
matically able to contribute to the fundamental (M = F) and
harmonic emission (M = H). In more detail,

zF ≈ exp � 4gtme

45mi

vb
bDvb

� �2 3

2

ffiffiffiffiffiffiffiffiffiffi
mi

gtme

r
� vb

ve

� �2
" #

; ð24Þ

zH ≈
c

2vb

ffiffiffi
p
6

r
bDvb
vb

� erf

ve
ffiffi
3

p
c þ 2

3

ffiffiffiffiffiffiffi
gtme

mi

q
ve
vb

bDvb
vb

ffiffiffi
2

p
0
@

1
Aþ erf

ve
ffiffi
3

p
c � 2

3

ffiffiffiffiffiffiffi
gtme

mi

q
ve
vb

bDvb
vb

ffiffiffi
2

p
0
@

1
A

2
4

3
5; ð25Þ

where b ≈ 1/3 is the width of the model beam-driven
Langmuir spectrum, which ensures that this spectrum
is negligible outside the range of beam-driven wave
vectors [e.g., Knock et al., 2001]. In the case
3 ≤ Te=Ti ≤ 5;gL′=gS ≈ 80=7ð Þ ve=vbð Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi=7með Þp
[e.g.,

Knock et al., 2001]. For the coronal plasma Te /Ti = 3 is
assumed in this paper.
[41] Using the volume emissivities jM, the flux density of

radiation into modeM is given by integrating over the source

and accounting for propagation of the radiation from the
source to the observer at r0 [e.g., Cairns, 2011]:

FM ð f ; t; r0Þ ¼ St′
DWM

DfM

Z
d3r

jM f ; r; t′ð Þ
r� r0 2;jj ð26Þ

where

t ¼ t′þ
Z

dt
vg rð Þ ≈ t′þ r� r0j j=c ð27Þ

is the time at the observer, which is the sum of the emission
time t ′ and the time

R
dt/vg(r) a radio wave with group

velocity vg(r) needs to reach an observer along a trajectory
with line elements dt. Quantities DfF = 3(ve/vb)

2(Dvb/vb)
and DfH = 12(ve/vb)

2(Dvb/vb) are the corresponding intrinsic
bandwidths of radiation. In the case that the radiation source
is localized and the distance between the source region and
the observer is large; e.g., a satellite at Earth’s orbit observes
a radio source in the corona of the Sun, |r � r0| can be
treated as a constant. In the example below |r � r0| ≈ 1 AU.
The summation procedure includes an inverse square
dependence on the distance to the observer for each cell and
a bandwidth factor arising from the conversion from energy
to flux. The procedure does not include possible refraction
and intrinsic angular and spatial diffusion effects for the
radiation propagating in the interplanetary medium, as dis-
cussed by Cairns [2011]. Instead there is only straight line
propagation to the observer of emission that escapes without
further absorption once outside the source. Importantly,
though, the theory of Robinson and Cairns [1998a, 1998b]
for fundamental emission includes losses due to scattering
and absorption in the near vicinity of the source. In order to
obtain time-dependent dynamical spectra, the summation is
repeated for each time step in the simulation.

5. MHD Model

[42] The MHD code used is based on the algorithms
described by Zalesak [1979] and DeVore [1991] for a flux-
corrected transport (FCT) scheme for solving the MHD
equations, meaning that the MHD equations are solved in
conservative form as first order partial differential equations
for the fluxes, which are functions of the physical variables
density r, velocity v, magnetic field B, and pressure p. The
accuracy reached in this code is fourth order accuracy in
space and second order accuracy in time. The code thus
conserves r ⋅ B = 0 to machine accuracy. Successful
applications include the works by Cargill et al. [2000],
Schmidt and Cargill [2001, 2003, 2004], and Schmidt and
Gopalswamy [2008]. The sharpness of shocks is well pre-
served in such schemes; see for instance Cargill et al. [2000,
Figure 5], with a shock followed up to 5.6 AU. In the version
of the code used here, the MHD equations are solved in
spherical coordinates r and q, where a rotational symmetry
around the rotation axis z of the Sun is assumed; i.e., all
fields are considered to be independent of the azimuthal
coordinate f. Yet, since all vector fields still have three
components, the code is 2 1

2 dimensional.
[43] The computational grid consists of 300 � 100 points

in the r � q plane, in which the radial extension of the
simulation box is from R⊙ to 4R⊙ from the origin at the
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Sun’s center. In Figure 6, x = r sin q denotes the in-ecliptic
coordinate, z = r cos q the spatial coordinate out of the ecliptic
plane, and thick dashed lines show the boundaries of the
simulation box at q = 9.7∘ and q = 170.2∘. At the sides with
meridional angles q = 9.7∘ and q = 170.2∘ and the outer
boundary at 4 R⊙, the boundary conditions are floating,
which means that a disturbance at that boundary can leave
the simulation box without being reflected. We specify the
density r, velocity v, magnetic field B and the pressure p of
the solar wind throughout the domain above 1 R⊙ for the
initial state, obtaining the current density j by using the curl
of B. The values of these quantities are kept constant at the
inner boundary at 1 R⊙ throughout the simulation. In par-
ticular, the initial solar wind is introduced as a radial Parker
wind, which reaches a radial speed of about 200 km s�1 at
4 R⊙ heliocentric distance. The pressure follows an adia-
batic law p = p0(r/r0)

g, where p0 and r0 are values at a
reference point, and the polytropic index g = 5/3. This law
assumes a coronal temperature of 1.2 MK at r = R⊙ and a
number density n0(R⊙) = 3.3 � 1014 m�3 for a Parker den-
sity profile, which are typical values for the solar corona
[see, e.g., Aschwanden, 2004]. These values correspond to
p ≈ 5.5 � 10�3 Pa and 2fp ≈ 326 MHz at r = R⊙. The
polytropic index g switches from 5/3 to 1 if the pressure is
close to zero or the location is within a rarefaction region
like the CME [see, e.g., Cargill et al., 2000]. This procedure
exploits the finding that the very thin coronal plasma should
behave nearly isothermally (if heating sources are ignored),
which inhibits pressure fluctuations that would lead to neg-
ative pressure values for a calculation on a truncated grid.
[44] A CME is introduced as a flux rope of cylindrical

shape that extends like a torus around the z axis and is
embedded in an appropriately distorted radial solar magnetic
field. This initial state is not modeled by superposing the
flux rope and a pure radial magnetic field, which would be a
configuration with jumps containing unphysical magnetic
monopoles. Rather, a smooth exact solution of the magne-
tostatic Maxwell equations is used for this configuration
[Schmidt, 2000]. CMEs with a flux rope geometry are a
subclass of observed CMEs [see, e.g., Cremades and
Bothmer, 2004; Forbes et al., 2006]. Initially, the center
of the flux rope is at r = 1.38 R⊙ in the ecliptic plane,
and its initial radial speed and diameter are 100 km s�1 and
0.61 R⊙. The magnetic field strength varies strongly with
position along the inner boundary of the simulation box at
r = R⊙. At q = 9.7∘ and q = 170.2∘ B = 2 G (0.2 mT) on this
boundary but increases toward q = 90∘, reaching a peak
value of 400 G (40 mT) at q = 90∘ and r = R⊙. This peak
value is typical for foot point magnetic fields in active
regions [see, e.g., Aschwanden et al., 1999]. Within the
simulation box, the magnetic field strength is about 4 G
(0.4 mT) around the body of the CME, and is 16 G (1.6 mT)
along the symmetry axis in the middle of the flux rope. The
initial internal pressure of the CME is increased by a factor
of three with respect to the external solar wind pressure,
according to measurements of overexpanding CMEs [e.g.,
Gosling et al., 1998].
[45] Figure 6a shows the magnetic field line configuration

of the erupting flux rope 20 min after launch, using a contour
plot of the quantity Afr sin q where Af is the f-component
of the vector potential. This figure displays a projection of the

flux rope’s twisted magnetic field lines onto a cross section
of the x-z plane (see Appendix C for a derivation showing
that the lines shown, which satisfy Afr sin q = constant, are
magnetic field lines within the x-z plane provided that B has
no f-dependence). These projections are nearly circular and
have an anti-clockwise sense of rotation. This flux rope is
embedded in a radial magnetic field, originating from the
solar surface and directed away from the Sun. Here, full lines
correspond to positive values of the vector potential and
dashed lines to negative values. Since the outer magnetic
field has an opposite sense to the rope’s magnetic field in the
northern hemisphere, we find a point with two exactly anti-
parallel and reconnecting magnetic field lines at the northern
edge of the flux rope. The characteristic “necking” shape
of magnetic field lines at a x-point reconnection region is
clearly visible. This configuration with an external radial
unipolar field corresponds to a coronal hole type of CME
configuration. A possible alternative magnetic field config-
uration is a streamer-type CME configuration, which has a
field configuration that is opposite on opposite sides of the
rope, thus having no flank reconnection. In the latter case
the magnetic field configuration in the northern half of the
simulation box would be a mirror image of the magnetic
field configuration of the southern half of the simulation box
with reversed direction of the magnetic field.
[46] Due to the outward motion and expansion of the

CME, the radial magnetic field of the Sun is distorted around
the body of the CME. We see an increase of the number
density of the field lines in a roughly ellipsoidal area
enshrouding the body of the CME, corresponding to an
increase in B and to magnetic draping. The fringe of this
ellipsoidal area of increased number density of field lines,
where there is a substantial rotation of B, is the front of the
shock driven by the CME. We detect that the magnetic field
lines intersect the shock front at angles close to 90� with
respect to the shock normal n on the northern (upper) and
southern (lower) flanks of the shock. In contrast, near the
nose of the shock, where x ≈ 2.5R⊙, the angle qbn between
B and the local n is small. Thus, we expect the electron
acceleration to be most effective at the northern and southern
flanks of the shock. Yet there is still acceleration of electrons
in the nose region of the shock. These properties should lead
to more intense radio signals at the northern and southern
flanks of the shock and a smaller radio signal at the nose of
the shock [e.g., Knock et al., 2001, 2003a, 2003b; Cairns
et al., 2000; Cairns, 2011]. We discuss the radiation aris-
ing at the nose in this paper, and defer a full discussion of
the more complicated situation of radiation arising at the
northern and southern flanks to a companion paper.
[47] Figure 6b shows the entropy gradient |r (p/rg)| in the

simulation box, where p and r are the pressure and density
calculated by the MHD code. The entropy jumps at the edge
of the ellipsoidal area. This edge was already identified as
the shock front in its nose region in Figure 6a. The entropy
jump provides a sharper definition of the location of the
shock front than the contour plot; even so, higher resolution
studies of the shock front are necessary in the companion
paper. In the middle of the ellipsoidal area, within the body
of the CME and the surrounding downstream “sheath”
region, the entropy fluctuates, indicating energy flows trig-
gered with the varying fields in the eruption.
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[48] Figure 6c shows the spatial variations of fp in the
simulation box, which is proportional to the square root of
the density. We find a ring of increased fp roughly along the
ellipsoidal line already identified as a marker of the shock
front in Figures 6a and 6b. This ring shows the increase in
density expected downstream of the shock. The maximum
change in density is expected at the shock ramp, although
spreading of the ramp over several MHD grid cells is
expected due to imprecisions of the calculation on a trun-
cated grid. We find that the position of the entropy jump is
roughly in the middle of that ramp.

6. Shock Identification

[49] In this paper we use the entropy jump to determine
the location of the shock near the nose (most distant) region
of the CME. In the companion paper a more general technique

is described for determining the shock position precisely,
which also works for uneven and rippled shock surfaces. Here
we fit an ellipsoidal curve

x� x0
A

	 
2
þ z� z0

B

	 
2
¼ 1 ð28Þ

to the ellipsoidal area identified in Figure 6b, where A and B
are the minor and major axis of the ellipse. The focus (x0, z0)
of the ellipse is determined as the midpoint of the rarefaction
region due to overexpansion of the CME, which can be seen
in Figure 6c. The ellipse parameters were then determined
by hand from analogs of Figure 6b for each MHD timestep.
For the specific case in Figure 6b at t = 20 minutes after
the launch of the CME, the parameters are x0 = 1.91 R⊙,
z0 = 0.00 R⊙, A = 0.74 R⊙ and B = 1.05 R⊙. This ellipse
is taken to be the shock front, and we use the normal to the

Figure 6. MHD and radiation simulation results 20 min after the launch of the CME. (a) Field line
pattern in and around the CME in the x-z plane that has a reconnection site at the northern edge of
the CME. The front part of the ellipse roughly denotes the location of the shock. (b) The gradient of
the entropy. (c) The plasma frequency fp is increased within a ring that follows the ellipsoidal curve
of the shock. (d) Map of the harmonic plasma emissivity jH.
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ellipse as the shock normal, which is directed almost radially
near the nose. If

x� x0
A

	 
2
þ z� z0

B

	 
2
> 1; ð29Þ

for a point (x, z) taken in the simulation box, then that point is
outside the ellipse and therefore upstream of the shock. We
take the upstream plasma parameters from several grid cells
upstream of the shock in order to avoid possible irregularities
associated with the shock transition itself. The paths of the
electron beams are approximately given by the normal
direction in this case since B is almost radial. Occasionally
the ellipse is not a good fit and the ellipse lies in the down-
stream region. Since downstream cells should not produce
radio emission [Cairns, 2011], cells that are in front of the
ellipse but are within or downstream of the actual shock
ramp (according to the density values) are left out of the
calculation of the radio emissivities.
[50] This suppression of downstream radiation is required

for experimental reasons as follows. Cairns [1986b] first
claimed the existence of fundamental upstream fp radiation
and showed definitively that the harmonic 2fp signals are
transverse electro-magnetic radiation generated in the fore-
shock in the free-space modes, using (1) the simultaneous
observation of harmonic radiation from regions with differ-
ent densities present simultaneously in the foreshock, (2) the
persistence of the signals into the undisturbed solar wind and
other regions of the foreshock, (3) the inability of electro-
static modes to propagate significant distances, and (4) the
free-space mode being the only essentially undamped mode
significantly above fp in a stable plasma like the solar wind.
Burgess et al. [1987] showed definitively that fp radiation is
also produced in Earth’s foreshock, using the same argu-
ments as (1)–(4) above but for fp radiation. Another argu-
ment for the radiation source being the (3-D) foreshock is
based on “direction finding”. Early workers [Hoang et al.,
1981; Cairns, 1986b] used a single spacecraft to establish
consistency with the foreshock, while Reiner et al. [1997]
used direction-finding with two spacecraft to triangulate
the radio source and found it to be in the foreshock. A final
argument for 2fp radiation being generated in the foreshock
comes from the observed spatial variations in intensity.
Specifically, Lacombe et al. [1988] and Kasaba et al.
[2000] found that the 2fp radiation has its largest fields rel-
atively close to the upstream boundary of the foreshock, in
approximate coincidence with the largest fields of Langmuir
waves, and not in the solar wind or the deep foreshock.
This is expected if the radio source lies in the foreshock and
is associated with the Langmuir waves or their driving
electron beams.
[51] A theoretical argument against emission from down-

stream of a single shock is the lack of suitable electron
beams to generate strongly nonthermal Langmuir waves and
radio emission. For the ideal shocks considered here, with no
magnetic overshoot, there is no magnetic mirror for down-
stream electrons going upstream, and so the only downstream
electron beams are associated with the cross-shock potential
reflecting downstream electrons or pulling upstream electrons
downstream. Such beams have kinetic energies less than or
equal the cross-shock potential, which is of order several
times the upstream electron thermal energy [Kuncic et al.,

2002]. The downstream electrons are hotter than the
upstream electrons, so that these relatively slow beams have
speeds less than several electron thermal speeds and so should
be ineffective in driving Langmuir waves. Consistent with
this, only quasithermal types of Langmuir waves are found
within the ramps and downstream regions of shocks [Onsager
et al., 1989].

7. Dynamic Spectrum Results

[52] Figure 6d shows the mapped source region for har-
monic radiation emitted in front of the nose of the CME
shock, using the volume emissivity jH predicted using the
new analytical model in sections 3–6. The radiation field has
a crescent or sickle-like shape in front of the shock front,
which is slightly more extended to the north than to the
south. The maximum volume emissivity of radiation is about
10�17 W m�3 sr�1 near the nose of the shock, with a max-
imum slightly above the ecliptic plane, and a decrease of the
radiation emissivity toward the northern and southern edges
of the sickle-shaped radiation field, and with increasing
radial distance from the shock.
[53] The small asymmetry between the northern and

southern hemisphere in Figure 6d is caused primarily by the
asymmetry in the magnetic field line pattern, which has a
reconnection site at the northern edge of the CME. This
asymmetry leads to slightly larger intersection angles of the
magnetic field lines with the shock normals in the northern
hemisphere than in the southern hemisphere near the nose.
This should cause variations in the reflected electron beam
parameters and radiation as discussed further below.
[54] Figure 7 shows the flux density given by (26) as a

function of frequency and time derived from analogs of
Figure 6d for both fundamental and harmonic emission. For
the thickness of the source in the y direction we assume
one grid cell, which is 10�2 R⊙. Data are taken from the
complete simulation run that spans a time up to 50 min after
the launch of the CME. Figure 7 shows a sharp lower
(higher) frequency band that drifts to lower frequency with
increasing time for fundamental (harmonic) radiation in the
range ≈ 50 � 80 MHz (≈ 80 � 150 MHz). The fundamental
and harmonic flux densities are around 2 � 10�18 W m�2

Hz�1 and 10�20 W m�2 Hz�1, respectively, with 10�22 W
m�2 Hz�1 equaling one solar flux unit (sfu). Typical values
of observed flux densities are F = 10�18 W m�2 Hz�1 at
fp � 80 MHz [e.g., Holman and Pesses, 1983]. The observed
flux densities discussed by Lobzin et al. [2008] for type II
radio bursts are also comparable to our simulated flux den-
sities. Further, the type II event observed by Bale et al.
[1999] and simulated by Cairns and Knock [2006] has
maximum flux densities FF � 10�18 W m�2 Hz�1 and
FH � 10�20 W m�2 Hz�1 at frequencies from �105 Hz to
�106 Hz. Thus, our simulated emissions have fluxes that
are broadly consistent with the observations.
[55] In Figure 7 we can also see the fundamental and

harmonic bands fading out and then reappearing, with the
gap being between times 21 and 24 min. Figure 8a, taken
from Schmidt and Gopalswamy [2008], shows that the
acceleration a(t) of the center of the CME (taken as a bal-
listic object) decreases during that period. The shock travels
ahead of the CME and is not subject to the forces that retard
the CME. Hence, in the rest frame of the shock the CME has
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a diminishing speed as long as the acceleration on the CME
is negative. It is this diminished speed of the plasma at the
rear of the shock that is correlated next to a weakening of the
shock near the nose and thus to the fading of the radio signal.
[56] In Figure 8b we display the ratio of the number den-

sities n2/n1 as a function of time after the launch of the CME,
where n2 is taken from the downstream region and n1 from
the upstream region adjacent to the shock in the nose region
with a = 90∘. As explained with Figure 9, a is an azimuthal
angular coordinate, measured clockwise from the positive
rotation axis z of the Sun, that defines the rotation angle of a
pointer centered on the CME’s midpoint (x0, z0) with length
�0.8R⊙ which scans the nose region of the CME-driven
shock from north to south. Thus, 45∘ ≤ a ≤ 90∘ and
90∘ ≤ a ≤ 135∘ correspond to the shock front in the northern
and southern hemispheres, respectively (see also Figure 9).
The ratio n2/n1 is a measurement of the strength of the shock,
being closely related to the magnetic jump B2/B1, and has a
theoretical maximum value of four for an ideal shock.
Hence, if n2/n1 and B2/B1 are less then four then the shock
is not strong, and the shock is weaker the smaller n2/n1
and B2/B1 become. The shock disappears when n2/n1 = 1.
A weaker shock has a smaller ability to accelerate electrons
and thus generate Langmuir waves and radio radiation.
Thus, periods with decreased n2/n1 in Figure 8 should be
where we find less intense radio radiation.
[57] Figure 8 reveals that n2/n1 starts just below two

around the launching time of the CME and increases to the
maximum value of four at about t = 20 min. This time
interval belongs to the phase where the CME has increasing
acceleration and the CME-driven shock develops and
becomes steeper and steeper. After t = 20 min the CME
acceleration in the solar wind frame and the CME speed
in the shock rest frame decrease, and we see a sharp drop in
n2/n1 to a value just slightly above one. (Note that the
wiggles on the curve of n2/n1 are due to numerical errors on
a grid with a limited number of grid points in the temporal
dimension.) Hence, the suddenly decreased speed of the
CME at the rear of the shock front has led to an almost entire
disappearance of the shock at this value of a. The ratio n2/n1
remains around one up to about t = 25 min. After this time

the CME starts being accelerated again, which is due to
growing magnetic buoyancy forces on the flux tube of the
CME [see Schmidt and Gopalswamy, 2008]. We see a steep
increase of n2/n1 to a value of about three in Figure 8, near
where n2/n1 stabilizes for the rest of the simulation. Thus, we
find the time interval t = 21 � 24 min where the emission
bands of the dynamical radio spectra fade out (indicated
with the dotted vertical lines in Figure 8), to be in the middle
of the period when n2/n1 drops to one and the shock
essentially disappears. This is consistent with the type II
radiation theory.
[58] Figure 10 shows the quantities ve, vc, vb, and qbn,

which are important for the excitation of radio emission,
near the nose of the shock at t = 20 min. In Figure 10a we
display vc (solid line), ve (dashed line) and vb (dashed-dotted
line) along the shock front as functions of a. We see that for
a ≤ 110∘, vc ≥ 2ve with vb ≈ vc. This enables the growth
of Langmuir waves and so radio emission can be expected.

Figure 7. Dynamic spectrum predicted at Earth using (26)
from upstream of the shock near the nose of the CME.
Maximum flux densities along the bands are �2 � 10�18 W
m�2 Hz�1.

Figure 8. (a) Acceleration a(t), velocity v(t), and height h(t)
of the center of the CME taken as a ballistic object [Schmidt
and Gopalswamy, 2008]. (b) Downstream to upstream ratio
n2/n1 of number densities at the nose of the shock at
a = 90∘ as a function of time after the launch of the CME.
Dotted vertical lines at times 21 and 24 min indicate the
period where the emission bands of the dynamic radio spec-
trum fade away.
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We therefore expect the maximum emission around a ≈ 75�,
where the curves of vc and vb peak [cf. Knock et al., 2003a].
[59] Figure 11 shows three electron distribution functions

at t = 20 min fora = 67∘, 79∘, and 91∘, predicted in the region
upstream of the shock, before quasilinear flattening. The
beams are due to reflection by the shock. The a = 79∘ beam
distribution has the largest cutoff speed and a large peak
value. Thus, this beam excites the strongest radio emission.
The a = 67∘ distribution has a similar peak height to the
a = 79∘ distribution, yet it has a smaller cutoff speed. This
dependence on vc is why we obtain weaker radio emission

[e.g., Knock et al., 2003a; Cairns et al., 2003] as we move
in Figure 6d from the a ≈ 75∘ position in the direction of
smaller a values. Finally, the a = 91∘ distribution has a
smaller vc and peak height than the other two beam dis-
tributions. This explains why we obtain weaker radio emis-
sion if we move from the a ≈ 75∘ position in the direction of
larger a values in Figure 6d.
[60] Figure 10b shows qbn along the shock front as a

function of a. In the southern hemisphere qbn ≈ 35∘, where
90∘ ≤ a ≤ 135∘. If we look at angles a farther to the flanks of
the shock than the nose, the electron E � B drift speed vd
decreases, thus leading to decreasing vc = vdtanqbn and vb for
90∘ ≤ a ≤ 135∘. On the other hand, ve ≈ 500 km s�1 is nearly
a constant in that a regime. Thus, the strength of the radio
source slowly decreases if we move from a = 90∘ onward
toward a = 135∘ in Figure 6d, since the requirement vc ≥ 2ve
for Langmuir wave excitation is increasingly violated and vc
decreases [e.g., Knock et al., 2003a; Cairns et al., 2003].
[61] For 60∘ ≤ a ≤ 90∘, ve ≈ 700 km s�1 is larger than in the

southern hemisphere. Thus, the plasma upstream of the
shock front in the northern hemisphere is clearly heated
relative to the southern hemisphere. This is not due to the
shock but instead due to the reconnection site at the northern
edge of the CME, where magnetic field energy is set free due
to the reconnection of antiparallel magnetic field lines.
Hence the shock is produced well after the heated plasma
first left the reconnection site and then moves through the
hot plasma. The magnetic annihilation influences the mag-
netic field direction in the vicinity of the reconnection site,
leading to the local minimum qbn ≈ 40∘ in the angular
direction of the reconnection site a ≈ 65∘. Maximum values
of qbn are near 50

∘ at a ≈ 75∘. Again, this double peak feature
of the curve qbn for 60

∘ ≤ a ≤ 90∘ translates to an equivalent
feature of the curves vc and vbin the same a regime in
Figure 10. On average, vc and vb decrease, if we move from
a ≈ 75∘ in the direction of smaller a. This explains why the
strength of the radio source decreases, if we look in that
direction within this a regime (also compare with Knock
et al. [2003a] and Cairns et al. [2003]).

Figure 9. The rotation angle a, measured clockwise from
the positive z axis, for a pointer centered on the CME’s mid-
point (x0, z0) that scans points on the CME-driven shock front.

Figure 10. (a) vc (solid line), ve (dashed line), and vb (dashed-dotted line) as functions of a and t = 20 min.
For 60∘ ≤ a ≤ 110∘, vc ≈ vb ≥ 2ve is well fulfilled, allowing for growth of Langmuir waves and radio exci-
tation. (b) The angle qbn.
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[62] In all, the parameter studies in Figures 10 and 11
let us understand how radio excitation at the nose of the
CME-driven shock is possible, and that the radio emission
results shown in Figures 6 and 7 are reasonable.

8. Discussion and Conclusions

[63] In this work we revised and extended the work of
Knock et al. [2001, 2003a, 2003b], Knock and Cairns
[2005], Cairns and Knock [2006], and Schmidt and
Gopalswamy [2008] related to radio emission excited at
CME-driven shocks, extending the foregoing theory with
analytic results for the reflection efficiency, intrinsic electron
beam distribution functions, and plateaued electron dis-
tributions resulting from Langmuir growth for kappa veloc-
ity distributions of electrons in the background plasma.
Our analytic results yield a kinetic theory for radio emis-
sion that can be combined with or bolted onto MHD simu-
lations of CMEs driving shock waves or to other shock
simulations (MHD or otherwise) in different coronal or
astrophysical systems.
[64] The foregoing calculations correct the work of

Schmidt and Gopalswamy [2008] to remove downstream
emission, extend the emission theory of Knock and colla-
borators to be fully analytic and to fully include kappa
electron distribution functions for the typically nonthermal
solar wind electrons, and also show how to better capture the
front of the shock in the MHD simulation. In particular,
there is no emission arising from the downstream region
any longer, which appeared in the previous combined or
bolt-on calculations.
[65] The CME and associated radio calculations reported

here are only initial work, and are not intended to model
particular events or be fully realistic. In particular, plasma
temperatures as low as 104 K near the nose of the shock are
unrealistic for the corona and inner solar wind. We would
expect the shock to propagate into a heated coronal and solar
wind plasma that has temperatures of order 106 K. Higher
solar wind temperatures would require higher cutoff speeds
at the shock front to produce significant radiation. Other
options are to design the CME to be more ballistic with a
more elongated ellipsoidal body of the CME in the radial
direction rather than a nearly circular body, or to introduce

coronal magnetic field loops or other magnetic structures
whose fields are more radial [e.g., Knock and Cairns, 2005].
These would make the shock front more quasi-perpendicular
and thus increase the cutoff speed and radio emission. Future
work will be along these lines.
[66] We also developed a routine to identify the shock

location of the CME-driven shock, which detects a sharp
jump of the entropy at the shock front in the nose of the
shock. The locus of entropy jumps is well approximated
with an ellipse that lies in a steep gradient of the density at
the shock. With a precise positioning of the shock front, and
taking upstream plasma parameters from several grid cells
upstream of the ellipse, we are now able to correct the work
of Schmidt and Gopalswamy [2008] to avoid any unphysical
radiation arising from the downstream region. Dynamical
spectra now yield sharp drifting bands that are in good
qualitative agreement with observations. We can detect
occasional fading of the harmonic and fundamental bands
due to a weakening of the shock caused by decreases in the
velocity of the CME at the rear of the shock.
[67] An investigation of beam parameters along the shock

front at the nose of the CME-driven shock reveals that for
this simulation the electron temperatures are slightly higher
north, as opposed to south, of the shock near the nose region.
The heating of the northern plasma is due to previous mag-
netic reconnection, which dissipates magnetic energy and
leads to plasma heating and bulk flow, between anti-parallel
magnetic field lines of the body of the CME and the external
distorted radial magnetic field of the Sun, which are pushed
together as the CME moves out. This distortion is signifi-
cant, leading to angles between magnetic field and the shock
normal at the intersection point with the shock front of about
45∘ on average in the northern hemisphere and of about 35�
in the southern hemisphere. Thus, the cutoff speeds for the
reflected beam are slightly larger north than south of the
nose of the shock. Despite qbn being ≤ 70∘ here, the cutoff
speeds are comparable with two times the electron thermal
speed near the nose of the shock. Thus, radio emission is not
entirely suppressed there, although it is quite weak. Since the
shock normal turns away from the radial direction toward
the flanks of the shock, the cutoff and beam speeds of the
electrons leaving the shock diminish in the same directions,
and the crescent-like radio source fades away. The maxi-
mum of the radio source is situated slightly above the
ecliptic plane due to the asymmetry in the magnetic field
configuration about the nose of the shock.
[68] A more complete discussion of the radio emission

arising from the CME-driven shock in this simulation, spe-
cifically including emission from the rippled flanks of the
shock is presented in a companion paper (Schmidt and
Cairns, manuscript in preparation, 2012). The limitations of
the basic radio theory and its application to type II bursts are
discussed elsewhere [Cairns, 2011].
[69] In conclusion, a fully analytic theoretical model for

type II bursts now exists in a form suitable for combining
with (or bolting onto) MHD or other shock simulations. This
includes the electron reflection and acceleration at the shock,
formation and plateauing of electron beams, quasilinear
and SGT growth of Langmuir waves, and production of fp
and 2fp radiation by standard nonlinear processes in macro-
scopic foreshock regions upstream of the shock. The theory
is ready for extension to fully 3D source regions and detailed

Figure 11. Predicted beam electron velocity distributions
(before quasilinear flattening and without the background
distribution) at angular positions a = 67� (dashed line),
a = 79� (solid line), and a = 91∘ (dotted line) at t = 20 min.
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application to type II bursts. It is suitable for bolting onto
MHD and other simulations of shocks in applications to
other space and astrophysical radio emissions associated
with shocks.

Appendix A: Calculation of the Reflection
Efficiency

[70] In this appendix we calculate the integral in the
numerator of the reflection efficiency (3) for kappa electron
velocity distributions explicitly. We obtain
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since c/ve is a very large number and the second term in
the squared brackets in (A5) can thus be neglected. The
denominator of the reflection efficiency (3) for kappa elec-
tron velocity distributions can be found with an equivalent
calculation, where we replace vlc with zero:
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Appendix B: Determination of Boundaries
of the Quasilinear Plateau

[71] From Figure 5, using the trapezoidal rule we have

B ≈
1

2
Fi að Þ � Fi vcð Þ½ � vc � að Þ; ðB1Þ

A ≈
1

2
Fi vcð Þ þ Fr vcð Þ � Fi bð Þ � Fr bð Þ½ � b� vcð Þ ðB2Þ

for the area B below the plateau and above the background
electron velocity distribution Fi(vk) and for the area A below

the total velocity distribution Fr(vk) + Fi(vk) and above the
plateau. Using a Taylor expansion around vc for the distri-
bution functions Fi(vk) and Fr(vk) yields

Fi að Þ � Fi vcð Þ ≈ �1ð ÞF ′i vcð Þ vc � að Þ; ðB3Þ

Fi vcð Þ þ Fr vcð Þ � Fi bð Þ � Fr bð Þ ≈ �1ð ÞF ′i vcð Þ þ �1ð ÞF ′r vcð Þ½ �
� b� vcð Þ: ðB4Þ

Note that both the trapezoidal rule and a first order Taylor
expansion become more precise the larger vc is, since both
functions Fi(vk) and Fr(vk) have a more uniform slope the
further we move into the high velocity tail. Thus,

B ≈
1

2
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A ≈
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2
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and the condition B = A implies

D b� vcð Þ2 ¼ C vc � að Þ2; ðB7Þ

where D ¼ �1ð ÞF ′i vcð Þ þ �1ð ÞF ′r vcð Þ½ �; ðB8Þ

C ¼ �1ð ÞF ′i vcð Þ: ðB9Þ

On the other hand, we have

Fi að Þ ≈ Fi vcð Þ þ F ′
i vcð Þ a� vcð Þ; ðB10Þ

Fi bð Þ þ Fr bð Þ ≈ Fi vcð Þ þ Fr vcð Þ þ F ′i vcð Þ þ F ′r vcð Þ½ � b� vcð Þ
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for the left and right boundary of the plateau. Since
Fi(a) = Fi(b) + Fr(b) on the plateau, then

b � a vc � að Þ ¼ b� vcð Þ; ðB12Þ
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If we substitute (b � vc) from equation (B12) into equation
(B7), we obtain a quadratic equation for (vc � a) alone,
which has the solutions
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Resubstitution of constants (B8), (B9), (B13), and (B14)
yields
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where we dropped the positive sign, since we require a < vc.
Substituting equation (B16) into equation (B12) then yields
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Taking Fr(vk) and Fi(vk) from equations (16) and (14), we find
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Appendix C: Field Lines in the x-z Plane

[72] In the r � q plane, a trajectory is given parametrically
by a pair of functions (r(l),q(l)), where l is a scalar
parameter. Such a trajectory is a magnetic field line if its
tangent is proportional to the magnetic field. Hence,

dr lð Þ
dl

¼ r Br sin q; ðC1Þ

r
dq lð Þ
dl

¼ r Bq sin q; ðC2Þ

defines a magnetic field line, where we have chosen rsinq as
proportionality factor. Note that rdq is the line-element in the
q-direction. In spherical coordinates it is
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if there is no f-dependence of the fields. This yields
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With this result we obtain
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r sin q Af
� � ∂

∂r
r sin q Af
� �� 1

r

∂
∂r

r sin q Af
� � ∂

∂q
r sin q Af
� �

;

ðC10Þ

¼ 0; ðC11Þ

along one of such field lines. (C11) has the solution

r Af sin q ¼ constant; ðC12Þ

where a specific value of the constant is a label for a specific
field line.

[73] Acknowledgments. Constructive comments from P. A. Robinson,
V. L. Lobzin, and B. Li and support from the Australian Research Council are
gratefully acknowledged.
[74] Philippa Browning thanks Bojan Vrsnak and another reviewer for

their assistance in evaluating this paper.

References
Aschwanden, M. (2004), Physics of the Solar Corona, Springer, New York.
Aschwanden, M. J., S. J. Newmark, J.-P. Delaboudiniére, W. M. Neupert,
J. A. Klimchuk, G. A. Gary, F. Portier-Fozzani, and A. Zucker (1999),
Three-dimensional stereoscopic analysis of solar active region loops.
I. SOHO/EIT observations and temperatures of (1.0–1.5) � 106 K,
Astrophys. J., 515, 842–867, doi:10.1086/307036.

Bale, S. D., M. J. Reiner, J. L. Bougeret, M. L. Kaiser, S. Krucker, D. E.
Larson, and R. P. Lin (1999), The source region of an interplanetary type
II radio burst, Geophys. Res. Lett., 26, 1573–1576.

Benz, A. O., and T. Golla (1988), Radio emission of coronal shock waves,
Astron. Astrophys., 202, 267–274.

Bougeret, J.-L., et al. (1995), Waves: The radio and plasma wave investiga-
tion on the Wind spacecraft, Space Sci. Rev., 71, 231–263.

Brueckner, G. E., et al. (1995), The Large Angle Spectroscopic Corona-
graph (LASCO), Sol. Phys., 162, 357–402.

Burgess, D., C. C. Harvey, J.-L. Steinberg, and C. Lacombe (1987), Simul-
taneous observation of fundamental and second harmonic radio emission
from the terrestrial foreshock, Nature, 330, 732–735.

Cairns, I. H. (1986a), The source of free energy for type II solar radio
bursts, Publ. Astron. Soc. Aust., 6, 444–446.

Cairns, I. H. (1986b), New waves at multiples of the plasma frequency
upstream of the Earth’s bow shock, J. Geophys. Res., 91, 2975–2988.

Cairns, I. H. (1987a), The electron distribution function upstream from the
Earth’s bow shock, J. Geophys. Res., 92, 2315–2327.

Cairns, I. H. (1987b), A theory for the Langmuir waves in the election fore-
shock, J. Geophys. Res., 92, 2329–2342.

Cairns, I. H. (2011), Coherent radio emissions associated with solar system
shocks, in The Sun, the Solar Wind, and the Heliosphere, edited by M. P.
Miralles and J. Almeida, pp. 267–338, Springer, New York.

Cairns, I. H., and S. F. Fung (1988), Growth of electron plasma waves
above and below fp in the electron foreshock, J. Geophys. Res., 93,
7307–7317.

Cairns, I. H., and S. A. Knock (2006), Predictions for dynamic spectra and
source regions of type II radio bursts in the inhomogeneous corona and
solar wind, in Planetary Radio Emissions VI, edited by H. O. Rucker, W. S.
Kurth, and G. Mann, pp. 419–430, Verlag Ost. Akad., Wissenschaften,
Vienna.

Cairns, I. H., and D. B. Melrose (1985), A theory for the 2fp radiation
upstream of the Earth’s bow shock, J. Geophys. Res., 90, 6637–6640.

SCHMIDT AND CAIRNS: TYPE II RADIO BURSTS, 1 A04106A04106

16 of 18



Cairns, I. H., and P. A. Robinson (1997), First test of stochastic growth
theory for the Langmuir waves in Earth’s foreshock, Geophys. Res. Lett.,
24, 369–372.

Cairns, I. H., and P. A. Robinson (1999), Strong evidence for stochastic
growth of Langmuir-like waves in Earth’s foreshock, Phys. Rev. Lett.,
82, 3066–3069.

Cairns, I. H., P. A. Robinson, and R. R. Anderson (2000), Thermal and
driven stochastic growth of Langmuir waves in the solar wind and Earth’s
foreshock, Geophys. Res. Lett., 27, 61–64.

Cairns, I. H., S. A. Knock, P. A. Robinson, and Z. Kuncic (2003), Type II
solar radio bursts: Theory and space weather implications, Space Sci.
Rev., 107, 27–34.

Cane, H. V., and R. G. Stone (1984), Type II solar radio bursts, interplane-
tary shocks, and energetic particle events, Astrophys. J., 282, 339–344.

Cane, H. V., R. G. Stone, J. Fainberg, R. T. Stewart, J. L. Steinberg, and
S. Hoang (1981), Radio evidence for shock acceleration of electrons in
the solar corona, Geophys. Res. Lett., 8, 1285–1288.

Cane, H. V., N. R. Sheeley, and R. A. Howard (1987), Energetic interplan-
etary shocks, radio emission, and coronal mass ejections, J. Geophys.
Res., 92, 9869–9874.

Cargill, P. J., J. M. Schmidt, D. S. Spicer, and S. T. Zalesak (2000),
Magnetic structure of overexpanding coronal mass ejections: Numerical
models, J. Geophys. Res., 105, 7509–7520.

Cremades, H., and V. Bothmer (2004), On the three-dimensional configura-
tion of coronal mass ejections, Astron. Astrophys., 422, 307–322.

Crooker, N., J. A. Joselyn, and J. Feynman (1997), Coronal Mass Ejections,
Geophys. Monogr. Ser., vol. 99, edited by N. Crooker, J. A. Joselyn, and
J. Feynman, 299 pp., AGU, Washington, D. C.

DeVore, C. R. (1991), Flux-corrected transport techniques for multidimen-
sional compressible MHD, J. Comput. Phys., 92, 142–160.

Dulk, G. A., Y. Leblanc, P. A. Robinson, J.-L. Bougeret, and R. P.
Lin (1998), Electron beams and radio waves of solar Type III bursts,
J. Geophys. Res., 103, 17,223–17,233.

Filbert, P. C., and P. J. Kellogg (1979), Electrostatic noise at the plasma fre-
quency beyond the Earth’s bow shock, J. Geophys. Res., 84, 1369–1381.

Fitzenreiter, R. J., J. D. Scudder, and A. J. Klimas (1990), Three-
dimensional analytical model for the spatial variation of the foreshock
electron distribution function: Systematics and comparisons with ISEE
observations, J. Geophys. Res., 95, 4155–4173.

Florens, M. S. L., I. H. Cairns, S. A. Knock, and P. A. Robinson (2007),
Data-driven solar wind model and prediction of type II bursts, Geophys.
Res. Lett., 34, L04104, doi:10.1029/2006GL028522.

Forbes, T. G., et al. (2006), CME theory and models, Space Sci. Rev., 123,
251–302, doi:10.1007/s11214-006-9019-8.

Goodrich, C. C., and J. D. Scudder (1984), The adiabatic energy change
of plasma electrons and the frame dependence of the cross-shock poten-
tial at collisionless magnetosonic shock waves, J. Geophys. Res., 89,
6654–6662.

Gopalswamy, N. (2006), Coronal mass ejections of solar cycle 23, J. Air
Waste Manage. Assoc., 27, 243–254.

Gopalswamy, N., A. Lara, R. P. Lepping, M. L. Kaiser, D. Berdichevsky,
and O. C. St. Cyr (2000), Interplanetary acceleration of coronal mass
ejections, Geophys. Res. Lett., 27, 145–148.

Gopalswamy, N., E. Aguilar-Rodriguez, S. Yashiro, S. Nunes, M. L.
Kaiser, and R. A. Howard (2005), Type II radio bursts and energetic solar
eruptions, J. Geophys. Res., 110, A12S07, doi:10.1029/2005JA011158.

Gosling, J. T., P. Riley, D. J. McComas, and V. J. Pizzo (1998), Overex-
panding coronal mass ejections at high heliographic latitudes: Observa-
tions and simulations, J. Geophys. Res., 103, 1941–1954.

Hillan, D., I. H. Cairns, and P. A. Robinson (2011), Type II solar radio
bursts: Extraction of shock parameters and detailed comparison of theory
with observations, J. Geophys. Res., 117, A03104, doi:10.1029/
2011JA016754.

Hoang, S., J. Fainberg, J.-L. Steinberg, R. G. Stone, and R. H. Zwickl
(1981), The 2fp circumterrestrial radio emission as seen from ISEE 3,
J. Geophys. Res., 86, 4531–4536.

Holman, G. D., and M. E. Pesses (1983), Solar type II radio emission and
the shock drift acceleration of electrons, Astrophys. J., 267, 837–843.

Howard, R. A., J. D. Moses, and A. Vourlidas (2008), Sun Earth Connec-
tion Coronal and Heliospheric Investigation (SECCHI), Space Sci. Rev.,
136, 67–115.

Hundhausen, A. J. (1999), Coronal mass ejections, in The Many Faces
of the Sun: A Summary of the Results From NASA’s Solar Maximum
Mission, edited by K. T. Strong et al., pp. 143–230, Springer, New York.

Hundhausen, A. J., C. B. Sawyer, L. L. House, R. M. E. Illing, and W. J.
Wagner (1984), Coronal mass ejections observed during the Solar
MaximumMission: Latitude distribution and rate of occurrence, J. Geophys.
Res., 89, 2639–2646.

Kasaba, Y., H. Matsumoto, Y. Omura, R. R. Anderson, and T. Mukai
(2000), Statistical studies of plasma waves and Backstreaming electrons
in the terrestrial electron foreshock observed by Geotail, J. Geophys.
Res., 105, 79–103.

Klein, L. W., and L. F. Burlaga (1982), Interplanetary magnetic clouds at
1 AU, J. Geophys. Res., 87, 613–624.

Knock, S. A., and I. H. Cairns (2005), Type II radio emission predictions:
Sources of coronal and interplanetary spectral structure, J. Geophys.
Res., 110, A01101, doi:10.1029/2004JA010452.

Knock, S. A., I. H. Cairns, P. A. Robinson, and Z. Kuncic (2001), Theory
of type II radio emission from the foreshock of an interplanetary shock,
J. Geophys. Res., 106, 25,041–25,051.

Knock, S. A., I. H. Cairns, P. A. Robinson, and Z. Kuncic (2003a), Theoret-
ically predicted properties of type II radio emission from an interplanetary
foreshock, J. Geophys. Res., 108(A3), 1126, doi:10.1029/2002JA009508.

Knock, S. A., I. H. Cairns, and P. A. Robinson (2003b), Type II radio emis-
sion predictions: Multiple shock ripples and dynamic spectra, J. Geophys.
Res., 108(A10), 1361, doi:10.1029/2003JA009960.

Kuncic, Z., I. H. Cairns, and S. Knock (2002), Analytic model for the elec-
trostatic potential jump across collisionless shocks, with applications to
Earth’s bow shock, J. Geophys. Res., 107(A8), 1218, doi:10.1029/
2001JA000250.

Lacombe, C., C. C. Harvey, S. Hoang, A. Mangeney, J. L. Steinberg, and
D. Burgess (1988), ISEE observations of radiation at twice the solar wind
plasma frequency, Ann. Geophys., 6, 113–128.

Lemen, J. R., et al. (2011), The Atmospheric Imaging Assembly (AIA) on
the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17–40.

Lengyel-Frey, D., T. Golla, R. J. MacDowall, R. G. Stone, and J. L. Philips
(1997), Ulysses observations of wave activity at interplanetary shocks and
implications for type II radio bursts, J. Geophys. Res., 102, 2611–2621.

Leroy, M. M., and A. Mangeney (1984), A theory of energization of solar
wind electrons by the Earth’s bow shock, Ann. Geophys., 2, 449–456.

Lobzin, V. V., I. H. Cairns, and P. A. Robinson (2008), Evidence for wind-
like regions, acceleration of shocks in the deep corona, and relevance
of 1/f dynamic spectra to coronal type II bursts, Astrophys. J., 677,
L129–L132.

Maia, D., M. Pick, A. Vourlidas, and R. Howard (2000), Development of
coronal mass ejections: Radio shock signatures, Astrophys. J., 528,
L49–L51.

Maksimovic, M., V. Pierrard, and P. Riley (1997), Ulysses electron distri-
butions fitted with Kappa functions, Geophys. Res. Lett., 24, 1151–1154.

Mann, G., and A. Klassen (2005), Electron beams generated by shock
waves in the solar corona, Astron. Astrophys., 441, 319–326.

Melrose, D. B. (1985), Instabilities in Space and Laboratory Plasmas,
Cambridge Univ. Press, New York.

Mitchell, J. J., I. H. Cairns, and P. A. Robinson (2004), Theory for 2–3 kHz
radiation from the outer heliosphere, J. Geophys. Res., 109, A06108,
doi:10.1029/2003JA010117.

Nelson, G. J., and D. B. Melrose (1985), Type II bursts, in Solar Radiophy-
sics: Studies of Emission From the Sun at Metre Wavelengths, edited
by D. J. McLean and N. R. Labrum, pp. 333–359, Cambridge Univ.
Press, New York.

Neugebauer, M., and J. Giacolone (2005), Multispacecraft observations of
interplanetary shocks: Nonplanarity and energetic particles, J. Geophys.
Res., 110, A12106, doi:10.1029/2005JA011380.

Nindos, A., C. E. Alissandrakis, A. Hillaris, and P. Preka-Papadema (2011),
On the relationship of shock waves to flares and coronal mass ejections,
Astron. Astrophys., 531, 31–43.

Onsager, T. G., R. H. Holzworth, H. C. Koons, O. H. Bauer, and D. A.
Gurnett (1989), High-frequency electrostatic waves near Earth’s bow
shock, J. Geophys. Res., 94, 13,397–13,408.

Potter, D. W. (1981), Acceleration of electrons by interplanetary shocks,
J. Geophys. Res., 86, 11,111–11,116.

Pulupa, M. P., S. D. Bale, and J. C. Kasper (2010), Langmuir waves
upstream of interplanetary shocks: Dependence on shock and plasma
parameters, J. Geophys. Res., 115, A04106, doi:10.1029/2009JA014680.

Reiner, M. J. (2000), Interplanetary type II radio emissions associated
with CMEs, in Radio Astronomy at Long Wavelengths, Geophys.
Monogr. Ser., vol. 119, edited by R. G. Stone et al., pp. 137–145,
AGU, Washington, D. C.

Reiner, M. J., and M. L. Kaiser (1999), High-frequency type II radio
emissions associated with shocks driven by coronal mass ejections,
J. Geophys. Res., 104, 16,979–16,991.

Reiner, M. J., M. L. Kaiser, J. Fainberg, J. L. Bougeret, and R. G. Stone
(1997), Remote radio tracking of interplanetary CMEs, in The 31st ESLAB
Symposium on Correlated Phenomena at the Sun, in the Heliosphere, and
in Geospace, pp. 183–188, Eur. Space Agency, Noordwijk, Netherlands.

SCHMIDT AND CAIRNS: TYPE II RADIO BURSTS, 1 A04106A04106

17 of 18



Reiner, M. J., M. L. Kaiser, J. Fainberg, and R. G. Stone (1998), A new
method for studying remote type II radio emissions from coronal mass
ejection-driven shocks, J. Geophys. Res., 103, 29,651–29,664.

Robinson, P. A. (1992), Clumpy Langmuir waves in type III solar radio
sources, Sol. Phys., 139, 147–163.

Robinson, P. A., and A. O. Benz (2000), Bidirectional type III solar radio
bursts, Sol. Phys., 194, 345–369.

Robinson, P. A., and I. H. Cairns (1995), Maximum Langmuir fields in
planetary foreshocks determined from the electrostatic decay threshold,
Geophys. Res. Lett., 22, 2657–2660.

Robinson, P. A., and I. H. Cairns (1998a), Fundamental and harmonic
emission in type III solar radio bursts-I. Emission at a single location or
frequency, Sol. Phys., 181, 363–394.

Robinson, P. A., and I. H. Cairns (1998b), Fundamental and harmonic
emission in type III solar radio bursts-II. Dominant modes and dynamic
spectra, Sol. Phys., 181, 395–428.

Robinson, P. A., A. J. Willes, and I. H. Cairns (1993a), Dynamics of
Langmuir and ion-sound waves in type III solar radio sources, Astrophys. J.,
408, 720–734.

Robinson, P. A., I. H. Cairns, and D. A. Gurnett (1993b), Clumpy
Langmuir waves in type III radio sources: Comparison of stochastic-
growth theory with observations, Astrophys. J., 407, 790–800.

Robinson, P. A., I. H. Cairns, and A. J. Willes (1994), Dynamics and
efficiency of type III radio emission, Astrophys. J., 422, 870–882.

Robinson, P. A., B. Li, and I. H. Cairns (2004), New regimes of stochastic wave
growth, Phys. Rev. Lett., 93, 235003, doi:10.1103/PhysRevLett.93.235003.

Robinson, P. A., B. Li, and I. H. Cairns (2006), New regimes of stochastic
wave growth: Theory, simulation, and comparison with data, Phys.
Plasmas, 13, 112103, doi:10.1063/1.2363174.

Röttgering, H., M. van Haarlem, and G. Miley (2005), LOFAR-A new
low frequency radio telescope, in Probing Galaxies Through Quasar
Absorption Lines: Proceedings of the 199th Colloquium of the Inter-
national Astronomical Union, edited by P. Williams, C.-G. Shu, and
B. Menard, pp. 381–386, Cambridge Univ. Press, New York,
doi:10.1017/S1743921305002851.

Salah, J. E., C. J. Lonsdale, D. Oberoi, R. J. Cappallo, and J. C. Kasper
(2005), Space weather capabilities of low frequency radio arrays, Proc.
SPIE Soc. Opt. Eng., 5901, 124–134, doi:10.1117/12.613448.

Schmidt, J. M. (2000), Flux ropes embedded in a radial magnetic field:
Analytic solutions for the external magnetic field, Sol. Phys., 197, 135–148.

Schmidt, J. M., and P. J. Cargill (2001), Magnetic cloud evolution in a two-
speed solar wind, J. Geophys. Res., 106, 8283–8290.

Schmidt, J. M., and P. J. Cargill (2003), Magnetic reconnection between a
magnetic cloud and the solar wind magnetic field, J. Geophys. Res.,
108(A1), 1023, doi:10.1029/2002JA009325.

Schmidt, J. M., and P. J. Cargill (2004), A numerical study of two interact-
ing coronal mass ejections, Ann. Geophys., 22, 2245–2254.

Schmidt, J. M., and N. Gopalswamy (2008), Synthetic radio maps of CME-
driven shocks below 4 solar radii heliocentric distance, J. Geophys. Res.,
113, A08104, doi:10.1029/2007JA013002.

Sheeley, N. R., R. A. Howard, M. J. Koomen, D. J. Michels, R. Schwenn,
K. H. Mühlhäuser, and H. Rosenbauer (1985), Coronal mass ejections
and interplanetary shocks, J. Geophys. Res., 90, 163–175.

Sonnerup, B. U. O. (1969), Acceleration of particles reflected at a shock
front, J. Geophys. Res., 74, 1301–1304.

St. Cyr, O. C., et al. (2000), Properties of coronal mass ejections: SOHO
LASCO observations from January 1996 to June 1998, J. Geophys.
Res., 105, 18,169–18,186.

Street, A. G., L. Ball, and D. B. Melrose (1994), Shock drift acceleration
and type II solar radio bursts, Publ. Astron. Soc. Aust., 11, 21–24.

Temmer, M., B. Vršnak, T. Žic, and A. M. Veronig (2009), Analytic mod-
eling of the Moreton wave kinematics, Astrophys. J., 702, 1343–1352.

Toptyghin, I. N. (1980), Acceleration of particles by shocks in a cosmic
plasma, Space Sci. Rev., 26, 157–213.

Webb, G. M., W. I. Axford, and T. Terasawa (1983), On the drift
mechanism for energetic charged particles at shocks, Astrophys. J., 270,
537–553.

Wild, J. P., and S. F. Smerd (1972), Radio bursts from the solar corona,
Annu. Rev. Astron. Astrophys., 10, 159–196.

Wu, C. S. (1984), A fast Fermi process: Energetic electrons accelerated by
a nearly perpendicular bow shock, J. Geophys. Res., 89, 8857–8862.

Yuan, X., I. H. Cairns, and P. A. Robinson (2007), Simulation of
energetic electron bursts upstream of reforming shocks, Astrophys. J.,
671, 439–446.

Yuan, X., I. H. Cairns, and P. A. Robinson (2008), Numerical simulation of
electron distributions upstream and downstream of high Mach number
quasi-perpendicular collisionless shocks, J. Geophys. Res., 113,
A08109, doi:10.1029/2008JA013268.

Zalesak, S. T. (1979), Fully multidimensional flux-corrected transport
algorithms for fluids, J. Comput. Phys., 31, 335–362.

I. H. Cairns and J. M. Schmidt, School of Physics, Physics Road,
Building A29, University of Sydney, Sydney, NSW 2006, Australia.
(cairns@physics.usyd.edu.au; jschmidt@physics.usyd.edu.au)

SCHMIDT AND CAIRNS: TYPE II RADIO BURSTS, 1 A04106A04106

18 of 18



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


